#include "llama-sampling.h" #include "llama-impl.h" #include "llama-vocab.h" #include "llama-grammar.h" #include "ggml-cpp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include // the ring buffer works similarly to std::deque, but with a fixed capacity template struct ring_buffer { ring_buffer(size_t cap) : capacity(cap), data(cap) {} T & front() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[first]; } const T & front() const { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[first]; } T & back() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[pos]; } const T & back() const { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[pos]; } void push_back(const T & value) { if (capacity == 0) { throw std::runtime_error("ring buffer: capacity is zero"); } if (sz == capacity) { // advance the start when buffer is full first = (first + 1) % capacity; } else { sz++; } data[pos] = value; pos = (pos + 1) % capacity; } T pop_front() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } T value = data[first]; first = (first + 1) % capacity; sz--; return value; } //T & operator[](size_t i) { // if (i >= sz) { // throw std::runtime_error("ring buffer: index out of bounds"); // } // return data[(first + i) % capacity]; //} //const T & at(size_t i) const { // if (i >= sz) { // throw std::runtime_error("ring buffer: index out of bounds"); // } // return data[(first + i) % capacity]; //} const T & rat(size_t i) const { if (i >= sz) { throw std::runtime_error("ring buffer: index out of bounds"); } return data[(first + sz - i - 1) % capacity]; } std::vector to_vector() const { std::vector result; result.reserve(sz); for (size_t i = 0; i < sz; i++) { result.push_back(data[(first + i) % capacity]); } return result; } void clear() { // here only reset the status of the buffer sz = 0; first = 0; pos = 0; } bool empty() const { return sz == 0; } size_t size() const { return sz; } size_t capacity = 0; size_t sz = 0; size_t first = 0; size_t pos = 0; std::vector data; }; // writes result in res, does not mutate cur static void llama_token_data_array_partial_sort(const llama_token_data_array & cur, int npartial, std::vector & res) { static const auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; constexpr int nbuckets = 128; constexpr float bucket_low = -10.0f; constexpr float bucket_high = 10.0f; constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); constexpr float bucket_inter = -bucket_low * bucket_scale; std::vector bucket_idx; std::vector histo(nbuckets, 0); std::vector bucket_ptrs; bucket_idx.reserve(cur.size); for (int i = 0; i < (int)cur.size; ++i) { const float val = cur.data[i].logit; int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); ib = std::max(0, std::min(nbuckets - 1, ib)); bucket_idx.push_back(ib); ++histo[ib]; } int nhave = 0; int ib = nbuckets - 1; for ( ; ib >= 0; --ib) { nhave += histo[ib]; if (nhave >= npartial) { break; } } res.resize(nhave); auto * ptr = res.data(); bucket_ptrs.reserve(nbuckets - ib); for (int j = nbuckets - 1; j >= ib; --j) { bucket_ptrs.push_back(ptr); ptr += histo[j]; } for (int i = 0; i < (int)cur.size; ++i) { int j = bucket_idx[i]; if (j >= ib) { *bucket_ptrs[nbuckets - 1 - j]++ = cur.data[i]; } } ptr = res.data(); int ndone = 0; for (int j = nbuckets - 1; j > ib; --j) { std::sort(ptr, ptr + histo[j], comp); ptr += histo[j]; ndone += histo[j]; } std::partial_sort(ptr, ptr + npartial - ndone, ptr + histo[ib], comp); } // reduces the size of cur_p to npartial, keeping only the top npartial elements static void llama_token_data_array_partial_sort_inplace(llama_token_data_array * cur_p, int npartial) { static const auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; if (npartial <= 128) { std::partial_sort(cur_p->data, cur_p->data + npartial, cur_p->data + cur_p->size, comp); cur_p->size = npartial; cur_p->sorted = true; return; } std::vector tmp; llama_token_data_array_partial_sort(*cur_p, npartial, tmp); std::copy(tmp.data(), tmp.data() + npartial, cur_p->data); cur_p->size = npartial; cur_p->sorted = true; } static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { // iterator for the probabilities #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-local-typedefs" #endif struct probs_iterator { typedef std::input_iterator_tag iterator_category; typedef float value_type; typedef float * pointer; typedef float & reference; typedef ptrdiff_t difference_type; const llama_token_data * data; bool operator==(const probs_iterator & other) const { return data == other.data; } bool operator!