#include "models.h" llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); ggml_tensor * cur; ggml_tensor * inpL; ggml_tensor * inp_pos = build_inp_pos(); // construct input embeddings (token, type, position) inpL = build_inp_embd(model.tok_embd); cb(inpL, "inp_embd", -1); // embed layer norm inpL = build_norm(inpL, model.tok_norm, nullptr, LLM_NORM, -1); cb(inpL, "inp_norm", -1); ggml_tensor * inp_out_ids = build_inp_out_ids(); auto * inp_attn = build_attn_inp_no_cache(); for (int il = 0; il < n_layer; ++il) { float freq_base_l = model.get_rope_freq_base(cparams, il); cur = inpL; // attention layer norm if (model.layers[il].attn_norm) { cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il); cb(cur, "attn_norm", il); } // self attention cur = build_lora_mm(model.layers[il].wqkv, cur); cb(cur, "wqkv", il); const size_t type_size = ggml_type_size(cur->type); ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*type_size, cur->nb[1], 0*type_size*(n_embd)); ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd)); ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd + n_embd_gqa)); // RoPE Qcur = ggml_rope_ext( ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); Kcur = ggml_rope_ext( ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow ); cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); cb(Vcur, "Vcur", il); cur = build_attn(inp_attn, model.layers[il].wo, nullptr, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); cb(cur, "kqv_out", il); if (il == n_layer - 1 && inp_out_ids) { cur = ggml_get_rows(ctx0, cur, inp_out_ids); inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); } // re-add the layer input ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); cb(ffn_inp, "ffn_inp", il); // attention layer norm cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM, il); cb(cur, "ffn_norm", il); cur = build_ffn(cur, model.layers[il].ffn_up, NULL, NULL, NULL, NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_GEGLU, LLM_FFN_SEQ, il); // attentions bypass the intermediate layer cur = ggml_add(ctx0, cur, ffn_inp); // input for next layer inpL = cur; } cur = inpL; cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1); cb(cur, "final_norm_out", -1); if (hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { // extracting cls token cur = ggml_view_1d(ctx0, cur, hparams.n_embd, 0); cb(cur, "cls_pooled_embd", -1); } cb(cur, "res_embd", -1); res->t_embd = cur; ggml_build_forward_expand(gf, cur); }