""" Convert Grok-1 weights to GGUF format. Example invocation: python -m convert_grok -i path/to/grok-1/ckpt-0 --vocab_dir path/to/grok -o grok.bin -t q4_0 --experts 1,2 To run: ./build/bin/main -m grok.bin -p "The answer to life the universe and everything is" -s 1 -n 3 -ngl 1 """ import argparse import logging import mmap import os import pathlib import pickletools import sys import time import ml_dtypes import numpy as np import torch try: from tabulate import tabulate except ModuleNotFoundError: pass from convert import SentencePieceVocab if "NO_LOCAL_GGUF" not in os.environ: sys.path.insert(1, str(pathlib.Path(__file__).parent / "gguf-py")) import gguf QK8_0 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q8_0][0] QK4_0 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q4_0][0] QK4_1 = gguf.GGML_QUANT_SIZES[gguf.GGMLQuantizationType.Q4_1][0] # Heuristic to avoid having to fully parse pickle files. FP32_SHAPES = {805306368: (131072, 6144), 6144: (6144,), 49152: (6144, 8)} BF16_SHAPES = { 262144: (8, 1, 32768), 393216: (8, 8, 6144), 1024: (1, 1024), 49152: (8, 6144), 6144: (1, 6144), } class AttributeDict(dict): def __getattr__(self, key): return self.__getitem__(key) if key in self else super().__getattr__(key) __setattr__ = dict.__setitem__ def _genops(data): view = memoryview(data) code2op = {ord(d.code): d for d in pickletools.opcodes} dataops = { "BINBYTES": pickletools.read_uint4, "BINBYTES8": pickletools.read_uint8, } while True: pos = data.tell() code = data.read_byte() opcode = code2op[code] arg = None if opcode.arg is not None: if opcode.name not in dataops: arg = opcode.arg.reader(data) else: size = dataops[opcode.name](data) p = data.tell() arg = np.frombuffer(view[p : p + size], dtype=np.uint8) data.seek(size, 1) yield opcode, arg, pos if code == ord(b"."): break def genops(fn): """Yield (opcode, arg, pos) from for a pickle file. Uses mmap to avoid copies of binary data (e.g., np and JAX arrays).""" with open(fn, "rb") as f: yield from _genops(mmap.mmap(f.fileno(), length=0, flags=mmap.MAP_PRIVATE)) def get_weights(fn): """Returns tensor/array data in Grok pickle files, zero copy.""" arrays = [] for unused_opcode, arg, unused_pos in genops(fn): if isinstance(arg, np.ndarray): arrays.append(arg) if len(arrays) == 1: # Plain numpy array. array = arrays[0].view(np.float32) array = array.reshape(FP32_SHAPES[array.size]) return array, None elif len(arrays) == 2: weight, scales = arrays scales = scales.view(ml_dtypes.bfloat16) scales = scales.reshape(BF16_SHAPES[scales.size]) weight = weight.view(np.int8) shape = list(scales.shape) shape[-2] = -1 weight = weight.reshape(shape) return weight, scales assert len(arrays) in (1, 2) def quantize_q8_0(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q8_0 in ggml.c (modulo rounding away from zero) assert tensor.shape[1] % QK8_0 == 0 tensor = tensor.reshape(-1, QK8_0) scale = tensor.abs().max(dim=-1, keepdim=True).values / ((1 << 7) - 1) tensor = (tensor / scale).round().clamp(min=-128, max=127).char() # add scale into each block tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1) return tensor def quantize_q4_0(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q4_0 in ggml.c (modulo rounding away from zero) assert tensor.shape[1] % QK4_0 == 0 tensor = tensor.reshape(-1, QK4_0) abs_max_indices = tensor.abs().max(dim=-1, keepdim=True).indices max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1) scale = max_values / -8 tensor = (tensor / scale + 8).round().clamp(min=0, max=15).char() # compress two int4 weights into a int8 tensor = tensor[:, :16] | (tensor[:, 16:] << 4) # add scale into each block tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1) return tensor def quantize_q4_1(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q4_1 in ggml.c (modulo rounding away from zero) assert tensor.shape[1] % QK4_1 == 0 tensor = tensor.reshape(-1, QK4_1) abs_max_indices = tensor.max(dim=-1, keepdim=True).indices max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1) abs_min_indices = tensor.min(dim=-1, keepdim=True).indices min_values = torch.take_along_dim(tensor, abs_min_indices, dim=-1) scale = (max_values - min_values) / 15 tensor = ((tensor - min_values) / scale).round().clamp(min=0, max=15).char() # compress two int4 weights into a int8 tensor = tensor[:, :16] | (tensor[:, 