=(const probs_iterator & other) const { return data != other.data; } const float & operator*() const { return data->p; } probs_iterator & operator++() { ++data; return *this; } probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; } }; #ifdef __GNUC__ #pragma GCC diagnostic pop #endif std::discrete_distribution dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size}); return dist(rng); } /* static void llama_log_softmax(float * array, size_t size) { float max_l = *std::max_element(array, array + size); float sum = 0.f; for (size_t i = 0; i < size; ++i) { float p = expf(array[i] - max_l); sum += p; array[i] = p; } for (size_t i = 0; i < size; ++i) { array[i] = logf(array[i] / sum); } } */ static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { if (temp <= 0.0f) { // find the token with the highest logit and set the rest to -inf size_t max_i = 0; float max_l = cur_p->data[0].logit; for (size_t i = 1; i < cur_p->size; ++i) { if (cur_p->data[i ].logit > max_l) { cur_p->data[max_i].logit = -INFINITY; max_i = i; max_l = cur_p->data[i].logit; } else { cur_p->data[i].logit = -INFINITY; } } return; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].logit /= temp; } } static void llama_sampler_softmax_impl(llama_token_data_array * cur_p, bool do_sort) { GGML_ASSERT(cur_p->size > 0); // Sort the logits in descending order if requested if (do_sort && !cur_p->sorted) { llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size); } float max_l = cur_p->data[0].logit; if (!cur_p->sorted) { for (size_t i = 1; i < cur_p->size; ++i) { max_l = std::max(max_l, cur_p->data[i].logit); } } float cum_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float p = expf(cur_p->data[i].logit - max_l); cur_p->data[i].p = p; cum_sum += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum; } } static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { // if (k >= (int32_t)cur_p->size) { // return; // } if (k <= 0) { return; } k = std::min(k, (int) cur_p->size); // Sort scores in descending order if (!cur_p->sorted) { llama_token_data_array_partial_sort_inplace(cur_p, k); } cur_p->size = k; } static uint32_t get_rng_seed(uint32_t seed) { if (seed == LLAMA_DEFAULT_SEED) { // use system clock if std::random_device is not a true RNG static bool is_rd_prng = std::random_device().entropy() == 0; if (is_rd_prng) { return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count(); } std::random_device rd; return rd(); } return seed; } // llama_sampler API struct llama_sampler * llama_sampler_init( struct llama_sampler_i * iface, llama_sampler_context_t ctx) { return new llama_sampler { /* .iface = */ iface, /* .ctx = */ ctx, }; } const char * llama_sampler_name(const struct llama_sampler * smpl) { if (!smpl->iface) { return "(null)"; } return smpl->iface->name(smpl); } void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { if (!smpl) { return; } if (smpl->iface->accept) { smpl->iface->accept(smpl, token); } } void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { if (!smpl) { return; } GGML_ASSERT(smpl->iface->apply); smpl->iface->apply(smpl, cur_p); } void llama_sampler_reset(struct llama_sampler * smpl) { if (!smpl) { return; } if (smpl->iface->reset) { smpl->iface->reset(smpl); } } struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { if (!smpl) { return nullptr; } if (smpl->iface->clone) { return smpl->iface->clone(smpl); } if (smpl->ctx == nullptr) { return llama_sampler_init( /* .iface = */ smpl->iface, /* .ctx = */ nullptr ); } GGML_ABORT("the sampler does not support cloning"); } void llama_sampler_free(struct llama_sampler * smpl) { if (smpl == nullptr) { return; } if (smpl->iface->free) { smpl->iface->free(smpl); } delete smpl; } llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { const llama_token sampled_token = llama_get_sampled_token_ith (ctx, idx); const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx); const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx); const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx); // If a backend sampler has already sampled a token, return it. if (sampled_token != LLAMA_TOKEN_NULL) { LLAMA_LOG_DEBUG("%s: Backend sampler selected token for idx %d. Skipping CPU samplers\n", __func__, idx); return sampled_token; } const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const int n_vocab = llama_vocab_n_tokens(vocab); // TODO: do not allocate each time std::vector cur; if (sampled_probs) { const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx); cur.resize(sampled_probs_count); for (uint32_t i = 0; i < sampled_probs_count; ++i) { cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]}; } } else if (sampled_logits) { const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx); cur.resize(sampled_logits_count); for (llama_token i = 0; i < (int)sampled_logits_count; i++) { cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f}; } } else { const auto * logits = llama_get_logits_ith(ctx, idx); GGML_ASSERT(logits != nullptr); cur.resize(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; } } llama_token_data_array cur_p = { /* .data = */ cur.data(), /* .size = */ cur.size(), /* .selected = */ -1, /* .sorted = */ false, }; llama_sampler_apply(smpl, &cur_p); GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); auto token = cur_p.data[cur_p.selected].id; llama_sampler_accept(smpl, token); return token; } // empty sampler struct llama_sampler_empty { const char * name; }; static struct llama_sampler * llama_sampler_init_empty(const char * name); static const char * llama_sampler_empty_name(const struct llama_sampler * smpl) { auto * ctx = (llama_sampler_empty *) smpl->ctx; return ctx->name; } static void llama_sampler_empty_accept(struct llama_sampler * smpl, llama_token token) { GGML_UNUSED(smpl); GGML_UNUSED(token); } static void llama_sampler_empty_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { GGML_UNUSED(smpl); GGML_UNUSED(cur_p); } static void llama_sampler_empty_reset(struct llama_sampler * smpl) { GGML_UNUSED(smpl); } static struct llama_sampler * llama_sampler_empty_clone(const struct llama_sampler * smpl) { auto * ctx = (llama_sampler_empty *) smpl->ctx; return llama_sampler_init_empty(ctx->name); } static void llama_sampler_empty_free(struct llama_sampler * smpl) { delete (llama_sampler_empty *) smpl->ctx; } static bool llama_sampler_empty_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(smpl); GGML_UNUSED(buft); return true; } static void llama_sampler_empty_backend_accept( struct llama_sampler * smpl, ggml_context * ctx, ggml_cgraph * gf, struct ggml_tensor * selected_token) { GGML_UNUSED(smpl); GGML_UNUSED(ctx); GGML_UNUSED(gf); GGML_UNUSED(selected_token); } static void llama_sampler_empty_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { GGML_UNUSED(smpl); GGML_UNUSED(ctx); GGML_UNUSED(gf); GGML_UNUSED(data); } static void llama_sampler_empty_backend_set_input(struct llama_sampler * smpl) { GGML_UNUSED(smpl); } static struct llama_sampler_i llama_sampler_empty_i = { /* .name = */ llama_sampler_empty_name, /* .accept = */ llama_sampler_empty_accept, /* .apply = */ llama_sampler_empty_apply, /* .reset = */ llama_sampler_empty_reset, /* .clone = */ llama_sampler_empty_clone, /* .free = */ llama_sampler_empty_free, /* .backend_init = */ llama_sampler_empty_backend_init, /* .backend_accept = */ llama_sampler_empty_backend_accept, /* .backend_apply = */ llama_sampler_empty_backend_apply, /* .backend_set_input = */ llama_sampler_empty_backend_set_input, }; struct llama_sampler * llama_sampler_init_empty(const char * name) { return llama_sampler_init( /* .iface = */ &llama_sampler_empty_i, /* .ctx = */ new llama_sampler_empty { /* .name = */ name, } ); } // common backend sampler functionality // // +name : means that the sampler is support and will run on the backend // -name : means that a ggml operator is not supported by the backend // struct llama_sampler_backend { llama_sampler_backend(const char * name) : name(name), name_ext(name), is_init(false), support(false) {} const char * get_name() { if (!is_init) { return name.c_str(); } if (support) { name_ext = "+" + name; } else { name_ext = "-" + name; } return name_ext.c_str(); } void init(bool support) { GGML_ASSERT(this->is_init == false); this->is_init = true; this->support = support; } private: std::string name; std::string name_ext; bool is_init; bool support; }; // sampler chain static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) { return "chain"; } static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); for (auto & smpl : chain->samplers) { llama_sampler_accept(smpl.ptr, token); } chain->n_sample++; } static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * chain = (llama_sampler_chain *) smpl->ctx; time_meas tm(chain->t_sample_us, chain->params.no_perf); bool is_backend = chain->is_init; for (auto & smpl : chain->samplers) { if (is_backend && smpl.is_backend) { continue; } is_backend = false; if (smpl.ptr->iface->apply == nullptr) { continue; } llama_sampler_apply(smpl.ptr, cur_p); } } static void llama_sampler_chain_reset(struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto & smpl : chain->samplers) { llama_sampler_reset(smpl.ptr); } } static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) { const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; auto * result = llama_sampler_chain_init(chain_src->params); for (const auto & smpl : chain_src->samplers) { llama_sampler_chain_add(result, llama_sampler_clone(smpl.ptr)); } return result; } static void llama_sampler_chain_free(struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto & smpl : chain->samplers) { llama_sampler_free(smpl.ptr); } delete chain; } static bool llama_sampler_chain_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { auto * chain = (llama_sampler_chain *) smpl->ctx; GGML_ASSERT(chain->is_init == false && "llama_sampler_chain_backend_init() called twice"); chain->is_init = true; bool res = true; for (auto & smpl : chain->samplers) { bool res_cur = true; // to be able to run a sampler on the backend, it has to: // - have the .backend_init() API implemented // - return true during .backend_init() if (smpl.ptr->iface->backend_init) { if (!smpl.ptr->iface->backend_init(smpl.ptr, buft)) { res_cur = false; } } else { res_cur = false; } smpl.is_backend = res_cur; res = res && res_cur; } return res; } static void llama_sampler_chain_backend_accept( struct llama_sampler * smpl, ggml_context * ctx, ggml_cgraph * gf, struct ggml_tensor * selected_token) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto & smpl : chain->samplers) { if (!smpl.is_backend) { break; } if (smpl.ptr->iface->backend_accept) { smpl.ptr->iface->backend_accept(smpl.ptr, ctx, gf, selected_token); } } } static void llama_sampler_chain_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * chain = (llama_sampler_chain *) smpl->ctx; GGML_ASSERT(chain->is_init && "llama_sampler_chain_backend_init() not called"); for (auto & smpl : chain->samplers) { if (!smpl.is_backend) { break; } if (smpl.ptr->iface->backend_apply) { smpl.ptr->iface->backend_apply(smpl.ptr, ctx, gf, data); } } } static void llama_sampler_chain_backend_set_input(struct llama_sampler * smpl) { auto * chain = (llama_sampler_chain *) smpl->ctx; for (auto & smpl : chain->samplers) { if (!smpl.is_backend) { break; } if (smpl.ptr->iface->backend_set_input) { smpl.ptr->iface->backend_set_input(smpl.ptr); } } } static struct llama_sampler_i llama_sampler_chain_i = { /* .name = */ llama_sampler_chain_name, /* .accept = */ llama_sampler_chain_accept, /* .apply = */ llama_sampler_chain_apply, /* .reset = */ llama_sampler_chain_reset, /* .clone = */ llama_sampler_chain_clone, /* .free = */ llama_sampler_chain_free, /* .backend_init = */ llama_sampler_chain_backend_init, /* .backend_accept = */ llama_sampler_chain_backend_accept, /* .backend_apply = */ llama_sampler_chain_backend_apply, /* .backend_set_input = */ llama_sampler_chain_backend_set_input, }; struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { return llama_sampler_init( /* .iface = */ &llama_sampler_chain_i, /* .ctx = */ new llama_sampler_chain { /* .params = */ params, /* .is_init = */ false, /* .samplers = */ {}, /* .t_sample_us = */ 0, /* .n_sample = */ 