#pragma once #include "string.h" #include #include #include #include #include #include #include #include #include namespace jinja { struct value_t; using value = std::shared_ptr; // Helper to check the type of a value template struct extract_pointee { using type = T; }; template struct extract_pointee> { using type = U; }; template bool is_val(const value & ptr) { using PointeeType = typename extract_pointee::type; return dynamic_cast(ptr.get()) != nullptr; } template bool is_val(const value_t * ptr) { using PointeeType = typename extract_pointee::type; return dynamic_cast(ptr) != nullptr; } template std::shared_ptr::type> mk_val(Args&&... args) { using PointeeType = typename extract_pointee::type; return std::make_shared(std::forward(args)...); } template const typename extract_pointee::type * cast_val(const value & ptr) { using PointeeType = typename extract_pointee::type; return dynamic_cast(ptr.get()); } template typename extract_pointee::type * cast_val(value & ptr) { using PointeeType = typename extract_pointee::type; return dynamic_cast(ptr.get()); } // End Helper struct context; // forward declaration // for converting from JSON to jinja values // example input JSON: // { // "messages": [ // {"role": "user", "content": "Hello!"}, // {"role": "assistant", "content": "Hi there!"} // ], // "bos_token": "", // "eos_token": "", // } // // to mark strings as user input, wrap them in a special object: // { // "messages": [ // { // "role": "user", // "content": {"__input__": "Hello!"} // this string is user input // }, // ... // ], // } // // marking input can be useful for tracking data provenance // and preventing template injection attacks // // Note: T_JSON can be nlohmann::ordered_json template void global_from_json(context & ctx, const T_JSON & json_obj, bool mark_input); // // base value type // struct func_args; // function argument values using func_handler = std::function; using func_builtins = std::map; enum value_compare_op { eq, ge, gt, lt, ne }; bool value_compare(const value & a, const value & b, value_compare_op op); struct value_t { int64_t val_int; double val_flt; string val_str; bool val_bool; std::vector val_arr; struct map { // once set to true, all keys must be numeric // caveat: we only allow either all numeric keys or all non-numeric keys // for now, this only applied to for_statement in case of iterating over object keys/items bool is_key_numeric = false; std::map unordered; std::vector> ordered; void insert(const std::string & key, const value & val) { if (unordered.find(key) != unordered.end()) { // if key exists, remove from ordered list ordered.erase(std::remove_if(ordered.begin(), ordered.end(), [&](const std::pair & p) { return p.first == key; }), ordered.end()); } unordered[key] = val; ordered.push_back({key, val}); } } val_obj; func_handler val_func; // only used if ctx.is_get_stats = true struct stats_t { bool used = false; // ops can be builtin calls or operators: "array_access", "object_access" std::set ops; } stats; value_t() = default; value_t(const value_t &) = default; virtual ~value_t() = default; virtual std::string type() const { return ""; } virtual int64_t as_int() const { throw std::runtime_error(type() + " is not an int value"); } virtual double as_float() const { throw std::runtime_error(type() + " is not a float value"); } virtual string as_string() const { throw std::runtime_error(type() + " is not a string value"); } virtual bool as_bool() const { throw std::runtime_error(type() + " is not a bool value"); } virtual const std::vector & as_array() const { throw std::runtime_error(type() + " is not an array value"); } virtual const std::map & as_object() const { throw std::runtime_error(type() + " is not an object value"); } virtual value invoke(const func_args &) const { throw std::runtime_error(type() + " is not a function value"); } virtual bool is_none() const { return false; } virtual bool is_undefined() const { return false; } virtual const func_builtins & get_builtins() const { throw std::runtime_error("No builtins available for type " + type()); } virtual value & at(const std::string & key, value & default_val) { auto it = val_obj.unordered.find(key); if (it == val_obj.unordered.end()) { return default_val; } return val_obj.unordered.at(key); } virtual value & at(const std::string & key) { auto it = val_obj.unordered.find(key); if (it == val_obj.unordered.end()) { throw std::runtime_error("Key '" + key + "' not found in value of type " + type()); } return val_obj.unordered.at(key); } virtual value & at(size_t index) { if (index >= val_arr.size()) { throw std::runtime_error("Index " + std::to_string(index) + " out of bounds for array of size " + std::to_string(val_arr.size())); } return val_arr[index]; } virtual std::string as_repr() const { return as_string().str(); } }; // // primitive value types // struct value_int_t : public value_t { value_int_t(int64_t v) { val_int = v; } virtual std::string type() const override { return "Integer"; } virtual int64_t as_int() const override { return val_int; } virtual double as_float() const override { return static_cast(val_int); } virtual string as_string() const override { return std::to_string(val_int); } virtual const func_builtins & get_builtins() const override; }; using value_int = std::shared_ptr; struct value_float_t : public value_t { value_float_t(double v) { val_flt = v; } virtual std::string type() const override { return "Float"; } virtual double as_float() const override { return val_flt; } virtual int64_t as_int() const override { return static_cast(val_flt); } virtual string as_string() const override { std::string out = std::to_string(val_flt); out.erase(out.find_last_not_of('0') + 1, std::string::npos); // remove trailing zeros if (out.back() == '.') out.push_back('0'); // leave one zero if no decimals return out; } virtual const func_builtins & get_builtins() const override; }; using value_float = std::shared_ptr; struct value_string_t : public value_t { value_string_t() { val_str = string(); } value_string_t(const std::string & v) { val_str = string(v); } value_string_t(const string & v) { val_str = v; } virtual std::string type() const override { return "String"; } virtual string as_string() const override { return val_str; } virtual std::string as_repr() const override { std::ostringstream ss; for (const auto & part : val_str.parts) { ss << (part.is_input ? "INPUT: " : "TMPL: ") << part.val << "\n"; } return ss.str(); } virtual bool as_bool() const override { return val_str.length() > 0; } virtual const func_builtins & get_builtins() const override; void mark_input() { val_str.mark_input(); } }; using value_string = std::shared_ptr; struct value_bool_t : public value_t { value_bool_t(bool v) { val_bool = v; } virtual std::string type() const override { return "Boolean"; } virtual bool as_bool() const override { return val_bool; } virtual string as_string() const override { return std::string(val_bool ? "True" : "False"); } virtual const func_builtins & get_builtins() const override; }; using value_bool = std::shared_ptr; struct value_array_t : public value_t { value_array_t() = default; value_array_t(value & v) { val_arr = v->val_arr; } value_array_t(const std::vector & arr) { val_arr = arr; } void reverse() { std::reverse(val_arr.begin(), val_arr.end()); } void push_back(const value & val) { val_arr.push_back(val); } void push_back(value && val) { val_arr.push_back(std::move(val)); } value pop_at(int64_t index) { if (index < 0) { index = static_cast(val_arr.size()) + index; } if (index < 0 || index >= static_cast(val_arr.size())) { throw std::runtime_error("Index " + std::to_string(index) + " out of bounds for array of size " + std::to_string(val_arr.size())); } value val = val_arr.at(static_cast(index)); val_arr.erase(val_arr.begin() + index); return val; } virtual std::string type() const override { return "Array"; } virtual const std::vector & as_array() const override { return val_arr; } virtual string as_string() const override { std::ostringstream ss; ss << "["; for (size_t i = 0; i < val_arr.size(); i++) { if (i > 0) ss << ", "; ss << val_arr.at(i)->as_repr(); } ss << "]"; return ss.str(); } virtual bool as_bool() const override { return !val_arr.empty(); } virtual const func_builtins & get_builtins() const override; }; using value_array = std::shared_ptr; struct value_object_t : public value_t { value_object_t() = default; value_object_t(value & v) { val_obj = v->val_obj; } value_object_t(const std::map & obj) { for (const auto & pair : obj) { val_obj.insert(pair.first, pair.second); } } void insert(const std::string & key, const value & val) { val_obj.insert(key, val); } virtual std::string type() const override { return "Object"; } virtual const std::map & as_object() const override { return val_obj.unordered; } virtual bool as_bool() const override { return !val_obj.unordered.empty(); } virtual const func_builtins & get_builtins() const override; }; using value_object = std::shared_ptr; // // null and undefined types // struct value_none_t : public value_t { virtual std::string type() const override { return "None"; } virtual bool is_none() const override { return true; } virtual bool as_bool() const override { return false; } virtual