#include "clip.h" #include "clip-impl.h" #include "clip-model.h" #include "clip-graph.h" #include "models/models.h" #include "ggml.h" #include "ggml-cpp.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "gguf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL}; //#define CLIP_DEBUG_FUNCTIONS #ifdef CLIP_DEBUG_FUNCTIONS static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } // PPM header: P6 format, width, height, and max color value file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; // Write pixel data for (size_t i = 0; i < img.buf.size(); i += 3) { // PPM expects binary data in RGB format, which matches our image buffer file.write(reinterpret_cast(&img.buf[i]), 3); } file.close(); } static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data int bytesPerPixel = 3; int widthInBytes = img.nx * bytesPerPixel; int paddingAmount = (4 - (widthInBytes % 4)) % 4; int stride = widthInBytes + paddingAmount; // Bitmap file header unsigned char fileHeader[14] = { 'B','M', // Signature 0,0,0,0, // Image file size in bytes 0,0,0,0, // Reserved 54,0,0,0 // Start of pixel array }; // Total file size fileSize = 54 + (stride * img.ny); fileHeader[2] = (unsigned char)(fileSize); fileHeader[3] = (unsigned char)(fileSize >> 8); fileHeader[4] = (unsigned char)(fileSize >> 16); fileHeader[5] = (unsigned char)(fileSize >> 24); // Bitmap information header (BITMAPINFOHEADER) unsigned char infoHeader[40] = { 40,0,0,0, // Size of this header (40 bytes) 0,0,0,0, // Image width 0,0,0,0, // Image height 1,0, // Number of color planes 24,0, // Bits per pixel 0,0,0,0, // No compression 0,0,0,0, // Image size (can be 0 for no compression) 0,0,0,0, // X pixels per meter (not specified) 0,0,0,0, // Y pixels per meter (not specified) 0,0,0,0, // Total colors (color table not used) 0,0,0,0 // Important colors (all are important) }; // Width and height in the information header infoHeader[4] = (unsigned char)(img.nx); infoHeader[5] = (unsigned char)(img.nx >> 8); infoHeader[6] = (unsigned char)(img.nx >> 16); infoHeader[7] = (unsigned char)(img.nx >> 24); infoHeader[8] = (unsigned char)(img.ny); infoHeader[9] = (unsigned char)(img.ny >> 8); infoHeader[10] = (unsigned char)(img.ny >> 16); infoHeader[11] = (unsigned char)(img.ny >> 24); // Write file headers file.write(reinterpret_cast(fileHeader), sizeof(fileHeader)); file.write(reinterpret_cast(infoHeader), sizeof(infoHeader)); // Pixel data std::vector padding(3, 0); // Max padding size to be added to each row for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top for (int x = 0; x < img.nx; ++x) { // Each pixel size_t pixelIndex = (y * img.nx + x) * 3; unsigned char pixel[3] = { img.buf[pixelIndex + 2], // BMP stores pixels in BGR format img.buf[pixelIndex + 1], img.buf[pixelIndex] }; file.write(reinterpret_cast(pixel), 3); } // Write padding for the row file.write(reinterpret_cast(padding.data()), paddingAmount); } file.close(); } // debug function to convert f32 to u8 static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(3 * src.nx * src.ny); for (size_t i = 0; i < src.buf.size(); ++i) { dst.buf[i] = static_cast(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); } } #endif struct clip_ctx { clip_model model; gguf_context_ptr ctx_gguf; ggml_context_ptr ctx_data; std::vector buf_compute_meta; std::vector backend_ptrs; std::vector backend_buft; ggml_backend_t backend = nullptr; ggml_backend_t backend_cpu = nullptr; ggml_backend_buffer_ptr buf; int max_nodes = 8192; ggml_backend_sched_ptr sched; clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO; bool is_allocated = false; // for debugging bool debug_graph = false; std::vector debug_print_tensors; clip_ctx(clip_context_params & ctx_params) { flash_attn_type = ctx_params.flash_attn_type; debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr; backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); if (!backend_cpu) { throw std::runtime_error("failed to initialize CPU backend"); } if (ctx_params.use_gpu) { auto backend_name = std::getenv("MTMD_BACKEND_DEVICE"); if (backend_name != nullptr) { backend = ggml_backend_init_by_name(backend_name, nullptr); if (!backend) { LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name); } } if (!backend) { backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr); backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr); } } if (backend) { LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend)); backend_ptrs.push_back(backend); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); } else { backend = backend_cpu; LOG_INF("%s: CLIP using CPU backend\n", __func__); } if (ctx_params.image_min_tokens > 0) { model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens; } if (ctx_params.image_max_tokens > 0) { model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens; } backend_ptrs.push_back(backend_cpu); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu)); sched.reset( ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true) ); } ~clip_ctx() { ggml_backend_free(backend); if (backend != backend_cpu) { ggml_backend_free(backend_cpu); } } // this function is added so that we don't change too much of the existing code projector_type proj_type() const { return model.proj_type; } }; // // clip_graph // clip_graph::clip_graph(clip_ctx * ctx, const clip_image_f32 & img) : model(ctx->model), hparams(model.hparams), proj_type(ctx->proj_type()), img(img), patch_size(hparams.patch_size), n_patches_x(img.nx / patch_size), n_patches_y(img.ny / patch_size), n_patches(n_patches_x * n_patches_y), n_embd(hparams.n_embd), n_head(hparams.n_head), d_head(n_embd / n_head), n_layer(hparams.n_layer), n_mmproj_embd(clip_n_mmproj_embd(ctx)), eps(hparams.eps), kq_scale(1.0f / sqrtf((float)d_head)), flash_attn_type(ctx->flash_attn_type), debug_graph(ctx->debug_graph), debug_print_tensors(ctx->debug_print_tensors) { struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ctx0_ptr.reset(ggml_init(params)); ctx0 = ctx0_ptr.get(); gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false); } void clip_graph::cb(ggml_tensor * cur0, const char * name, int il) const { if (debug_graph) { ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0)); std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name; ggml_set_name(cur, cur_name.c_str()); ggml_set_output(cur); ggml_build_forward_expand(gf, cur); debug_print_tensors.push_back(cur); } } // siglip2 naflex ggml_tensor * clip_graph::resize_position_embeddings(uint32_t interpolation_mode) { ggml_tensor * pos_embd = model.position_embeddings; const int height = img.ny / patch_size; const int width = img.nx / patch_size; const uint32_t mode = interpolation_mode; const int n_per_side = (int)std::sqrt(pos_embd->ne[1]); GGML_ASSERT(pos_embd); if (height == n_per_side && width == n_per_side) { return pos_embd; } pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side) pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd) pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd) pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height) pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height) return pos_embd; } // build vision transformer (ViT) cgraph // this function should cover most of the models // if your model has specific features, you should probably duplicate this function ggml_tensor * clip_graph::build_vit( ggml_tensor * inp, int64_t n_pos, norm_type norm_t, ffn_op_type ffn_t, ggml_tensor * learned_pos_embd, std::function add_pos ) { if (learned_pos_embd) { inp = ggml_add(ctx0, inp, learned_pos_embd); cb(inp, "pos_embed", -1); } ggml_tensor * inpL = inp; // pre-layernorm if (model.pre_ln_w) { inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1); cb(inpL, "pre_ln", -1); } // loop over layers for (int il = 0; il < n_layer; il++) { auto & layer = model.layers[il]; ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states // layernorm1 cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il); cb(cur, "layer_inp_normed", il); // self-attention { ggml_tensor * Qcur = nullptr; ggml_tensor * Kcur = nullptr; ggml_tensor * Vcur = nullptr; if (layer.qkv_w != nullptr) { // fused qkv cur = ggml_mul_mat(ctx0, layer.qkv_w, cur); if (layer.qkv_b != nullptr) { cur = ggml_add(ctx0, cur, layer.qkv_b); } Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, /* nb1 */ ggml_row_size(cur->type, d_head), /* nb2 */ cur->nb[1], /* offset */ 0); Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, /* nb1 */ ggml_row_size(cur->type, d_head), /* nb2 */ cur->nb[1], /* offset */ ggml_row_size(cur->type, n_embd)); Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, /* nb1 */ ggml_row_size(cur->type, d_head), /* nb2 */ cur->nb[1], /* offset */ ggml_row_size(cur->type, 2 * n_embd)); // TODO: q/k norm requires row size == n_embd, while here it's d_head // we can add support in the future if needed GGML_ASSERT(layer.q_norm == nullptr && layer.k_norm == nullptr); } else { // separate q, k, v Qcur = ggml_mul_mat(ctx0, layer.q_w, cur); if (layer.q_b) { Qcur = ggml_add(ctx0, Qcur, layer.q_b); } Kcur = ggml_mul_mat(ctx0, layer.k_w, cur); if (layer.k_b) { Kcur = ggml_add(ctx0, Kcur, layer.k_b); } Vcur = ggml_mul_mat(ctx0, layer.v_w, cur); if (layer.v_b) { Vcur = ggml_add(ctx0, Vcur, layer.v_b); } if (layer.q_norm) { Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il); cb(Qcur, "Qcur_norm", il); } if (layer.k_norm) { Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il); cb(Kcur, "Kcur_norm", il); } Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos); Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos); Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos); } cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); if (add_pos) { Qcur = add_pos(Qcur, layer); Kcur = add_pos(Kcur, layer); cb(Qcur, "Qcur_pos", il); cb(Kcur, "Kcur_pos", il); } cur = build_attn(layer.o_w, layer.o_b, Qcur, Kcur, Vcur, nullptr, kq_scale, il); cb(cur, "attn_out", il); } if (layer.ls_1_w) { cur = ggml_mul(ctx0, cur, layer.ls_1_w); cb(cur, "attn_out_scaled", il); } // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, inpL); inpL = cur; // inpL = residual, cur = hidden_states cb(cur, "ffn_inp", il); // layernorm2 cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il); cb(cur, "ffn_inp_normed", il); // ffn cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, layer.ff_gate_w, layer.ff_gate_b, layer.ff_down_w, layer.ff_down_b, ffn_t, il); cb(cur, "ffn_out", il); if (layer.ls_2_w) { cur = ggml_mul(ctx0, cur, layer.ls_2_w); cb(cur, "ffn_out_scaled", il); } // residual 2 cur = ggml_add(ctx0, inpL, cur); cb(cur, "layer_out", il); inpL = cur; } if (model.audio_has_avgpool()) { ggml_tensor * cur = inpL; cur = ggml_transpose(ctx0, cur); cur = ggml_cont(ctx0, cur); cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0); cur = ggml_transpose(ctx0, cur); cur = ggml_cont(ctx0, cur); inpL = cur; } // post-layernorm if (model.post_ln_w) { inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1); } return inpL; } // build the input after conv2d (inp_raw --> patches) // returns tensor with shape [n_embd, n_patches] ggml_tensor * clip_graph::build_inp() { ggml_tensor * inp_raw = build_inp_raw(); ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd); inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); if (model.patch_bias) { inp = ggml_add(ctx0, inp, model.patch_bias); cb(inp, "patch_bias", -1); } return inp; } ggml_tensor * clip_graph::build_inp_raw(int channels) { ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); return inp_raw; } ggml_tensor * clip_graph::build_norm( ggml_tensor * cur, ggml_tensor * mw, ggml_tensor * mb, norm_type type, float norm_eps, int il) const { cur = type == NORM_TYPE_RMS ? ggml_rms_norm(ctx0, cur, norm_eps) : ggml_norm(ctx0, cur, norm_eps); if (mw) { cur = ggml_mul(ctx0, cur, mw); cb(cur, "norm_w", il); } if (mb) { cur = ggml_add(ctx0, cur, mb); cb(cur, "norm_b", il); } return cur; } ggml_tensor * clip_graph::build_ffn( ggml_tensor * cur, ggml_tensor * up, ggml_tensor * up_b, ggml_tensor * gate, ggml_tensor * gate_b, ggml_tensor * down, ggml_tensor * down_b, ffn_op_type type_op, int il) const { ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur; cb(tmp, "ffn_up", il); if (up_b) { tmp = ggml_add(ctx0, tmp, up_b); cb(tmp, "ffn_up_b", il); } if (gate) { cur = ggml_mul_mat(ctx0, gate, cur); cb(cur, "ffn_gate", il); if (gate_b) { cur = ggml_add(ctx0, cur, gate_b); cb(cur, "ffn_gate_b", il); } } else { cur = tmp; } // we only support parallel ffn for now switch (type_op) { case FFN_SILU: if (gate) { cur = ggml_swiglu_split(ctx0, cur, tmp); cb(cur, "ffn_swiglu", il); } else { cur = ggml_silu(ctx0, cur); cb(cur, "ffn_silu", il); } break; case FFN_GELU: if (gate) { cur = ggml_geglu_split(ctx0, cur, tmp); cb(cur, "ffn_geglu", il); } else { cur = ggml_gelu(ctx0, cur); cb(cur, "ffn_gelu", il); } break; case FFN_GELU_ERF: if (gate) { cur = ggml_geglu_erf_split(ctx0, cur, tmp); cb(cur, "ffn_geglu_erf", il); } else { cur = ggml_gelu_erf(ctx0, cur); cb(cur, "ffn_gelu_erf", il); } break; case FFN_GELU_QUICK: if (gate) { cur = ggml_geglu_quick_split(ctx0, cur, tmp); cb(cur, "ffn_geglu_quick", il); } else { cur = ggml_gelu_quick(ctx0, cur); cb(cur, "ffn_gelu_quick", il); } break; } if (down) { cur = ggml_mul_mat(ctx0, down, cur); } if (down_b) { cb(cur, "ffn_down", il); } if (down_b) { cur = ggml_add(ctx0, cur, down_b); } return cur; } ggml_tensor * clip_graph::build_attn( ggml_tensor * wo, ggml_tensor * wo_b, ggml_tensor * q_cur, ggml_tensor * k_cur, ggml_tensor * v_cur, ggml_tensor * kq_mask, float kq_scale, int il) const { // these nodes are added to the graph together so that they are not reordered // by doing so, the number of splits in the graph is reduced ggml_build_forward_expand(gf, q_cur); ggml_build_forward_expand(gf, k_cur); ggml_build_forward_expand(gf, v_cur); ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3); //cb(q, "q", il); ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3); //cb(k, "k", il); ggml_tensor * cur; if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) { ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3); k = ggml_cast(ctx0, k, GGML_TYPE_F16); v = ggml_cast(ctx0, v, GGML_TYPE_F16); cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f); ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32); cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]); } else { ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3); v = ggml_cont(ctx0, v); const auto n_tokens = q->ne[1]; const auto n_head = q->ne[2]; ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); // F32 may not needed for vision encoders? // ggml_mul_mat_set_prec(kq, GGML_PREC_F32); kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f); ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq); cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3); cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens); } cb(cur, "kqv_out", il); if (wo) { cur = ggml_mul_mat(ctx0, wo, cur); } if (wo_b) { cur = ggml_add(ctx0, cur, wo_b); } return cur; } // implementation of the 2D RoPE without adding a new op in ggml // this is not efficient (use double the memory), but works on all backends // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065 ggml_tensor * clip_graph::build_rope_2d( ggml_context * ctx0, ggml_tensor * cur, ggml_tensor * pos_a, // first half ggml_tensor * pos_b, // second half const float freq_base, const bool interleave_freq ) { const int64_t n_dim = cur->ne[0]; const int64_t n_head = cur->ne[1]; const int64_t n_pos = cur->ne[2]; // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos) // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3 // first half of cur will use 1e-0, 1e-2 (even) // second half of cur will use 1e-1, 1e-3 (odd) // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2) // then for the second half, we use freq_scale to shift the inv_freq // ^ why? replace (2i) with (2i+1) in the above equation const float freq_scale_odd = interleave_freq ? std::pow(freq_base, (float)-2/n_dim) : 1.0; // first half ggml_tensor * first; { first = ggml_view_3d(ctx0, cur, n_dim/2, n_head, n_pos, ggml_row_size(cur->type, n_dim), ggml_row_size(cur->type, n_dim*n_head), 0); first = ggml_rope_ext( ctx0, first, pos_a, // positions nullptr, // freq factors n_dim/2, // n_dims 0, 0, freq_base, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f ); } // second half ggml_tensor * second; { second = ggml_view_3d(ctx0, cur, n_dim/2, n_head, n_pos, ggml_row_size(cur->type, n_dim), ggml_row_size(cur->type, n_dim*n_head), n_dim/2 * ggml_element_size(cur)); second = ggml_rope_ext( ctx0, second, pos_b, // positions nullptr, // freq factors n_dim/2, // n_dims 0, 0, freq_base, freq_scale_odd, 0.0f, 1.0f, 0.0f, 0.0f ); } cur = ggml_concat(ctx0, first, second, 0); return cur; } // Generic function to stack frames for audio processing // Abstracts out the StackAudioFrames logic used by ultravox ggml_tensor * clip_graph::build_stack(ggml_tensor * cur, int32_t stack_factor, int32_t n_embed) { if (stack_factor <= 1) { return cur; } int64_t total_elements = ggml_nelements(cur); int64_t stride = n_embed * stack_factor; // Calculate padded length int64_t padded_len = GGML_PAD(total_elements, stride); int64_t pad = padded_len - total_elements; if (pad > 0) { // Pad the tensor to make it divisible by stride cur = ggml_view_1d(ctx0, cur, total_elements, 0); cur = ggml_pad(ctx0, cur, pad, 0, 0, 0); } // Reshape to [stride, padded_len / stride] cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride, ggml_row_size(cur->type, stride), 0); return cur; } // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL) // support dynamic resolution ggml_tensor * clip_graph::build_patch_merge_permute(ggml_tensor * cur, int scale_factor) { GGML_ASSERT(scale_factor > 1); const int n_embd = cur->ne[0]; int width = img.nx / patch_size; int height = img.ny / patch_size; // pad width and height to factor const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width; const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height; cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height); if (pad_width || pad_height) { cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0); width += pad_width; height += pad_height; } // unshuffle h cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // unshuffle w cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]); cb(cur, "pixel_shuffle", -1); return cur; } static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) { GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported"); const clip_image_f32 & img = *imgs.entries[0]; std::unique_ptr builder; switch (ctx->proj_type()) { case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_JANUS_PRO: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_LIGHTONOCR: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_QWEN3VL: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_MINICPMV: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_INTERNVL: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_LLAMA4: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_VOXTRAL: case PROJECTOR_TYPE_QWEN2A: case PROJECTOR_TYPE_GLMA: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_KIMIVL: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_COGVLM: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: case PROJECTOR_TYPE_LDP: case PROJECTOR_TYPE_LDPV2: case PROJECTOR_TYPE_GLM_EDGE: { builder = std::make_unique(ctx, img); } break; case PROJECTOR_TYPE_GLM4V: { builder = std::make_unique(ctx, img); } break; default: GGML_ABORT("missing cgraph builder"); } return builder->build(); } // // clip_model_loader // struct clip_model_loader { ggml_context_ptr ctx_meta; gguf_context_ptr ctx_gguf; std::string fname; size_t model_size = 0; // in bytes bool has_vision = false; bool has_audio = false; // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model clip_model_loader(const char * fname) : fname(fname) { struct ggml_context * meta = nullptr; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params)); if (!ctx_gguf.get()) { throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); } ctx_meta.reset(meta); const int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); // print gguf info { std::string name; get_string(KEY_NAME, name, false); std::string description; get_string(KEY_DESCRIPTION, description, false); LOG_INF("%s: model name: %s\n", __func__, name.c_str()); LOG_INF("%s: description: %s\n", __func__, description.c_str()); LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get())); LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get())); LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get())); LOG_INF("\n"); } // modalities { get_bool(KEY_HAS_VISION_ENC, has_vision, false); get_bool(KEY_HAS_AUDIO_ENC, has_audio, false); if (has_vision) { LOG_INF("%s: has vision encoder\n", __func__); } if (has_audio) { LOG_INF("%s: has audio encoder\n", __func__); } } // tensors { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i); enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i); ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); model_size += tensor_size; LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } } void load_hparams(clip_model & model, clip_modality modality) { auto & hparams = model.hparams; std::string log_ffn_op; // for logging // sanity check if (modality == CLIP_MODALITY_VISION) { GGML_ASSERT(has_vision); } else if (modality == CLIP_MODALITY_AUDIO) { GGML_ASSERT(has_audio); } model.modality = modality; // projector type std::string proj_type; { // default key get_string(KEY_PROJ_TYPE, proj_type, false); // for models with mixed modalities if (proj_type.empty()) { if (modality == CLIP_MODALITY_VISION) { get_string(KEY_VISION_PROJ_TYPE, proj_type, false); } else if (modality == CLIP_MODALITY_AUDIO) { get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false); } else { GGML_ABORT("unknown modality"); } } model.proj_type = clip_projector_type_from_string(proj_type); if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) { throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str())); } // correct arch for multimodal models (legacy method) if (model.proj_type == PROJECTOR_TYPE_QWEN25O) { model.proj_type = modality == CLIP_MODALITY_VISION ? PROJECTOR_TYPE_QWEN25VL : PROJECTOR_TYPE_QWEN2A; } } const bool is_vision = model.modality == CLIP_MODALITY_VISION; const bool is_audio = model.modality == CLIP_MODALITY_AUDIO; // other hparams { const char * prefix = is_vision ? "vision" : "audio"; get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd); get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head); get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff); get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer); get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim); get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps); if (is_vision) { get_u32(KEY_IMAGE_SIZE, hparams.image_size); get_u32(KEY_PATCH_SIZE, hparams.patch_size); get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false); get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false); if (hparams.minicpmv_query_num == 0) { // Fallback to hardcoded values for legacy models if (hparams.minicpmv_version == 3) { hparams.minicpmv_query_num = 64; } else if (hparams.minicpmv_version == 4) { hparams.minicpmv_query_num = 64; } else if (hparams.minicpmv_version == 5) { hparams.minicpmv_query_num = 64; } else if (hparams.minicpmv_version == 6) { hparams.minicpmv_query_num = 64; } else { hparams.minicpmv_query_num = 96; } } } else if (is_audio) { get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins); // some hparams are unused, but still need to set to avoid issues hparams.image_size = 0; hparams.patch_size = 1; } else { GGML_ASSERT(false && "unknown modality"); } // for pinpoints, we need to convert it into