#include "models.h" ggml_cgraph * clip_graph_pixtral::build() { const int n_merge = hparams.n_merge; // 2D input positions ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_h, "pos_h"); ggml_set_input(pos_h); ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_w, "pos_w"); ggml_set_input(pos_w); auto add_pos = [&](ggml_tensor * cur, const clip_layer &) { return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true); }; ggml_tensor * inp = build_inp(); ggml_tensor * cur = build_vit( inp, n_patches, NORM_TYPE_RMS, hparams.ffn_op, nullptr, // no learned pos embd add_pos); // mistral small 3.1 patch merger // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67 if (model.mm_patch_merger_w) { GGML_ASSERT(hparams.n_merge > 0); cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w); // reshape image tokens to 2D grid cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y); cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd] cur = ggml_cont(ctx0, cur); // torch.nn.functional.unfold is just an im2col under the hood // we just need a dummy kernel to make it work ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0); cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type); // project to n_embd cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]); cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur); } // LlavaMultiModalProjector (always using GELU activation) { cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_2_w, model.mm_2_b, FFN_GELU, -1); } // arrangement of the [IMG_BREAK] token if (model.token_embd_img_break) { // not efficient, but works // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows] // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows] const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y; const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x; const int p_total = p_x * p_y; const int n_embd_text = cur->ne[0]; const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y); ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y); tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor tok = ggml_add(ctx0, tok, model.token_embd_img_break); tmp = ggml_concat(ctx0, tmp, tok, 1); cur = ggml_view_2d(ctx0, tmp, n_embd_text, n_tokens_output, ggml_row_size(tmp->type, n_embd_text), 0); } // build the graph ggml_build_forward_expand(gf, cur); return gf; }