#include "models.h" #include #include // note: this is similar to clip_graph::resize_position_embeddings, major difference is having // the w/h in ne[1] and ne[2] instead of assuming with sqrt. Could try storing the tensor in 2D instead // with a w*h? Also the permute is a bit different at (2, 1, 0, 3) instead of (2, 0, 1, 3). ggml_tensor * clip_graph_kimik25::resize_position_embeddings_3d(uint32_t interpolation_mode) { ggml_tensor * pos_embd = model.position_embeddings; const int height = img.ny / patch_size; const int width = img.nx / patch_size; const uint32_t mode = interpolation_mode; GGML_ASSERT(pos_embd); const int64_t stored_c = pos_embd->ne[0]; // C = 1152 const int64_t orig_w = pos_embd->ne[1]; // W = 64 const int64_t orig_h = pos_embd->ne[2]; // H = 64 GGML_ASSERT(stored_c == n_embd); if (height == (int)orig_h && width == (int)orig_w) { // No interpolation needed, just flatten to [C, H*W] return ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); } pos_embd = ggml_permute(ctx0, pos_embd, 2, 1, 0, 3); pos_embd = ggml_interpolate(ctx0, pos_embd, height, width, n_embd, 1, mode); pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); return pos_embd; } ggml_cgraph * clip_graph_kimik25::build() { ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_h, "pos_h"); ggml_set_input(pos_h); ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_w, "pos_w"); ggml_set_input(pos_w); ggml_tensor * learned_pos_embd = resize_position_embeddings_3d(GGML_SCALE_MODE_BICUBIC); // Kimi-K2.5 uses INTERLEAVED frequency pattern: [x_freq0, y_freq0, x_freq1, y_freq1, ...] auto add_pos = [&](ggml_tensor * cur, const clip_layer &) { return build_rope_2d_interleaved(ctx0, cur, pos_w, pos_h, hparams.rope_theta); }; ggml_tensor * inp = build_inp(); // I don't know why, but doing this in the build_vit lead to the ggml_add not occurring? // Doing it manually here does work. inp = ggml_add(ctx0, inp, learned_pos_embd); ggml_tensor * cur = build_vit( inp, n_patches, NORM_TYPE_NORMAL, hparams.ffn_op, nullptr, add_pos); cb(cur, "vit_out", -1); { // patch_merger const int scale_factor = model.hparams.n_merge; cur = build_patch_merge_permute(cur, scale_factor); // projection norm int proj_inp_dim = cur->ne[0]; int n_merged_patches = cur->ne[1]; cur = ggml_view_2d(ctx0, cur, n_embd, n_merged_patches * scale_factor * scale_factor, ggml_row_size(cur->type, n_embd), 0); cur = ggml_norm(ctx0, cur, hparams.eps); cur = ggml_mul(ctx0, cur, model.mm_input_norm_w); cur = ggml_add(ctx0, cur, model.mm_input_norm_b); cur = ggml_view_2d(ctx0, cur, proj_inp_dim, n_merged_patches, ggml_row_size(cur->type, proj_inp_dim), 0); cb(cur, "proj_inp_normed", -1); // projection mlp cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_2_w, model.mm_2_b, FFN_GELU, -1); cb(cur, "proj_out", -1); } // build the graph ggml_build_forward_expand(gf, cur); return gf; }