#include "models.h" ggml_cgraph * clip_graph_vaetki::build() { GGML_ASSERT(model.class_embedding != nullptr); const int batch_size = 1; const int n_pos = n_patches + 1; const int n_pos_patches = n_patches; const int num_position_ids = n_pos_patches * 4; norm_type norm_t = NORM_TYPE_NORMAL; int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; ggml_tensor * inp = build_inp(); // add CLS token inp = ggml_concat(ctx0, model.class_embedding, inp, 1); cb(inp, "inp_with_cls", -1); // position IDs for 2D RoPE (patch tokens only) ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); ggml_set_name(positions, "positions"); ggml_set_input(positions); // precompute CLS position embedding cos/sin ggml_tensor * cls_cos = nullptr; ggml_tensor * cls_sin = nullptr; if (model.class_pos_emb) { ggml_tensor * cls_pos = ggml_concat(ctx0, model.class_pos_emb, model.class_pos_emb, 0); cls_cos = ggml_cos(ctx0, cls_pos); cls_sin = ggml_sin(ctx0, cls_pos); } auto add_pos = [&](ggml_tensor * cur, const clip_layer &) -> ggml_tensor * { // split CLS and patch tokens // use cur->nb[2] to support both fused QKV (nb[2]=3*n_embd) and separate Q/K/V (nb[2]=n_embd) ggml_tensor * cur_cls = ggml_view_3d(ctx0, cur, d_head, n_head, 1, ggml_row_size(cur->type, d_head), cur->nb[2], 0); ggml_tensor * cur_patch = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos_patches, ggml_row_size(cur->type, d_head), cur->nb[2], cur->nb[2]); // apply RoPE to CLS token using class_pos_emb if (cls_cos && cls_sin) { ggml_tensor * cls_1 = ggml_view_3d(ctx0, cur_cls, d_head/2, n_head, 1, ggml_row_size(cur_cls->type, d_head), ggml_row_size(cur_cls->type, d_head * n_head), 0); ggml_tensor * cls_2 = ggml_view_3d(ctx0, cur_cls, d_head/2, n_head, 1, ggml_row_size(cur_cls->type, d_head), ggml_row_size(cur_cls->type, d_head * n_head), ggml_row_size(cur_cls->type, d_head/2)); ggml_tensor * cls_rot = ggml_concat(ctx0, ggml_neg(ctx0, cls_2), cls_1, 0); cur_cls = ggml_add(ctx0, ggml_mul(ctx0, cur_cls, cls_cos), ggml_mul(ctx0, cls_rot, cls_sin)); } // apply 2D RoPE to patch tokens cur_patch = ggml_rope_multi(ctx0, cur_patch, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); return ggml_concat(ctx0, cur_cls, cur_patch, 2); }; ggml_tensor * cur = build_vit( inp, n_pos, norm_t, hparams.ffn_op, nullptr, add_pos); cb(cur, "vit_out", -1); // remove CLS token ggml_tensor * embeddings = ggml_view_2d(ctx0, cur, n_embd, n_pos_patches, ggml_row_size(cur->type, n_embd), ggml_row_size(cur->type, n_embd)); cb(embeddings, "patches_only", -1); // merger embeddings = build_norm(embeddings, model.mm_input_norm_w, model.mm_input_norm_b, NORM_TYPE_NORMAL, 1e-5, -1); cb(embeddings, "merger_normed", -1); // pixel shuffle const int scale_factor = hparams.n_merge; embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * scale_factor * scale_factor, n_pos_patches / (scale_factor * scale_factor), batch_size); cb(embeddings, "merger_reshaped", -1); embeddings = build_ffn(embeddings, model.mm_ffn_up_w, model.mm_ffn_up_b, nullptr, nullptr, model.mm_ffn_down_w, model.mm_ffn_down_b, FFN_GELU, -1); cb(embeddings, "merger_out", -1); ggml_build_forward_expand(gf, embeddings); return gf; }