a list of resolution candidates { std::vector pinpoints; get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false); if (!pinpoints.empty()) { for (size_t i = 0; i < pinpoints.size(); i += 2) { hparams.image_res_candidates.push_back({ pinpoints[i], pinpoints[i+1], }); } } } // default warmup value hparams.warmup_image_size = hparams.image_size; hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP || model.proj_type == PROJECTOR_TYPE_MLP_NORM || model.proj_type == PROJECTOR_TYPE_LDP || model.proj_type == PROJECTOR_TYPE_LDPV2; { bool use_gelu = false; bool use_silu = false; get_bool(KEY_USE_GELU, use_gelu, false); get_bool(KEY_USE_SILU, use_silu, false); if (use_gelu && use_silu) { throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__)); } if (use_gelu) { hparams.ffn_op = FFN_GELU; log_ffn_op = "gelu"; } else if (use_silu) { hparams.ffn_op = FFN_SILU; log_ffn_op = "silu"; } else { hparams.ffn_op = FFN_GELU_QUICK; log_ffn_op = "gelu_quick"; } } { std::string mm_patch_merge_type; get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false); if (mm_patch_merge_type == "spatial_unpad") { hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD; } } if (is_vision) { int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN); int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD); GGML_ASSERT(idx_mean >= 0 && "image_mean not found"); GGML_ASSERT(idx_std >= 0 && "image_std not found"); const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean); const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std); for (int i = 0; i < 3; ++i) { hparams.image_mean[i] = mean_data[i]; hparams.image_std[i] = std_data[i]; } } // Load the vision feature layer indices if they are explicitly provided; // if multiple vision feature layers are present, the values will be concatenated // to form the final visual features. // NOTE: gguf conversions should standardize the values of the vision feature layer to // be non-negative, since we use -1 to mark values as unset here. std::vector vision_feature_layer; get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false); // convert std::vector to std::unordered_set for (auto & layer : vision_feature_layer) { hparams.vision_feature_layer.insert(layer); } // model-specific params switch (model.proj_type) { case PROJECTOR_TYPE_MINICPMV: { if (hparams.minicpmv_version == 0) { hparams.minicpmv_version = 2; // default to 2 if not set } } break; case PROJECTOR_TYPE_INTERNVL: { get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); } break; case PROJECTOR_TYPE_IDEFICS3: { get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false); } break; case PROJECTOR_TYPE_LFM2: { get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64 hparams.set_limit_image_tokens(64, 1024); } break; case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_LIGHTONOCR: { // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json // TODO: verify the image_min_tokens hparams.n_merge = 1; // the original pixtral does not use patch merging hparams.rope_theta = 10000.0f; get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false); hparams.set_limit_image_tokens(8, 1024); hparams.set_warmup_n_tokens(256); // avoid OOM on warmup } break; case PROJECTOR_TYPE_KIMIVL: { hparams.rope_theta = 10000.0f; get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); // TODO: check kimivl preprocessor for exact values hparams.set_limit_image_tokens(8, 1024); hparams.set_warmup_n_tokens(256); // avoid OOM on warmup } break; case PROJECTOR_TYPE_GEMMA3: { // default value (used by all model sizes in gemma 3 family) // number of patches for each **side** is reduced by a factor of 4 hparams.n_merge = 4; // test model (tinygemma3) has a different value, we optionally read it get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN3VL: { hparams.n_merge = 2; // default value for Qwen 2 and 2.5 get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false); get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json hparams.set_limit_image_tokens(8, 4096); hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size; if (hparams.image_min_pixels < warn_min_pixels) { LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__); LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__); LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__); } } break; case PROJECTOR_TYPE_GLM4V: { hparams.rope_theta = 10000.0f; hparams.n_merge = 2; // default value for GLM4-V get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false); hparams.set_limit_image_tokens(8, 4096); hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup } break; case PROJECTOR_TYPE_LLAMA4: { hparams.rope_theta = 10000.0f; get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false); set_llava_uhd_res_candidates(model, 3); } break; case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_QWEN2A: case PROJECTOR_TYPE_GLMA: case PROJECTOR_TYPE_VOXTRAL: { bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX || model.proj_type == PROJECTOR_TYPE_VOXTRAL || model.proj_type == PROJECTOR_TYPE_GLMA; get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack); hparams.ffn_op = FFN_GELU_ERF; log_ffn_op = "gelu_erf"; // temporary solution for logging // audio preprocessing params hparams.audio_chunk_len = 30; // in seconds hparams.audio_sample_rate = 16000; hparams.audio_n_fft = 400; hparams.audio_window_len = 400; hparams.audio_hop_len = 160; } break; default: break; } // sanity check { if (hparams.image_max_pixels < hparams.image_min_pixels) { throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels)); } } LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str()); LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd); LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head); LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff); LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer); LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str()); LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim); if (is_vision) { LOG_INF("\n--- vision hparams ---\n"); LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size); LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size); LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector); LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version); LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge); LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern); if (hparams.image_min_pixels > 0) { LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : ""); } if (hparams.image_max_pixels > 0) { LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : ""); } } else if (is_audio) { LOG_INF("\n--- audio hparams ---\n"); LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins); LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor); LOG_INF("%s: audio_chunk_len: %d\n", __func__, hparams.audio_chunk_len); LOG_INF("%s: audio_sample_rate: %d\n", __func__, hparams.audio_sample_rate); LOG_INF("%s: audio_n_fft: %d\n", __func__, hparams.audio_n_fft); LOG_INF("%s: audio_window_len: %d\n", __func__, hparams.audio_window_len); LOG_INF("%s: audio_hop_len: %d\n", __func__, hparams.audio_hop_len); } LOG_INF("\n"); LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0); LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0); } } void load_tensors(clip_ctx & ctx_clip) { auto & model = ctx_clip.model; auto & hparams = model.hparams; std::map tensor_offset; std::vector tensors_to_load; // TODO @ngxson : support both audio and video in the future const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v"; // get offsets for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i); } // create data context struct ggml_init_params params = { /*.mem_size =*/ static_cast(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ctx_clip.ctx_data.reset(ggml_init(params)); if (!ctx_clip.ctx_data) { throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__)); } // helper function auto get_tensor = [&](const std::string & name, bool required = true) { ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str()); if (!cur && required) { throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str())); } if (cur) { tensors_to_load.push_back(cur); // add tensors to context ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur); ggml_set_name(data_tensor, cur->name); cur = data_tensor; } return cur; }; model.class_embedding = get_tensor(TN_CLASS_EMBD, false); model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false); model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false); model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false); model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false); model.patch_bias = get_tensor(TN_PATCH_BIAS, false); model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false); model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false); model.norm_embd_w = get_tensor(string_format(TN_NORM_EMBD, "weight"), false); model.norm_embd_b = get_tensor(string_format(TN_NORM_EMBD, "bias"), false); model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false); // layers model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { auto & layer = model.layers[il]; layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false); layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false); layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false); layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight")); layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false); layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false); layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false); layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false); layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false); layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false); layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false); layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false); layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false); layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false); layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false); layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false); // ffn layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight")); layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false); layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false); layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false); layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight")); layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false); // qwen3vl deepstack layer layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false); layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false); layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false); layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false); layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false); layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false); if (layer.has_deepstack()) { model.n_deepstack_layers++; } // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check! bool is_ffn_swapped = ( // only old models need this fix model.proj_type == PROJECTOR_TYPE_MLP || model.proj_type == PROJECTOR_TYPE_MLP_NORM || model.proj_type == PROJECTOR_TYPE_LDP || model.proj_type == PROJECTOR_TYPE_LDPV2 || model.proj_type == PROJECTOR_TYPE_QWEN2VL || model.proj_type == PROJECTOR_TYPE_QWEN25VL || model.proj_type == PROJECTOR_TYPE_GLM_EDGE || model.proj_type == PROJECTOR_TYPE_GEMMA3 || model.proj_type == PROJECTOR_TYPE_IDEFICS3 || model.proj_type == PROJECTOR_TYPE_MINICPMV ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd; if (is_ffn_swapped) { // swap up and down weights ggml_tensor * tmp = layer.ff_up_w; layer.ff_up_w = layer.ff_down_w; layer.ff_down_w = tmp; // swap up and down biases tmp = layer.ff_up_b; layer.ff_up_b = layer.ff_down_b; layer.ff_down_b = tmp; if (il == 0) { LOG_WRN("%s: ffn up/down are swapped\n", __func__); } } } switch (model.proj_type) { case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: { // LLaVA projection model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false); model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false); // Yi-type llava model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); // missing in Yi-type llava model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false); model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // Yi-type llava model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false); model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false); model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false); model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false); if (model.mm_3_w) { // TODO: this is a hack to support Yi-type llava model.proj_type = PROJECTOR_TYPE_MLP_NORM; } model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false); } break; case PROJECTOR_TYPE_LDP: { // MobileVLM projection model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } break; case PROJECTOR_TYPE_LDPV2: { // MobilVLM_V2 projection model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias")); model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight")); model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias")); } break; case PROJECTOR_TYPE_MINICPMV: { // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K); model.mm_model_query = get_tensor(TN_MINICPMV_QUERY); model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ); model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ); model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight")); model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight")); model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight")); model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias")); model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias")); model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias")); model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight")); model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias")); model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight")); model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias")); model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight")); model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias")); model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight")); model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias")); } break; case PROJECTOR_TYPE_GLM_EDGE: { model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight")); model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias")); model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight")); model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight")); model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias")); model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight")); model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight")); model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight")); model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight")); model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight")); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: { model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_QWEN3VL: { model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_GLM4V: { model.projection = get_tensor(TN_MM_PROJECTOR); model.mm_ffn_up_w = get_tensor(string_format(TN_MM_UP, "weight")); model.mm_ffn_up_b = get_tensor(string_format(TN_MM_UP, "bias"), false); model.mm_ffn_gate_w = get_tensor(string_format(TN_MM_GATE, "weight")); model.mm_ffn_gate_b = get_tensor(string_format(TN_MM_GATE, "bias"), false); model.mm_ffn_down_w = get_tensor(string_format(TN_MM_DOWN, "weight")); model.mm_ffn_down_b = get_tensor(string_format(TN_MM_DOWN, "bias"), false); model.mm_post_norm_w = get_tensor(string_format(TN_MM_POST_NORM, "weight")); model.mm_post_norm_b = get_tensor(string_format(TN_MM_POST_NORM, "bias"), false); model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight")); model.mm_patch_merger_b = get_tensor(string_format(TN_MM_PATCH_MERGER, "bias")); } break; case PROJECTOR_TYPE_GEMMA3: { model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ); model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N); } break; case PROJECTOR_TYPE_IDEFICS3: { model.projection = get_tensor(TN_MM_PROJECTOR); } break; case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_KIMIVL: { model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM); model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B); model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias")); model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_PIXTRAL: { model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // [IMG_BREAK] token embedding model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK); // for mistral small 3.1 model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false); model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false); } break; case PROJECTOR_TYPE_LIGHTONOCR: { model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false); model.mm_patch_merger_w = get_tensor(string_format(TN_MM_PATCH_MERGER, "weight"), false); } break; case PROJECTOR_TYPE_ULTRAVOX: { model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight")); model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight")); model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight")); model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight")); } break; case PROJECTOR_TYPE_QWEN2A: { model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight")); model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias")); } break; case PROJECTOR_TYPE_VOXTRAL: { model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight")); model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight")); } break; case PROJECTOR_TYPE_INTERNVL: { model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); } break; case PROJECTOR_TYPE_GLMA: { model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight")); model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias")); model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight")); model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias")); model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "bias")); model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight")); model.mm_2_b = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "bias")); model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight")); model.mm_norm_pre_b = get_tensor(string_format(TN_MM_NORM_PRE, "bias")); model.mm_boi = get_tensor(string_format(TN_TOK_BOI, "weight")); model.mm_eoi = get_tensor(string_format(TN_TOK_EOI, "weight")); } break; case PROJECTOR_TYPE_LLAMA4: { model.mm_model_proj = get_tensor(TN_MM_PROJECTOR); model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); } break; case PROJECTOR_TYPE_COGVLM: { model.mm_model_proj = get_tensor(TN_MM_PROJECTOR); model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight")); model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias")); model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight")); model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight")); model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight")); model.mm_boi = get_tensor(TN_TOK_BOI); model.mm_eoi = get_tensor(TN_TOK_EOI); } break; case PROJECTOR_TYPE_JANUS_PRO: { model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight")); model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias")); } break; default: GGML_ASSERT(false && "unknown projector type"); } // load data { std::vector read_buf; auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str())); } // alloc memory and offload data ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend); ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft)); ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS); for (auto & t : tensors_to_load) { ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name); const size_t offset = tensor_offset[t->name]; fin.seekg(offset, std::ios::beg); if (!fin) { throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name)); } size_t num_bytes = ggml_nbytes(cur); if (ggml_backend_buft_is_host(buft)) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast(cur->data), num_bytes); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(num_bytes); fin.read(reinterpret_cast(read_buf.data()), num_bytes); ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } fin.close(); LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str()); } } struct support_info_op { ggml_tensor * op; // true if the op runs on the accelerated ctx_clip.backend bool is_accel = true; }; struct support_info_graph { // whether the clip_ctx.backend supports flash attention bool fattn = true; ggml_tensor * fattn_op = nullptr; // for debugging std::vector ops; }; static void warmup(clip_ctx & ctx_clip) { // create a fake batch const auto & hparams = ctx_clip.model.hparams; clip_image_f32_batch batch; clip_image_f32_ptr img(clip_image_f32_init()); if (ctx_clip.model.modality == CLIP_MODALITY_VISION) { img->nx = hparams.warmup_image_size; img->ny = hparams.warmup_image_size; LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny); } else { img->nx = hparams.warmup_audio_size; img->ny = hparams.n_mel_bins; LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx); } batch.entries.push_back(std::move(img)); warmup(ctx_clip, batch); } static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) { support_info_graph info; if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) { // try to enable flash attention to see if it's supported ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED; info = alloc_compute_meta(ctx_clip, batch); if (!info.fattn && info.fattn_op) { auto op = info.fattn_op; LOG_WRN("%s: *****************************************************************\n", __func__); LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend)); LOG_WRN("%s: op params: \n", __func__); static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) { LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn, name, ggml_type_name(t->type), t->ne[0], t->ne[1], t->ne[2], t->ne[3], t->nb[0], t->nb[1], t->nb[2], t->nb[3]); }; print_shape(__func__, " dst", op); print_shape(__func__, "src0", op->src[0]); print_shape(__func__, "src1", op->src[1]); print_shape(__func__, "src2", op->src[2]); LOG_WRN("%s: please report this on github as an issue\n", __func__); LOG_WRN("%s: *****************************************************************\n", __func__); ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED; alloc_compute_meta(ctx_clip, batch); } } else { info = alloc_compute_meta(ctx_clip, batch); if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) { LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__); } } ctx_clip.is_allocated = true; // mark buffers as allocated LOG_INF("%s: flash attention is %s\n", __func__, (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled"); // print ops that are not supported by the GPU backend (if there is one) if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) { std::vector unsupported_ops; for (const auto & op : info.ops) { if (!op.is_accel) { unsupported_ops.push_back(op); } } if (!unsupported_ops.empty()) { LOG_WRN("%s: *****************************************************************\n", __func__); LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__); LOG_WRN("%s: the performance will be suboptimal \n", __func__); LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend)); for (const auto & op : unsupported_ops) { LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__, ggml_op_name(op.op->op), ggml_type_name(op.op->type), op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]); } LOG_WRN("%s: flash attention is %s\n", __func__, (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled"); LOG_WRN("%s: please report this on github as an issue\n", __func__); LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__); LOG_WRN("%s: *****************************************************************\n", __func__); } } } static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) { ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead()); ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch); ggml_backend_sched_reserve(ctx_clip.sched.get(), gf); for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) { ggml_backend_t backend = ctx_clip.backend_ptrs[i]; ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend); if (size > 1) { LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get()); const int n_nodes = ggml_graph_n_nodes(gf); LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes); support_info_graph res { /*.fattn = */ true, /*.fattn_op = */ nullptr, /*.ops = */ {}, }; // check op support for (int i = 0; i < ggml_graph_n_nodes(gf); i++) { ggml_tensor * node = ggml_graph_node(gf, i); res.ops.push_back({node, true}); if (!ggml_backend_supports_op(ctx_clip.backend, node)) { res.ops.back().is_accel = false; if (node->op == GGML_OP_FLASH_ATTN_EXT) { res.fattn = false; res.fattn_op = node; } } } return res; } void get_bool(const std::string & key, bool & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } output = gguf_get_val_bool(ctx_gguf.get(), i); } void get_i32(const std::string & key, int & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } output = gguf_get_val_i32(ctx_gguf.get(), i); } void get_u32(const std::string & key, int & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } output = gguf_get_val_u32(ctx_gguf.get(), i); } void get_f32(const std::string & key, float & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } output = gguf_get_val_f32(ctx_gguf.get(), i); } void get_string(const std::string & key, std::string & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } output = std::string(gguf_get_val_str(ctx_gguf.get(), i)); } void get_arr_int(const std::string & key, std::vector & output, bool required = true) const { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) { throw std::runtime_error("Key not found: " + key); } return; } int n = gguf_get_arr_n(ctx_gguf.get(), i); output.resize(n); const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i); for (int i = 0; i < n; ++i) { output[i] = values[i]; } } static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) { auto & hparams = model.hparams; for (int x = 1; x <= max_patches_per_side; x++) { for (int y = 1; y <= max_patches_per_side; y++) { if (x == 1 && y == 1) { continue; // skip the first point } hparams.image_res_candidates.push_back(clip_image_size{ x*hparams.image_size, y*hparams.image_size, }); } } } }; struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) { clip_ctx * ctx_vision = nullptr; clip_ctx * ctx_audio = nullptr; try { clip_model_loader loader(fname); if (loader.has_vision) { ctx_vision = new clip_ctx(ctx_params); loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION); loader.load_tensors(*ctx_vision); if (ctx_params.warmup) { loader.warmup(*ctx_vision); } // clip_debug_encode(ctx_vision, 24*14, 24*14, 0.5f); } if (loader.has_audio) { ctx_audio = new clip_ctx(ctx_params); loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO); loader.load_tensors(*ctx_audio); if (ctx_params.warmup) { loader.warmup(*ctx_audio); } } } catch (const std::exception & e) { LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what()); delete ctx_vision; delete ctx_audio; return {nullptr, nullptr}; } return {ctx_vision, ctx_audio}; } struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; load_image_size->height = 448; return load_image_size; } struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } struct clip_image_f32 * clip_image_f32_init() { return new clip_image_f32(); } struct clip_image_f32_batch * clip_image_f32_batch_init() { return new clip_image_f32_batch(); } unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) { if (nx) *nx = img->nx; if (ny) *ny = img->ny; return img->buf.data(); } void clip_image_size_free(struct clip_image_size * load_image_size) { if (load_image_size == nullptr) { return; } delete load_image_size; } void clip_image_u8_free(struct clip_image_u8 * img) { delete img; } void clip_image_f32_free(struct clip_image_f32 * img) { delete img; } void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; } void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; } size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) { return batch->entries.size(); } size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->nx; } size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->ny; } clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return nullptr; } return batch->entries[idx].get(); } void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) { img->nx = nx; img->ny = ny; img->buf.resize(3 * nx * ny); memcpy(img->buf.data(), rgb_pixels, img->buf.size()); } // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(src.buf.size()); // TODO @ngxson : seems like this could be done more efficiently on cgraph for (size_t i = 0; i < src.buf.size(); ++i) { int c = i % 3; // rgb dst.buf[i] = (static_cast(src.buf[i]) / 255.0f - mean[c]) / std[c]; } } // set of tools to manupulate images // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv struct img_tool { enum resize_algo { RESIZE_ALGO_BILINEAR, RESIZE_ALGO_BICUBIC, // RESIZE_ALGO_LANCZOS, // TODO }; static void resize( const clip_image_u8 & src, clip_image_u8 & dst, const clip_image_size & target_resolution, resize_algo algo, bool add_padding = true, // TODO: define the behavior for add_padding = false std::array pad_color = {0, 0, 0}) { dst.nx = target_resolution.width; dst.ny = target_resolution.height; dst.buf.resize(3 * dst.nx * dst.ny); if (dst.nx == src.nx && dst.ny == src.ny) { // no resize needed, simple copy dst.buf = src.buf; return; } if (!add_padding) { // direct resize switch (algo) { case RESIZE_ALGO_BILINEAR: resize_bilinear(src, dst, target_resolution.width, target_resolution.height); break; case RESIZE_ALGO_BICUBIC: resize_bicubic(src, dst, target_resolution.width, target_resolution.height); break; default: throw std::runtime_error("Unsupported resize algorithm"); } } else { // resize with padding clip_image_u8 resized_image; float scale_w = static_cast(target_resolution.width) / src.nx; float scale_h = static_cast(target_resolution.height) / src.ny; float scale = std::min(scale_w, scale_h); int new_width = std::min(static_cast(std::ceil(src.nx * scale)), target_resolution.width); int new_height = std::min(static_cast(std::ceil(src.ny * scale)), target_resolution.height); switch (algo) { case RESIZE_ALGO_BILINEAR: resize_bilinear(src, resized_image, new_width, new_height); break; case RESIZE_ALGO_BICUBIC: resize_bicubic(src, resized_image, new_width, new_height); break; default: throw std::runtime_error("Unsupported resize algorithm"); } // fill dst with pad_color fill(dst, pad_color); int offset_x = (target_resolution.width - new_width) / 2; int offset_y = (target_resolution.height - new_height) / 2; composite(dst, resized_image, offset_x, offset_y); } } static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) { dst.nx = w; dst.ny = h; dst.buf.resize(3 * w * h); for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { int src_idx = 3 * ((y + i)*image.nx + (x + j)); int dst_idx = 3 * (i*w + j); dst.buf[dst_idx] = image.buf[src_idx]; dst.buf[dst_idx + 1] = image.buf[src_idx + 1]; dst.buf[dst_idx + 2] = image.buf[src_idx + 2]; } } } // calculate the size of the **resized** image, while preserving the aspect ratio // the calculated size will be aligned to the nearest multiple of align_size // if H or W size is larger than longest_edge, it will be resized to longest_edge static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) { GGML_ASSERT(align_size > 0); if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) { return {0, 0}; } float scale = std::min(static_cast(longest_edge) / inp_size.width, static_cast(longest_edge) / inp_size.height); float target_width_f = static_cast(inp_size.width) * scale; float target_height_f = static_cast(inp_size.height) * scale; auto ceil_by_factor = [f = align_size](float x) { return static_cast(std::ceil(x / static_cast(f))) * f; }; int aligned_width = ceil_by_factor(target_width_f); int aligned_height = ceil_by_factor(target_height_f); return {aligned_width, aligned_height}; } // calculate the size of the **resized** image, while preserving the aspect ratio // the calculated size will have min_pixels <= W*H <= max_pixels // this is referred as "smart_resize" in transformers code static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) { GGML_ASSERT(align_size > 0); const int width = inp_size.width; const int height = inp_size.height; auto round_by_factor = [f = align_size](float x) { return static_cast(std::round(x / static_cast(f))) * f; }; auto ceil_by_factor = [f = align_size](float x) { return static_cast(std::ceil(x / static_cast(f))) * f; }; auto floor_by_factor = [f = align_size](float x) { return static_cast(std::floor(x / static_cast(f))) * f; }; // always align up first int h_bar = std::max(align_size, round_by_factor(height)); int w_bar = std::max(align_size, round_by_factor(width)); if (h_bar * w_bar > max_pixels) { const auto beta = std::sqrt(static_cast(height * width) / max_pixels); h_bar = std::max(align_size, floor_by_factor(height / beta)); w_bar = std::max(align_size, floor_by_factor(width / beta)); } else if (h_bar * w_bar < min_pixels) { const auto beta = std::sqrt(static_cast(min_pixels) / (height * width)); h_bar = ceil_by_factor(height * beta); w_bar = ceil_by_factor(width * beta); } return {w_bar, h_bar}; } // draw src image into dst image at offset (offset_x, offset_y) static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) { for (int y = 0; y < src.ny; ++y) { for (int x = 0; x < src.nx; ++x) { int dx = x + offset_x; int dy = y + offset_y; // skip pixels that would be out of bounds in the destination if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) { continue; } size_t dst_idx = 3 * (static_cast(dy) * dst.nx + static_cast(dx)); size_t src_idx = 3 * (static_cast(y) * src.nx + static_cast(x)); dst.buf[dst_idx + 0] = src.buf[src_idx + 0]; dst.buf[dst_idx + 1] = src.buf[src_idx + 1]; dst.buf[dst_idx + 2] = src.buf[src_idx + 2]; } } } // fill the image with a solid color static void fill(clip_image_u8 & img, const std::array & color) { for (size_t i = 0; i < img.buf.size(); i += 3) { img.buf[i] = color[0]; img.buf[i + 1] = color[1]; img.buf[i + 2] = color[2]; } } private: // Bilinear resize function static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) { dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float x_ratio = static_cast(src.nx - 1) / target_width; float y_ratio = static_cast(src.ny - 1) / target_height; for (int y = 0; y < target_height; y++) { for (int x = 0; x < target_width; x++) { float px = x_ratio * x; float py = y_ratio * y; int x_floor = static_cast(px); int y_floor = static_cast(py); float x_lerp = px - x_floor; float y_lerp = py - y_floor; for (int c = 0; c < 3; c++) { float top = lerp( static_cast(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), x_lerp ); float bottom = lerp( static_cast(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), x_lerp ); dst.buf[3 * (y * target_width + x) + c] = static_cast(lerp(top, bottom, y_lerp)); } } } } // Bicubic resize function // part of image will be cropped if the aspect ratio is different static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5] = {}; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } static inline