#include "models.h" llm_build_vaetki::llm_build_vaetki(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla; const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla; const int64_t n_embd_head_qk_rope = hparams.n_rot; const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; const uint32_t kv_lora_rank = hparams.n_lora_kv; const float kq_scale = 1.0f / sqrtf(float(n_embd_head_qk_nope + n_embd_head_qk_rope)); ggml_tensor * cur; ggml_tensor * inpL; inpL = build_inp_embd(model.tok_embd); ggml_tensor * inp_pos = build_inp_pos(); auto * inp_attn = build_attn_inp_kv_iswa(); ggml_tensor * inp_out_ids = build_inp_out_ids(); for (int il = 0; il < n_layer; ++il) { const float freq_base_l = model.get_rope_freq_base(cparams, il); const float freq_scale_l = model.get_rope_freq_scale(cparams, il); ggml_tensor * inpSA = inpL; cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_norm", il); // self_attention { ggml_tensor * q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur); cb(q, "q_a", il); q = build_norm(q, model.layers[il].attn_q_a_norm, nullptr, LLM_NORM_RMS, il); cb(q, "q_a_norm", il); q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q); cb(q, "q", il); // q is now [rope | nope] after weight reordering in conversion // reshape to {n_embd_head_k_mla, n_head, n_tokens} q = ggml_reshape_3d(ctx0, q, n_embd_head_k_mla, n_head, n_tokens); ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur); cb(kv_cmpr_pe, "kv_cmpr_pe", il); // {kv_lora_rank, n_tokens} ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens, ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0); cb(kv_cmpr, "kv_cmpr", il); // {n_embd_head_qk_rope, 1, n_tokens} ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens, ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), ggml_row_size(kv_cmpr_pe->type, kv_lora_rank)); cb(k_pe, "k_pe", il); // apply rope - rotates first n_rot dims, copies rest unchanged ggml_tensor * Qcur = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); cb(Qcur, "Qcur", il); k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, ext_factor, attn_factor, beta_fast, beta_slow); cb(k_pe, "k_pe_rope", il); kv_cmpr = build_norm(kv_cmpr, model.layers[il].attn_kv_a_norm, nullptr, LLM_NORM_RMS, il); cb(kv_cmpr, "kv_cmpr_norm", il); ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr); cb(kv, "kv", il); // {n_embd_head_qk_nope, n_head, n_tokens} ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v_mla), ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v_mla) * n_head, 0); cb(k_nope, "k_nope", il); // {n_embd_head_v_mla, n_head, n_tokens} ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens, ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v_mla), ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v_mla) * n_head, ggml_row_size(kv->type, n_embd_head_qk_nope)); cb(Vcur, "Vcur", il); Vcur = ggml_cont(ctx0, Vcur); cb(Vcur, "Vcur_cont", il); ggml_tensor * q_pe_ref = ggml_view_3d(ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, Qcur->nb[1], Qcur->nb[2], 0); ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe_ref), k_nope, 0); cb(Kcur, "Kcur", il); cur = build_attn(inp_attn, model.layers[il].wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il); } cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "attn_post_norm", il); if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_norm", il); if ((uint32_t) il < hparams.n_layer_dense_lead) { cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(cur, "ffn_out", il); } else { ggml_tensor * moe_out = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps, nullptr, n_expert, n_expert_used, LLM_FFN_SILU, hparams.expert_weights_norm, hparams.expert_weights_scale, hparams.expert_weights_scale, (llama_expert_gating_func_type) hparams.expert_gating_func, il); cb(moe_out, "ffn_moe_out", il); ggml_tensor * ffn_shexp = build_ffn(cur, model.layers[il].ffn_up_shexp, NULL, NULL, model.layers[il].ffn_gate_shexp, NULL, NULL, model.layers[il].ffn_down_shexp, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); cb(ffn_shexp, "ffn_shexp", il); cur = ggml_add(ctx0, moe_out, ffn_shexp); cb(cur, "ffn_out", il); } cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il); cb(cur, "ffn_post_norm", il); cur = ggml_add(ctx0, cur, ffn_inp); cur = build_cvec(cur, il); cb(cur, "l_out", il); inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1); cb(cur, "result_norm", -1); res->t_embd = cur; cur = ggml_mul_mat(ctx0, model.output, cur); cb(cur, "result_output", -1); res->t_logits = cur; ggml_build_forward_expand(gf, cur); }