#include "ggml.h" #include "ggml-alloc.h" #include "ggml-cpu.h" #include "ggml-backend.h" #ifdef GGML_USE_CUDA #include "ggml-cuda.h" //#include #endif #ifdef GGML_USE_METAL #include "ggml-metal.h" #endif #include #include #include #include #include #include #include #include static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) { (void) level; (void) user_data; fputs(text, stderr); fflush(stderr); } struct test_model { struct ggml_tensor * a; struct ggml_tensor * b; ggml_backend_t backend = NULL; ggml_backend_buffer_t buffer; struct ggml_context * ctx; }; void load_model(test_model & model, int ic, int oc, int iw, int ih, int kw = 3, int kh = 3, bool use_gpu = false ) { // create data int KW = kw, KH = kh, IC = ic, OC = oc; int IW = iw, IH = ih, N = 1; srand(time(NULL)); // printf(" input: IC = %d, OC = %d, IW = %d, IH = %d \n ", IC, OC, IW, IH); // Initialize adata std::vector adata(KW * KH * IC * OC); for (int i = 0; i < KW * KH * IC * OC; i++) { // adata[i] = 2.f; adata[i] = (float)i; // adata[i] = (rand() % 255) / 255.0; // float r = -1.f + static_cast (rand()) /( static_cast (RAND_MAX/(1.f-(-1.f)))); // adata[i] = r; } // Convert adata to fp16 format std::vector hadata(KW * KH * IC * OC); ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * IC * OC); // Initialize bdata std::vector bdata(IW * IH * IC * N); for (int i = 0; i < IW * IH * IC * N; i++) { // bdata[i] = (float)(i%IW)/10.f; // bdata[i] = 1.5f; bdata[i] = (float)(i+1); // bdata[i] = (rand() % 255) / 255.0; // float r = -1.f + static_cast (rand()) /( static_cast (RAND_MAX/(1.f-(-1.f)))); // bdata[i] = r; } // for(int i = 0; i < IH; i++) { // // float diff = fabs(conv2d_data[i] - wino_data[i]); // for(int j = 0; j < IW; j++) { // printf("%.0f, ", bdata[i*IW+j]); // } // printf("\n"); // } for(int i = 0; i < KH; i++) { // float diff = fabs(conv2d_data[i] - wino_data[i]); for(int j = 0; j < KW; j++) { printf("%.0f, ", adata[i*KW+j]); } printf("\n"); } printf(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n"); size_t buffer_size = 0; { // buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a buffer_size += KW * KH * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a buffer_size += IW * IH * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b buffer_size += 1024; // overhead } // printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor)); // printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f)); int num_tensors = 2; struct ggml_init_params params { /*.mem_size =*/ ggml_tensor_overhead() * num_tensors, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; // initialize the backend #ifdef GGML_USE_CUDA if (use_gpu) { // fprintf(stderr, "%s: using CUDA backend\n", __func__); model.backend = ggml_backend_cuda_init(0); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__); } } #endif #ifdef GGML_USE_METAL if (use_gpu) { fprintf(stderr, "%s: using Metal backend\n", __func__); ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr); model.backend = ggml_backend_metal_init(); if (!model.backend) { fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__); } } #endif if(!model.backend) { // fallback to CPU backend model.backend = ggml_backend_cpu_init(); } model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size); // create context model.ctx = ggml_init(params); // create tensors model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, IC, OC); // model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, IC, OC); model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, IC, N); int64_t *ne = model.a->ne; printf("before trans: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]); // create a allocator struct ggml_tallocr alloc = ggml_tallocr_new(model.buffer); // alloc memory ggml_tallocr_alloc(&alloc, model.a); // load data to buffer if(ggml_backend_is_cpu(model.backend)) { memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a)); // memcpy(model.a->data, adata.data(), ggml_nbytes(model.a)); } else { ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a)); // ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a)); } // alloc memory ggml_tallocr_alloc(&alloc, model.b); if(ggml_backend_is_cpu(model.backend) #ifdef GGML_USE_METAL || ggml_backend_is_metal(model.backend) #endif ) { memcpy(model.b->data, bdata.data(), ggml_nbytes(model.b)); } else { ggml_backend_tensor_set(model.b, bdata.data(), 0, ggml_nbytes(model.b)); } } typedef struct ggml_cgraph* (*build_graph_t)(const