int clip(int x, int lower, int upper) { return std::max(lower, std::min(x, upper)); } // Linear interpolation between two points static inline float lerp(float s, float e, float t) { return s + (e - s) * t; } }; /** * implementation of LLaVA-UHD: * - https://arxiv.org/pdf/2403.11703 * - https://github.com/thunlp/LLaVA-UHD * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 * * overview: * - an image always have a single overview (downscaled image) * - an image can have 0 or multiple slices, depending on the image size * - each slice can then be considered as a separate image * * for example: * * [overview] --> [slice 1] --> [slice 2] * | | * +--> [slice 3] --> [slice 4] */ struct llava_uhd { struct slice_coordinates { int x; int y; clip_image_size size; }; struct slice_instructions { clip_image_size overview_size; // size of downscaled image clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size) clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices std::vector slices; img_tool::resize_algo interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR; bool padding_overview = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6) std::array pad_color_overview = {0, 0, 0}; img_tool::resize_algo interpolation_refined = img_tool::RESIZE_ALGO_BICUBIC; bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6) std::array pad_color_refined = {0, 0, 0}; }; static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) { slice_instructions res; const int patch_size = clip_get_patch_size(ctx); const int slice_size = clip_get_image_size(ctx); const int original_width = original_size.width; const int original_height = original_size.height; const bool has_slices = original_size.width > slice_size || original_size.height > slice_size; const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty(); if (!has_slices) { // skip slicing logic res.overview_size = clip_image_size{slice_size, slice_size}; res.refined_size = clip_image_size{0, 0}; res.grid_size = clip_image_size{0, 0}; return res; } if (has_pinpoints) { // has pinpoints, use them to calculate the grid size (e.g. llava-1.6) auto refine_size = llava_uhd::select_best_resolution( original_size, ctx->model.hparams.image_res_candidates); res.overview_size = clip_image_size{slice_size, slice_size}; res.refined_size = refine_size; res.grid_size = clip_image_size{0, 0}; res.padding_refined = true; res.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR; // preserve old behavior when padding LOG_DBG("%s: using pinpoints for slicing\n", __func__); LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n", __func__, original_width, original_height, res.overview_size.width, res.overview_size.height, res.refined_size.width, res.refined_size.height); for (int y = 0; y < refine_size.height; y += slice_size) { for (int x = 0; x < refine_size.width; x += slice_size) { slice_coordinates slice; slice.x = x; slice.y = y; slice.size.width = std::min(slice_size, refine_size.width - x); slice.size.height = std::min(slice_size, refine_size.height - y); res.slices.push_back(slice); LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n", __func__, (int)res.slices.size() - 1, slice.x, slice.y, slice.size.width, slice.size.height); } } res.grid_size.height = refine_size.height / slice_size; res.grid_size.width = refine_size.width / slice_size; LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height); return res; } // no pinpoints, dynamically calculate the grid size (e.g. minicpmv) auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices); res.overview_size = best_size; { const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it const float log_ratio = log((float)original_width / original_height); const float ratio = (float)original_width * original_height / (slice_size * slice_size); const int multiple = fmin(ceil(ratio), max_slice_nums); auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio); auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true); res.grid_size = best_grid; res.refined_size = refine_size; LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n", __func__, original_width, original_height, res.overview_size.width, res.overview_size.height, res.refined_size.width, res.refined_size.height, res.grid_size.width, res.grid_size.height); int width = refine_size.width; int height = refine_size.height; int grid_x = int(width / best_grid.width); int grid_y = int(height / best_grid.height); for (int patches_y = 0, ic = 0; patches_y < refine_size.height && ic < best_grid.height; patches_y += grid_y, ic += 1) { for (int patches_x = 0, jc = 0; patches_x < refine_size.width && jc < best_grid.width; patches_x += grid_x, jc += 1) { slice_coordinates slice; slice.x = patches_x; slice.y = patches_y; slice.size.width = grid_x; slice.size.height = grid_y; res.slices.push_back(slice); LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n", __func__, (int)res.slices.size() - 1, slice.x, slice.y, slice.size.width, slice.size.height); } } } return res; } static std::vector slice_image(const clip_image_u8 * img, const slice_instructions & inst) { std::vector output; // resize to overview size clip_image_u8_ptr resized_img(clip_image_u8_init()); img_tool::resize(*img, *resized_img, inst.overview_size, inst.interpolation_overview, inst.padding_overview, inst.pad_color_overview); output.push_back(std::move(resized_img)); if (inst.slices.empty()) { // no slices, just return the resized image return output; } // resize to refined size clip_image_u8_ptr refined_img(clip_image_u8_init()); img_tool::resize(*img, *refined_img, inst.refined_size, inst.interpolation_refined, inst.padding_refined, inst.pad_color_refined); // create slices for (const auto & slice : inst.slices) { int x = slice.x; int y = slice.y; int w = slice.size.width; int h = slice.size.height; clip_image_u8_ptr img_slice(clip_image_u8_init()); img_tool::crop(*refined_img, *img_slice, x, y, w, h); output.push_back(std::move(img_slice)); } return output; } private: static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.width; int height = original_size.height; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast(width) / height; height = static_cast(scale_resolution / std::sqrt(r)); width = static_cast(height * r); } clip_image_size res; res.width = ensure_divide(width, patch_size); res.height = ensure_divide(height, patch_size); return res; } static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) { float scale_width = static_cast(target_max.width) / orig.width; float scale_height = static_cast(target_max.height) / orig.height; float scale = std::min(scale_width, scale_height); return clip_image_size{ static_cast(orig.width * scale), static_cast(orig.height * scale), }; } /** * Selects the best resolution from a list of possible resolutions based on the original size. * * For example, when given a list of resolutions: * - 100x100 * - 200x100 * - 100x200 * - 200x200 * * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution). * * @param original_size The original size of the image * @param possible_resolutions A list of possible resolutions * @return The best fit resolution */ static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector & possible_resolutions) { clip_image_size best_fit; int min_wasted_area = std::numeric_limits::max(); int max_effective_resolution = 0; for (const clip_image_size & candidate : possible_resolutions) { auto target_size = resize_maintain_aspect_ratio(original_size, candidate); int effective_resolution = std::min( target_size.width * target_size.height, original_size.width * original_size.height); int wasted_area = (candidate.width * candidate.height) - effective_resolution; if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) { max_effective_resolution = effective_resolution; min_wasted_area = wasted_area; best_fit = candidate; } LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution); } return best_fit; } static int ensure_divide(int length, int patch_size) { return std::max(static_cast(std::round(static_cast(length) / patch_size) * patch_size), patch_size); } static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.width; int height = original_size.height; int grid_x = grid.width; int grid_y = grid.height; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); clip_image_size grid_size; grid_size.width = refine_width / grid_x; grid_size.height = refine_height / grid_y; auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale); int best_grid_width = best_grid_size.width; int best_grid_height = best_grid_size.height; clip_image_size refine_size; refine_size.width = best_grid_width * grid_x; refine_size.height = best_grid_height * grid_y; return refine_size; } static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { std::vector candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } std::vector candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.push_back(clip_image_size{m, split_grids_nums / m}); } ++m; } } clip_image_size best_grid{1, 1}; float min_error = std::numeric_limits::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height)); if (error < min_error) { best_grid = grid; min_error = error; } } return best_grid; } }; // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) { clip_image_size original_size{img->nx, img->ny}; auto & params = ctx->model.hparams; switch (ctx->proj_type()) { case PROJECTOR_TYPE_MINICPMV: { auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } res_imgs->grid_x = inst.grid_size.width; res_imgs->grid_y = inst.grid_size.height; } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN3VL: case PROJECTOR_TYPE_GLM4V: { GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0); clip_image_u8 resized; const clip_image_size new_size = img_tool::calc_size_preserved_ratio( original_size, params.patch_size * 2, params.image_min_pixels, params.image_max_pixels); img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false); // clip_image_save_to_bmp(resized, "preproc.bmp"); clip_image_f32_ptr img_f32(clip_image_f32_init()); // clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std); // res_imgs->data[0] = *res; res_imgs->entries.push_back(std::move(img_f32)); } break; case PROJECTOR_TYPE_IDEFICS3: { // The refined size has two steps: // 1. Resize w/ aspect-ratio preserving such that the longer side is // the preprocessor longest size // 2. Resize w/out preserving aspect ratio such that both sides are // multiples of image_size (always rounding up) // // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737 const clip_image_size refined_size = img_tool::calc_size_preserved_ratio( original_size, params.image_size, params.image_longest_edge); // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n", // __func__, original_size.width, original_size.height, // refined_size.width, refined_size.height); llava_uhd::slice_instructions instructions; instructions.overview_size = clip_image_size{params.image_size, params.image_size}; instructions.refined_size = refined_size; instructions.grid_size = clip_image_size{ static_cast(std::ceil(static_cast(refined_size.width) / params.image_size)), static_cast(std::ceil(static_cast(refined_size.height) / params.image_size)), }; for (int y = 0; y < refined_size.height; y += params.image_size) { for (int x = 0; x < refined_size.width; x += params.image_size) { // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y); instructions.slices.push_back(llava_uhd::slice_coordinates{ /* x */x, /* y */y, /* size */clip_image_size{ std::min(params.image_size, refined_size.width - x), std::min(params.image_size, refined_size.height - y) } }); } } auto imgs = llava_uhd::slice_image(img, instructions); // cast and normalize to f32 for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } res_imgs->grid_x = instructions.grid_size.width; res_imgs->grid_y = instructions.grid_size.height; } break; case PROJECTOR_TYPE_GLM_EDGE: case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution { clip_image_u8 resized_image; int sz = params.image_size; img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR); clip_image_f32_ptr img_f32(clip_image_f32_init()); //clip_image_save_to_bmp(resized_image, "resized.bmp"); normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(img_f32)); } break; case PROJECTOR_TYPE_JANUS_PRO: { // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384 const std::array pad_color = {127, 127, 127}; clip_image_u8 resized_image; int sz = params.image_size; img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color); clip_image_f32_ptr img_f32(clip_image_f32_init()); normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(img_f32)); } break; case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_LIGHTONOCR: { GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0); clip_image_u8 resized_image; // the original pixtral model doesn't have n_merge const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge; const clip_image_size target_size = img_tool::calc_size_preserved_ratio( original_size, params.patch_size * cur_merge, params.image_min_pixels, params.image_max_pixels); img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR); clip_image_f32_ptr img_f32(clip_image_f32_init()); normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(img_f32)); } break; case PROJECTOR_TYPE_LLAMA4: { GGML_ASSERT(!params.image_res_candidates.empty()); auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } res_imgs->grid_x = inst.grid_size.width; res_imgs->grid_y = inst.grid_size.height; } break; case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_KIMIVL: { GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0); const clip_image_size target_size = img_tool::calc_size_preserved_ratio( original_size, params.patch_size * params.n_merge, params.image_min_pixels, params.image_max_pixels); const std::array pad_color = {122, 116, 104}; clip_image_u8 resized_img; const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2); img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } break; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: case PROJECTOR_TYPE_LDP: case PROJECTOR_TYPE_LDPV2: case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm? { // TODO @ngxson : refactor the code below to avoid duplicated logic // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing if (params.image_res_candidates.empty()) { // pad_to_square // for llava-1.5, we resize image to a square, and pad the shorter side with a background color // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 const int longer_side = std::max(img->nx, img->ny); temp->nx = longer_side; temp->ny = longer_side; temp->buf.resize(3 * longer_side * longer_side); // background color in RGB from LLaVA (this is the mean rgb color * 255) const std::array pad_color = {122, 116, 104}; // resize the image to the target_size img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } else { // "spatial_unpad" with "anyres" processing for llava-1.6 auto const inst = llava_uhd::get_slice_instructions(ctx, original_size); std::vector imgs = llava_uhd::slice_image(img, inst); for (size_t i = 0; i < imgs.size(); ++i) { // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp"); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std); res_imgs->entries.push_back(std::move(res)); } } } break; default: LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type()); return false; } return true; } ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { return ctx->model.image_newline; } void clip_free(clip_ctx * ctx) { if (ctx == nullptr) { return; } delete ctx; } // deprecated size_t clip_embd_nbytes(const struct clip_ctx * ctx) { const int32_t nx = ctx->model.hparams.image_size; const int32_t ny = ctx->model.hparams.image_size; return clip_embd_nbytes_by_img(ctx, nx, ny); } size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) { clip_image_f32 img; img.nx = img_w; img.ny = img_h; return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float); } int32_t clip_get_image_size(const struct clip_ctx * ctx) { return ctx->model.hparams.image_size; } int32_t clip_get_patch_size(const struct clip_ctx * ctx) { return ctx->model.hparams.patch_size; } int32_t clip_get_hidden_size(const struct clip_ctx * ctx) { return ctx->model.hparams.n_embd; } const char * clip_patch_merge_type(const struct clip_ctx * ctx) { return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat"; } int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->model.hparams; const int n_total = clip_n_output_tokens(ctx, img); const auto & proj = ctx->proj_type(); switch (proj) { case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN3VL: case PROJECTOR_TYPE_GLM4V: return (img->nx / params.patch_size) / 2; default: break; } return n_total; } int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->model.hparams; const auto & proj = ctx->proj_type(); switch (proj) { case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN3VL: case PROJECTOR_TYPE_GLM4V: return (img->ny / params.patch_size) / 2; default: break; } return 1; } int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->model.hparams; // for models with fixed size image, the input image is already pre-processed and resized to square int patch_size = params.patch_size; int n_patches = (img->nx / patch_size) * (img->ny / patch_size); projector_type proj = ctx->proj_type(); switch (proj) { case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: case PROJECTOR_TYPE_JANUS_PRO: { // do nothing } break; case PROJECTOR_TYPE_LDP: case PROJECTOR_TYPE_LDPV2: case PROJECTOR_TYPE_GLM_EDGE: { n_patches /= 4; if (ctx->model.mm_boi) { n_patches += 2; // for BOI and EOI token embeddings } } break; case PROJECTOR_TYPE_MINICPMV: { // Use actual config value if available, otherwise fall back to hardcoded values if (params.minicpmv_query_num > 0) { n_patches = params.minicpmv_query_num; } else { // Fallback to hardcoded values for legacy models if (params.minicpmv_version == 2) { n_patches = 96; } else if (params.minicpmv_version == 3) { n_patches = 64; } else if (params.minicpmv_version == 4) { n_patches = 64; } else if (params.minicpmv_version == 5) { // MiniCPM-V 4.0 n_patches = 64; } else if (params.minicpmv_version == 6) { // MiniCPM-V 4.5 n_patches = 64; } else { GGML_ABORT("Unknown minicpmv version"); } } } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_QWEN3VL: case PROJECTOR_TYPE_GLM4V: { // dynamic size (2 conv, so double patch size) int x_patch = img->nx / (params.patch_size * 2); int y_patch = img->ny / (params.patch_size * 2); n_patches = x_patch * y_patch; } break; case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: case PROJECTOR_TYPE_INTERNVL: case PROJECTOR_TYPE_LLAMA4: { // both X and Y are downscaled by the scale factor int scale_factor = ctx->model.hparams.n_merge; n_patches /= (scale_factor * scale_factor); } break; case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_KIMIVL: { // dynamic size int out_patch_size = params.patch_size * ctx->model.hparams.n_merge; int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size; int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size; n_patches = x_patch * y_patch; } break; case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_LIGHTONOCR: { // dynamic size int n_merge = ctx->model.hparams.n_merge; int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1); int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1); if (ctx->model.token_embd_img_break) { n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row } else { n_patches = n_patches_y * n_patches_x; } } break; case PROJECTOR_TYPE_VOXTRAL: case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_QWEN2A: { n_patches = img->nx; const int proj_stack_factor = ctx->model.hparams.proj_stack_factor; if (ctx->model.audio_has_stack_frames()) { GGML_ASSERT(proj_stack_factor > 0); const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor); n_patches = n_len / proj_stack_factor; } // whisper downscales input token by half after conv1d n_patches /= 2; if (ctx->model.audio_has_avgpool()) { // divide by 2 because of nn.AvgPool1d(2, stride=2) n_patches /= 2; } } break; case PROJECTOR_TYPE_GLMA: { n_patches = img->nx; // whisper downscales input token by half after conv1d n_patches /= 2; // reshape by merge_factor n_patches /= ctx->model.hparams.proj_stack_factor; // for BOI and EOI token embeddings n_patches += 2; } break; case PROJECTOR_TYPE_COGVLM: { n_patches += 2; // for BOI and EOI token embeddings } break; default: GGML_ABORT("unsupported projector type"); } return n_patches; } bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { clip_image_f32_batch imgs; clip_image_f32_ptr img_copy(clip_image_f32_init()); *img_copy = *img; imgs.entries.push_back(std::move(img_copy)); return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) { const clip_image_f32_batch & imgs = *imgs_c_ptr; int batch_size = imgs.entries.size(); // TODO @ngxson : implement batch size > 1 as a loop // we don't need true batching support because the cgraph will gonna be big anyway if (batch_size != 1) { return false; // only support batch size of 1 } // if buffers are not allocated, we need to do a warmup run to allocate them if (!ctx->is_allocated) { clip_model_loader::warmup(*ctx, *imgs_c_ptr); } // build the inference graph ctx->debug_print_tensors.clear(); ggml_backend_sched_reset(ctx->sched.get()); ggml_cgraph * gf = clip_image_build_graph(ctx, imgs); ggml_backend_sched_alloc_graph(ctx->sched.get(), gf); // set inputs const auto & model = ctx->model; const auto & hparams = model.hparams; const int image_size_width = imgs.entries[0]->nx; const int image_size_height = imgs.entries[0]->ny; const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int n_pos = num_patches + (model.class_embedding ? 1 : 0); const int pos_w = image_size_width / patch_size; const int pos_h = image_size_height / patch_size; const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl auto get_inp_tensor = [&gf](const char * name) { ggml_tensor * inp = ggml_graph_get_tensor(gf, name); if (inp == nullptr) { GGML_ABORT("Failed to get tensor %s", name); } if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) { GGML_ABORT("Tensor %s is not an input tensor", name); } return inp; }; auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector & values) { ggml_tensor * cur = get_inp_tensor(name); GGML_ASSERT(cur->type == GGML_TYPE_F32); GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size()); ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur)); }; auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector & values) { ggml_tensor * cur = get_inp_tensor(name); GGML_ASSERT(cur->type == GGML_TYPE_I32); GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size()); ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur)); }; // set input pixel values if (!imgs.is_audio) { size_t nelem = 0; for (const auto & img : imgs.entries) { nelem += img->nx * img->ny * 3; } std::vector inp_raw(nelem); // layout of data (note: the channel dim is unrolled to better visualize the layout): // // ┌──W──┐ // │ H │ channel = R // ├─────┤ │ // │ H │ channel = G // ├─────┤ │ // │ H │ channel = B // └─────┘ │ // ──────┘ x B for (size_t i = 0; i < imgs.entries.size(); i++) { const int nx = imgs.entries[i]->nx; const int ny = imgs.entries[i]->ny; const int n = nx * ny; for (int b = 0; b < batch_size; b++) { float * batch_entry = inp_raw.data() + b * (3*n); for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { size_t base_src = 3*(y * nx + x); // idx of the first channel size_t base_dst = y * nx + x; // idx of the first channel batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ]; batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1]; batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2]; } } } } set_input_f32("inp_raw", inp_raw); } else { // audio input GGML_ASSERT(imgs.entries.size() == 1); const auto & mel_inp = imgs.entries[0]; const int n_step = mel_inp->nx; const int n_mel = mel_inp->ny; std::vector inp_raw(n_step * n_mel); std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float)); set_input_f32("inp_raw", inp_raw); } // set input per projector switch (ctx->model.proj_type) { case PROJECTOR_TYPE_MINICPMV: { // inspired from siglip: // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 std::vector positions(pos_h * pos_w); int bucket_coords_h[1024]; int bucket_coords_w[1024]; for (int i = 0; i < pos_h; i++){ bucket_coords_h[i] = std::floor(70.0*i/pos_h); } for (int i = 0; i < pos_w; i++){ bucket_coords_w[i] = std::floor(70.0*i/pos_w); } for (int i = 0, id = 0; i < pos_h; i++){ for (int j = 0; j < pos_w; j++){ positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; } } set_input_i32("positions", positions); // inputs for resampler projector // set the 2D positions (using float for sinusoidal embedding) int n_patches_per_col = image_size_width / patch_size; std::vector pos_data(n_pos); // dimension H for (int i = 0; i < n_pos; i++) { pos_data[i] = static_cast(i / n_patches_per_col); } set_input_f32("pos_h", pos_data); // dimension W for (int i = 0; i < n_pos; i++) { pos_data[i] = static_cast(i % n_patches_per_col); } set_input_f32("pos_w", pos_data); // base frequency omega const float base_freq = 10000.0f; const int n_embd_proj = clip_n_mmproj_embd(ctx); std::vector omega(n_embd_proj / 4); for (int i = 0; i < n_embd_proj / 4; ++i) { omega[i] = 1.0f / std::pow(base_freq, static_cast(i) / (n_embd_proj / 4)); } set_input_f32("omega", omega); } break; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN3VL: case PROJECTOR_TYPE_GLM4V: { const int merge_ratio = hparams.n_merge; const int pw = image_size_width / patch_size; const int ph = image_size_height / patch_size; std::vector positions(n_pos * 4); int ptr = 0; for (int y = 0; y < ph; y += merge_ratio) { for (int x = 0; x < pw; x += merge_ratio) { for (int dy = 0; dy < 2; dy++) { for (int dx = 0; dx < 2; dx++) { positions[ ptr] = y + dy; positions[ num_patches + ptr] = x + dx; positions[2 * num_patches + ptr] = y + dy; positions[3 * num_patches + ptr] = x + dx; ptr++; } } } } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_QWEN25VL: { // pw * ph = number of tokens output by ViT after apply patch merger // ipw * ipw = number of vision token been processed inside ViT const int merge_ratio = 2; const int pw = image_size_width / patch_size / merge_ratio; const int ph = image_size_height / patch_size / merge_ratio; const int ipw = image_size_width / patch_size; const int iph = image_size_height / patch_size; std::vector idx (ph * pw); std::vector inv_idx(ph * pw); if (use_window_attn) { const int attn_window_size = 112; const int grid_window = attn_window_size / patch_size / merge_ratio; int dst = 0; // [num_vision_tokens, num_vision_tokens] attention mask tensor std::vector mask(pow(ipw * iph, 2), std::numeric_limits::lowest()); int mask_row = 0; for (int y = 0; y < ph; y += grid_window) { for (int x = 0; x < pw; x += grid_window) { const int win_h = std::min(grid_window, ph - y); const int win_w = std::min(grid_window, pw - x); const int dst_0 = dst; // group all tokens belong to the same window togather (to a continue range) for (int dy = 0; dy < win_h; dy++) { for (int dx = 0; dx < win_w; dx++) { const int src = (y + dy) * pw + (x + dx); GGML_ASSERT(src < (int)idx.size()); GGML_ASSERT(dst < (int)inv_idx.size()); idx [src] = dst; inv_idx[dst] = src; dst++; } } for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) { int row_offset = mask_row * (ipw * iph); std::fill( mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio), mask.begin() + row_offset + (dst * merge_ratio * merge_ratio), 0.0); mask_row++; } } } set_input_i32("window_idx", idx); set_input_i32("inv_window_idx", inv_idx); set_input_f32("window_mask", mask); } else { for (int i = 0; i < ph * pw; i++) { idx[i] = i; } } const int mpow = merge_ratio * merge_ratio; std::vector positions(n_pos * 4); int ptr = 0; for (int y = 0; y < iph; y += merge_ratio) { for (int x = 0; x < ipw; x += merge_ratio) { for (int dy = 0; dy < 2; dy++) { for (int dx = 0; dx < 2; dx++) { auto remap = idx[ptr / mpow]; remap = (remap * mpow) + (ptr % mpow); positions[ remap] = y + dy; positions[ num_patches + remap] = x + dx; positions[2 * num_patches + remap] = y + dy; positions[3 * num_patches + remap] = x + dx; ptr++; } } } } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_KIMIVL: case PROJECTOR_TYPE_LIGHTONOCR: { // set the 2D positions int n_patches_per_col = image_size_width / patch_size; std::vector pos_data(n_pos); // dimension H for (int i = 0; i < n_pos; i++) { pos_data[i] = i / n_patches_per_col; } set_input_i32("pos_h", pos_data); // dimension W for (int i = 0; i < n_pos; i++) { pos_data[i] = i % n_patches_per_col; } set_input_i32("pos_w", pos_data); } break; case PROJECTOR_TYPE_GLM_EDGE: { // llava and other models std::vector positions(n_pos); for (int i = 0; i < n_pos; i++) { positions[i] = i; } set_input_i32("positions", positions); } break; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: case PROJECTOR_TYPE_LDP: case PROJECTOR_TYPE_LDPV2: { // llava and other models std::vector positions(n_pos); for (int i = 0; i < n_pos; i++) { positions[i] = i; } set_input_i32("positions", positions); // The patches vector is used to get rows to index into the embeds with; // we should skip dim 0 only if we have CLS to avoid going out of bounds // when retrieving the rows. int patch_offset = model.class_embedding ? 1 : 0; std::vector patches(num_patches); for (int i = 0; i < num_patches; i++) { patches[i] = i + patch_offset; } set_input_i32("patches", patches); } break; case PROJECTOR_TYPE_GEMMA3: case PROJECTOR_TYPE_IDEFICS3: case PROJECTOR_TYPE_INTERNVL: case PROJECTOR_TYPE_QWEN2A: case PROJECTOR_TYPE_GLMA: case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_VOXTRAL: case PROJECTOR_TYPE_JANUS_PRO: case PROJECTOR_TYPE_COGVLM: { // do nothing } break; case PROJECTOR_TYPE_LLAMA4: { // set the 2D positions int n_patches_per_col = image_size_width / patch_size; std::vector pos_data(num_patches + 1, 0); // +1 for the [CLS] token // last pos is always kept 0, it's for CLS // dimension H for (int i = 0; i < num_patches; i++) { pos_data[i] = (i / n_patches_per_col) + 1; } set_input_i32("pos_h", pos_data); // dimension W for (int i = 0; i < num_patches; i++) { pos_data[i] = (i % n_patches_per_col) + 1; } set_input_i32("pos_w", pos_data); } break; default: GGML_ABORT("Unknown projector type"); } // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads); ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu); ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr; if (reg) { auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads"); if (ggml_backend_set_n_threads_fn) { ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads); } } auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf); if (status != GGML_STATUS_SUCCESS) { LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status); return false; } // print debug nodes if (ctx->debug_graph) { LOG_INF("\n\n---\n\n"); LOG_INF("\n\nDebug graph:\n\n"); for (ggml_tensor * t : ctx->debug_print_tensors) { std::vector data(ggml_nbytes(t)); ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t)); print_tensor_shape(t); print_tensor_data(t, data.data(), 3); } } // the last node is the embedding tensor ggml_tensor * embeddings = ggml_graph_node(gf, -1); // sanity check (only support batch size of 1 for now) const int n_tokens_out = embeddings->ne[1]; const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get()); if (n_tokens_out != expected_n_tokens_out) { LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out); GGML_ABORT("Invalid number of output tokens"); } // copy the embeddings to the location passed by the user if (vec != nullptr) { ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); } return true; } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { switch (ctx->model.proj_type) { case PROJECTOR_TYPE_LDP: return ctx->model.mm_model_block_1_block_2_1_b->ne[0]; case PROJECTOR_TYPE_LDPV2: return ctx->model.mm_model_peg_0_b->ne[0]; case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_PIXTRAL: case PROJECTOR_TYPE_LIGHTONOCR: return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_MLP_NORM: return ctx->model.mm_3_b->ne[0]; case PROJECTOR_TYPE_MINICPMV: return ctx->model.mm_model_proj->ne[0]; case PROJECTOR_TYPE_GLM_EDGE: return ctx->model.mm_model_mlp_3_w->ne[1]; case PROJECTOR_TYPE_QWEN2VL: case PROJECTOR_TYPE_QWEN25VL: case PROJECTOR_TYPE_JANUS_PRO: return ctx->model.mm_1_b->ne[0]; case PROJECTOR_TYPE_QWEN3VL: // main path + deepstack paths return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers); case PROJECTOR_TYPE_GEMMA3: return ctx->model.mm_input_proj_w->ne[0]; case PROJECTOR_TYPE_IDEFICS3: return ctx->model.projection->ne[1]; case PROJECTOR_TYPE_ULTRAVOX: case PROJECTOR_TYPE_VOXTRAL: return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_INTERNVL: return ctx->model.mm_3_w->ne[1]; case PROJECTOR_TYPE_LLAMA4: return ctx->model.mm_model_proj->ne[1]; case PROJECTOR_TYPE_QWEN2A: return ctx->model.mm_fc_w->ne[1]; case PROJECTOR_TYPE_GLMA: return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_LFM2: case PROJECTOR_TYPE_KIMIVL: return ctx->model.mm_2_w->ne[1]; case PROJECTOR_TYPE_COGVLM: return ctx->model.mm_4h_to_h_w->ne[1]; case PROJECTOR_TYPE_GLM4V: return ctx->model.mm_ffn_down_w->ne[1]; default: GGML_ABORT("Unknown projector type"); } } int clip_is_minicpmv(const struct clip_ctx * ctx) { if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) { return ctx->model.hparams.minicpmv_version; } return 0; } bool clip_is_glm(const struct clip_ctx * ctx) { return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE; } bool clip_is_mrope(const struct clip_ctx * ctx) { return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL || ctx->proj_type() == PROJECTOR_TYPE_GLM4V; } bool clip_is_llava(const struct clip_ctx * ctx) { return ctx->model.hparams.has_llava_projector; } bool clip_is_gemma3(const struct clip_ctx * ctx) { return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3; } bool clip_has_vision_encoder(const struct clip_ctx * ctx) { return ctx->model.modality == CLIP_MODALITY_VISION; } bool clip_has_audio_encoder(const struct clip_ctx * ctx) { return ctx->model.modality == CLIP_MODALITY_AUDIO; } bool clip_has_whisper_encoder(const struct clip_ctx * ctx) { return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A || ctx->proj_type() == PROJECTOR_TYPE_GLMA || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL; } bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { clip_image_f32 clip_img; clip_img.buf.resize(h * w * 3); for (int i = 0; i < h*w*3; i++) { clip_img.buf[i] = img[i]; } clip_img.nx = w; clip_img.ny = h; clip_image_encode(ctx, n_threads, &clip_img, vec); return true; } // // API used internally with mtmd // projector_type clip_get_projector_type(const struct clip_ctx * ctx) { return ctx->proj_type(); } void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) { clip_image_f32 * audio = new clip_image_f32; audio->nx = n_frames; audio->ny = n_mel; audio->buf.resize(n_frames * n_mel); std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float)); batch->entries.push_back(clip_image_f32_ptr(audio)); batch->is_audio = true; } const clip_hparams * clip_get_hparams(const struct clip_ctx * ctx) { return &ctx->model.hparams; } // // API for debugging // void clip_debug_encode(clip_ctx * ctx, int h, int w, float fill_value) { clip_image_f32 img; img.nx = w; img.ny = h; img.buf.resize(h * w * 3); for (int i = 0; i < h * w * 3; i++) { img.buf[i] = static_cast(fill_value); } bool cur_debug_graph = ctx->debug_graph; ctx->debug_graph = true; clip_image_encode(ctx, 1, &img, nullptr); ctx->debug_graph = cur_debug_graph; GGML_ASSERT(img.buf.empty() && "expected, always stop here"); }