std::string as_repr() const override { return type(); } virtual const func_builtins & get_builtins() const override; }; using value_none = std::shared_ptr; struct value_undefined_t : public value_t { std::string hint; // for debugging, to indicate where undefined came from value_undefined_t(const std::string & h = "") : hint(h) {} virtual std::string type() const override { return hint.empty() ? "Undefined" : "Undefined (hint: '" + hint + "')"; } virtual bool is_undefined() const override { return true; } virtual bool as_bool() const override { return false; } virtual std::string as_repr() const override { return type(); } virtual const func_builtins & get_builtins() const override; }; using value_undefined = std::shared_ptr; // // function type // struct func_args { public: std::string func_name; // for error messages context & ctx; func_args(context & ctx) : ctx(ctx) {} value get_kwarg(const std::string & key, value default_val) const; value get_kwarg_or_pos(const std::string & key, size_t pos) const; value get_pos(size_t pos) const; value get_pos(size_t pos, value default_val) const; const std::vector & get_args() const; size_t count() const { return args.size(); } void push_back(const value & val); void push_front(const value & val); void ensure_count(size_t min, size_t max = 999) const { size_t n = args.size(); if (n < min || n > max) { throw std::runtime_error("Function '" + func_name + "' expected between " + std::to_string(min) + " and " + std::to_string(max) + " arguments, got " + std::to_string(n)); } } template void ensure_val(const value & ptr) const { if (!is_val(ptr)) { throw std::runtime_error("Function '" + func_name + "' expected value of type " + std::string(typeid(T).name()) + ", got " + ptr->type()); } } void ensure_count(bool require0, bool require1, bool require2, bool require3) const { static auto bool_to_int = [](bool b) { return b ? 1 : 0; }; size_t required = bool_to_int(require0) + bool_to_int(require1) + bool_to_int(require2) + bool_to_int(require3); ensure_count(required); } template void ensure_vals(bool required0 = true) const { ensure_count(required0, false, false, false); if (required0 && args.size() > 0) ensure_val(args[0]); } template void ensure_vals(bool required0 = true, bool required1 = true) const { ensure_count(required0, required1, false, false); if (required0 && args.size() > 0) ensure_val(args[0]); if (required1 && args.size() > 1) ensure_val(args[1]); } template void ensure_vals(bool required0 = true, bool required1 = true, bool required2 = true) const { ensure_count(required0, required1, required2, false); if (required0 && args.size() > 0) ensure_val(args[0]); if (required1 && args.size() > 1) ensure_val(args[1]); if (required2 && args.size() > 2) ensure_val(args[2]); } template void ensure_vals(bool required0 = true, bool required1 = true, bool required2 = true, bool required3 = true) const { ensure_count(required0, required1, required2, required3); if (required0 && args.size() > 0) ensure_val(args[0]); if (required1 && args.size() > 1) ensure_val(args[1]); if (required2 && args.size() > 2) ensure_val(args[2]); if (required3 && args.size() > 3) ensure_val(args[3]); } private: std::vector args; }; struct value_func_t : public value_t { std::string name; value arg0; // bound "this" argument, if any value_func_t(const std::string & name, const func_handler & func) : name(name) { val_func = func; } value_func_t(const std::string & name, const func_handler & func, const value & arg_this) : name(name), arg0(arg_this) { val_func = func; } virtual value invoke(const func_args & args) const override { func_args new_args(args); // copy new_args.func_name = name; if (arg0) { new_args.push_front(arg0); } return val_func(new_args); } virtual std::string type() const override { return "Function"; } virtual std::string as_repr() const override { return type(); } }; using value_func = std::shared_ptr; // special value for kwarg struct value_kwarg_t : public value_t { std::string key; value val; value_kwarg_t(const std::string & k, const value & v) : key(k), val(v) {} virtual std::string type() const override { return "KwArg"; } virtual std::string as_repr() const override { return type(); } }; using value_kwarg = std::shared_ptr; // utils const func_builtins & global_builtins(); std::string value_to_json(const value & val, int indent = -1, const std::string_view item_sep = ", ", const std::string_view key_sep = ": "); struct not_implemented_exception : public std::runtime_error { not_implemented_exception(const std::string & msg) : std::runtime_error("NotImplemented: " + msg) {} }; } // namespace jinja