16:] << 4) # add scale into each block tensor = torch.cat( (scale.half().view(torch.int8), min_values.half().view(torch.int8), tensor), dim=-1 ) return tensor def maybe_quantize_tensor(tensor, ggml_type): assert tensor.dtype == torch.float32 if ggml_type == gguf.GGMLQuantizationType.F32: return tensor.float() elif ggml_type == gguf.GGMLQuantizationType.F16: return tensor.half() elif ggml_type == gguf.GGMLQuantizationType.Q8_0: if tensor.device.type == "meta": return quantize_q8_0(tensor) # Cannot convert into numpy array. return torch.from_numpy(gguf.quantize_q8_0(tensor.numpy())) elif ggml_type == gguf.GGMLQuantizationType.Q4_0: return quantize_q4_0(tensor) elif ggml_type == gguf.GGMLQuantizationType.Q4_1: return quantize_q4_1(tensor) else: raise NotImplementedError(f"Cannot quantize tensor of dtype {tensor.dtype} ({ggml_type})") def get_dtype_and_ggml_type(name, tensor, ggml_type): if tensor.ndim in (2, 3) and "ffn_gate_inp" not in name: if tensor.shape[1] % QK8_0 == 0: return np.int8, ggml_type else: return np.float16, gguf.GGMLQuantizationType.F16 else: return np.float32, gguf.GGMLQuantizationType.F32 def dump_state_dict(f, ggml_type, input_dir, config): weights = {} # Load weights in file order (mmap'ed). for idx, name in enumerate(get_weight_names(config.num_hidden_layers)): weights[name] = get_weights(f"{input_dir}/tensor{idx:05}_000") logging.debug("Loaded %i files", len(weights)) # But write in layer order. weight_names = get_weight_names(config.num_hidden_layers, lexicographic=False) # Operate on meta tensors to find shapes and dtypes for GGUF header. for name in weight_names: weight, scales = weights[name] meta_tensor = convert_weight(name, weight, scales, config, device="meta") dtype, tensor_ggml_type = get_dtype_and_ggml_type(name, meta_tensor, ggml_type) quantized_meta_tensor = maybe_quantize_tensor(meta_tensor, tensor_ggml_type) f.add_tensor_info( f"{name}.weight", list(meta_tensor.shape), dtype, quantized_meta_tensor.nbytes, tensor_ggml_type, ) f.write_header_to_file() f.write_kv_data_to_file() f.write_ti_data_to_file() # Now write actual tensor data. tensor_info = [] for name in weight_names: weight, scales = weights.pop(name) tensor = convert_weight(name, weight, scales, config) _, tensor_ggml_type = get_dtype_and_ggml_type(name, tensor, ggml_type) array = maybe_quantize_tensor(tensor, tensor_ggml_type).numpy() logging.info( f"dumping {name}:" f"{tensor_ggml_type.name}/{array.dtype}, {list(tensor.shape)}, {array.nbytes} bytes" ) f.write_tensor_data(array) tensor_info.append((name, list(tensor.shape), tensor_ggml_type.name)) try: print( # noqa: NP100 tabulate(tensor_info, headers=["name", "shape", "dtype"], tablefmt="psql") ) except NameError: pass if weights: logging.warning("Not all tensors are converted") def from_numpy(array): """Like torch.from_numpy, but handle ml_dtypes.bfloat16 too.""" if array.dtype == ml_dtypes.bfloat16: return torch.from_numpy(array.view(np.uint8)).view(torch.bfloat16) return torch.from_numpy(array) def convert_weight(name, weight, scales, config, dtype=torch.float32, device=None): # copied from https://gist.github.com/chu-tianxiang/ec310e15d56949fd0f351cb5f65ee7a1 weight = from_numpy(weight).to(device=device, dtype=dtype) if scales is not None: scale = from_numpy(scales).to(device=device, dtype=dtype) # row parallel layers have sharded scale if len(scale.shape) >= 2 and scale.shape[-2] != 1: scale = scale[..., None, :] weight = weight.view(*weight.shape[:-2], 8, -1, weight.shape[-1]) weight = (weight * scale).view(*weight.shape[:-3], -1, weight.shape[-1]) else: weight = weight * scale if name != "token_embd" and len(weight.shape) >= 2: # Transpose linear matrix weight = weight.transpose(-1, -2) if name.endswith("ffn_gate_inp") or name.endswith("_exps"): weight = weight[config.experts] # gather. return weight def extract_vocabulary_from_model(vocab): tokens = [] scores = [] toktypes = [] for text, score, toktype in vocab.all_tokens(): tokens.append(text) scores.append(score) toktypes.append(toktype) assert len(tokens) == vocab.vocab_size return tokens, scores, toktypes def get_weight_names(num_hidden_layers=64, lexicographic=True): """Return Grok-1 weight names. If `lexicographic` is set, the order is as in the tensor#####_000 files.""" weight_names = [ gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD], gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT_NORM], ] layer = ( gguf.MODEL_TENSOR.FFN_GATE_EXP, gguf.MODEL_TENSOR.FFN_DOWN_EXP, gguf.MODEL_TENSOR.FFN_UP_EXP, gguf.MODEL_TENSOR.ATTN_K, gguf.MODEL_TENSOR.ATTN_OUT, gguf.MODEL_TENSOR.ATTN_Q, gguf.MODEL_TENSOR.ATTN_V, gguf.MODEL_TENSOR.ATTN_NORM, gguf.MODEL_TENSOR.ATTN_OUT_NORM, gguf.MODEL_TENSOR.FFN_NORM, gguf.MODEL_TENSOR.LAYER_OUT_NORM, gguf.MODEL_TENSOR.FFN_GATE_INP, ) layers = [str(bid) for bid in range(64)] if lexicographic: # Lexicographic sort: 0 < 1 < 10 < 11 ... < 2 < 20 < ... layers.sort() for bid in layers[:num_hidden_layers]: for key in layer: weight_names.append(gguf.TENSOR_NAMES[key].format(bid=bid)) return weight_names def convert_grok(args, vocab, ggml_type): start = time.time() def ffn_size(emb_size, widening_factor): _ffn_size = int(widening_factor * emb_size) * 2 // 3 _ffn_size = _ffn_size + (8 - _ffn_size) % 8 # ensure it's a multiple of 8 return _ffn_size config = { "hidden_act": "gelu", "pad_token_id": 0, "eos_token_id": 2, "max_position_embeddings": 8192, "output_multiplier_scale": 0.5773502691896257, "embedding_multiplier_scale": 78.38367176906169, "hidden_size": 48 * 128, "intermediate_size": -1, "num_attention_heads": 48, "num_key_value_heads": 8, "num_hidden_layers": 64, # Change to 1 for quicker debugging. "num_selected_experts": 2, "rope_theta": 10000, "attn_output_multiplier": 0.08838834764831845, "rms_norm_eps": 1e-5, } config = AttributeDict(config) config.intermediate_size = ffn_size(config.hidden_size, 8) config.experts = list(range(8)) if args.experts != "": config.experts = [int(x, 0) for x in args.experts.split(",")] config.num_experts = len(config.experts) assert config.num_experts >= 2, "need at least 2 experts" logging.info("experts to export: %s", config.experts) f = gguf.GGUFWriter(args.save_path, "grok", endianess=gguf.GGUFEndian.LITTLE) f.add_name("grok-1") f.add_context_length(config.max_position_embeddings) f.add_embedding_length(config.hidden_size) f.add_block_count(config.num_hidden_layers) f.add_feed_forward_length(config.intermediate_size) f.add_rope_dimension_count(config.hidden_size // config.num_attention_heads) f.add_head_count(config.num_attention_heads) f.add_head_count_kv(config.num_key_value_heads) f.add_expert_count(config.num_experts) f.add_expert_used_count(config.num_selected_experts) f.add_layer_norm_rms_eps(config.rms_norm_eps) f.add_rope_freq_base(config.rope_theta) f.add_tokenizer_model("llama") # Extract model vocabulary for model conversion tokens, scores, toktypes = extract_vocabulary_from_model(vocab) f.add_token_list(tokens) f.add_token_scores(scores) f.add_token_types(toktypes) f.add_quantization_version(ggml_type) dump_state_dict(f, ggml_type, args.input_dir, config) f.close() delta = time.time() - start logging.info(f"grok GGUF model saved to {args.save_path}. Total time {delta:.2f} sec") def load_vocab(path): def load_spm(p): logging.info(f"Loading vocab file {p}") return SentencePieceVocab(p) # Be extra-friendly and accept either a file or a directory. Also, if it's # a directory, it might be the model directory, and tokenizer.model might # be in the parent of that. if path.is_dir(): path2 = path / "tokenizer.model" # Use `.parent` instead of /.. to handle the symlink case better. path3 = path.parent / "tokenizer.model" if path2.exists(): return load_spm(path2) elif path3.exists(): return load_spm(path3) raise FileNotFoundError( f"Could not find tokenizer.model in {path} or its parent; " "if it's in another directory, pass the directory as --vocab-dir" ) def main(): parser = argparse.ArgumentParser("convert_grok") parser.add_argument("-i", "--input_dir", type=str) parser.add_argument("-o", "--save_path", type=pathlib.Path) parser.add_argument( "-t", "--type", type=str, default="q8_0", choices=["f32", "f16", "q8_0", "q4_0", "q4_1"] ) parser.add_argument("--vocab_dir", type=str, default="") parser.add_argument("--experts", type=str, default="") parser.add_argument("--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args() logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) vocab = load_vocab( pathlib.Path(args.vocab_dir) if args.vocab_dir else pathlib.Path(args.input_dir) ) ggml_type = gguf.GGMLQuantizationType[args.type.upper()] convert_grok(args, vocab, ggml_type) if __name__ == "__main__": main()