test_model& model); struct ggml_cgraph * build_graph_0(const test_model& model) { static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); static std::vector buf(buf_size); struct ggml_init_params params0 = { /*.mem_size =*/ buf_size, /*.mem_buffer =*/ buf.data(), /*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph() }; // create a temporally context to build the graph struct ggml_context * ctx0 = ggml_init(params0); struct ggml_cgraph * gf = ggml_new_graph(ctx0); int s0 = 1; int s1 = 1; int p0 = 1; int p1 = 1; int d0 = 1; int d1 = 1; // recalculate for avoid fragmentation // struct ggml_tensor* conv2d_res = ggml_cont(ctx0, ggml_transpose(ctx0, model.b)); struct ggml_tensor* conv2d_res = ggml_cont(ctx0, ggml_transpose(ctx0, model.a)); ggml_set_name(conv2d_res, "transpose_res"); ggml_build_forward_expand(gf, conv2d_res); int64_t *ne = conv2d_res->ne; printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]); // struct ggml_tensor* wino_res = ggml_conv_2d_3x3(ctx0, model.a, model.b); // ggml_set_name(wino_res, "wino_res"); // ggml_build_forward_expand(gf, wino_res); // ne = wino_res->ne; // printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]); ggml_free(ctx0); return gf; } std::vector compute_graph(const test_model & model, ggml_gallocr_t allocr, build_graph_t build_graph, int iters, double *t) { struct ggml_cgraph * gf = build_graph(model); // allocate tensors ggml_gallocr_alloc_graph(allocr, gf); int n_threads = 1; if (ggml_backend_is_cpu(model.backend)) { ggml_backend_cpu_set_n_threads(model.backend, n_threads); } #ifdef GGML_USE_METAL if (ggml_backend_is_metal(model.backend)) { ggml_backend_metal_set_n_cb(model.backend, n_threads); } #endif ggml_backend_synchronize(model.backend); ggml_backend_graph_compute(model.backend, gf); ggml_backend_synchronize(model.backend); int64_t start_time = ggml_time_us(); for(int iter=0; iter data(ggml_nelements(res)); std::vector fdata(ggml_nelements(res)); std::vector data(ggml_nelements(res)); ggml_backend_tensor_get(res, fdata.data(), 0, ggml_nbytes(res)); ggml_fp16_to_fp32_row(fdata.data(), data.data(), ggml_nelements(res)); *t = time_us/1000; return data; } int main(void) { ggml_time_init(); std::vector> configs = { // std::make_tuple(64,64,48,64,3,3), // std::make_tuple(320,320,104,152,3,3), // std::make_tuple(640,640,52,76,3,3), // std::make_tuple(640,640,104,152,3,3), // std::make_tuple(960,320,104,152,3,3), // std::make_tuple(1,128,38,49,3,3), std::make_tuple(1,1,38,49,38,49), // std::make_tuple(1280,1280,26,38,1,1), // std::make_tuple(256,128,768,1024,3,3), // std::make_tuple(256,128,768,1024,1,1), // std::make_tuple(1280,640,52,76,3,3), // std::make_tuple(1920,1280,26,38,3,3), // std::make_tuple(2560,1280,26,38,3,3), // std::make_tuple(512,512,104,152,3,3), // std::make_tuple(512,512,208,304,3,3), // std::make_tuple(512,256,416,608,3,3), // std::make_tuple(256,128,832,1216,3,3), // std::make_tuple(256,256,832,1216,3,3), // std::make_tuple(320,256,1024,1920) }; int k = 0; for (auto c : configs){ test_model model; load_model(model, std::get<0>(c), std::get<1>(c), std::get<2>(c), std::get<3>(c), std::get<4>(c), std::get<5>(c), true); ggml_gallocr_t allocr = NULL; allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend)); //create the worst case graph for memory usage estimation struct ggml_cgraph * gf = build_graph_0(model); // compute the required memory ggml_gallocr_reserve(allocr, gf); size_t mem_size0 = ggml_gallocr_get_buffer_size(allocr, 0); // fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f); struct ggml_cgraph * gf_res_0 = NULL; int iterations = 0; double run_time0; std::vector im2col_data = compute_graph(model, allocr, build_graph_0, iterations, &run_time0); //create the worst case graph for memory usage estimation // for(int i = 0; i < ggml_nelements(wino_res); i++) { // for(int i = 0; i < 26*38; i++) { // for(int i = 0; i < std::get<2>(c); i++) { // // float diff = fabs(conv2d_data[i] - wino_data[i]); // for(int j = 0; j < std::get<3>(c); j++) { // printf("%4.1f, ", im2col_data[i*std::get<3>(c)+j]); // } // printf("\n"); // } for(int i = 0; i < std::get<4>(c); i++) { // float diff = fabs(conv2d_data[i] - wino_data[i]); for(int j = 0; j < std::get<5>(c); j++) { printf("%4.1f, ", im2col_data[i*std::get<5>(c)+j]); } printf("\n"); } ggml_free(model.ctx); ggml_backend_buffer_free(model.buffer); ggml_backend_free(model.backend); ggml_gallocr_free(allocr); } // printf("\nPerforming test:\n"); return 0; }