0, } ); } void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { auto * p = (llama_sampler_chain *) chain->ctx; p->samplers.push_back({ /* .is_backend = */ false, /* .ptr = */ smpl, }); } struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { const auto * p = (const llama_sampler_chain *) chain->ctx; if (i < 0 || (size_t) i >= p->samplers.size()) { return nullptr; } return p->samplers[i].ptr; } struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) { auto * p = (llama_sampler_chain *) chain->ctx; if (i < 0 || (size_t) i >= p->samplers.size()) { return nullptr; } auto * result = p->samplers[i].ptr; p->samplers.erase(p->samplers.begin() + i); return result; } int llama_sampler_chain_n(const struct llama_sampler * chain) { const auto * p = (const llama_sampler_chain *) chain->ctx; return p->samplers.size(); } // // samplers // // greedy static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) { return "greedy"; } static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) { cur_p->selected = 0; for (size_t i = 1; i < cur_p->size; ++i) { if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { cur_p->selected = i; } } } static bool llama_sampler_greedy_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(smpl); GGML_UNUSED(buft); return true; } static void llama_sampler_greedy_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { GGML_UNUSED(gf); GGML_UNUSED(smpl); struct ggml_tensor * argmax_result = ggml_argmax(ctx, data->logits); ggml_set_name(argmax_result, "argmax_result"); data->sampled = argmax_result; } static struct llama_sampler_i llama_sampler_greedy_i = { /* .name = */ llama_sampler_greedy_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_greedy_apply, /* .reset = */ nullptr, /* .clone = */ nullptr, /* .free = */ nullptr, /* .backend_init = */ llama_sampler_greedy_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_greedy_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_greedy() { return llama_sampler_init( /* .iface = */ &llama_sampler_greedy_i, /* .ctx = */ nullptr ); } // dist struct llama_sampler_dist : public llama_sampler_backend { const uint32_t seed; uint32_t seed_cur; std::mt19937 rng; // backend input struct ggml_tensor * inp_uniform; ggml_context_ptr inp_ctx; ggml_backend_buffer_ptr inp_buf; }; static const char * llama_sampler_dist_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_dist *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dist *) smpl->ctx; // edge cases if (cur_p->size == 0) { cur_p->selected = -1; return; } cur_p->selected = 0; if (cur_p->size == 1) { cur_p->data[0].p = 1.0f; return; } // max logit for numerical stability float max_l = cur_p->data[0].logit; if (!cur_p->sorted) { for (size_t i = 1; i < cur_p->size; ++i) { max_l = std::max(max_l, cur_p->data[i].logit); } } // apply softmax to obtain the probabilities double sum_cum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float p = expf(cur_p->data[i].logit - max_l); cur_p->data[i].p = p; sum_cum += p; } #if 1 // sample from the obtained probabilities and normalize the probs in a single pass // this is ~3x faster on Mac with full gpt-oss vocab than the version below // std::uniform_real_distribution dist(0.0f, 1.0f); const double rnd = dist(ctx->rng); double sum_run = 0.0f; const double sum_tgt = sum_cum*rnd; bool found = false; for (size_t i = 0; i < cur_p->size; ++i) { if (!found) { // accumulate probs until we reach the target sum sum_run += cur_p->data[i].p; if (sum_run >= sum_tgt) { cur_p->selected = i; found = true; } } // normalize probs cur_p->data[i].p /= sum_cum; } // fallback to the last token (don't think this can happen) assert(found); if (!found) { cur_p->selected = cur_p->size - 1; } #else // for clarity, this is the same as above but does one pass for normalization and one extra pass for sampling for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= sum_cum; } cur_p->selected = llama_sample_dist(cur_p, ctx->rng); #endif } static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_dist *) smpl->ctx; auto * result = llama_sampler_init_dist(ctx->seed); // copy the state { auto * result_ctx = (llama_sampler_dist *) result->ctx; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_dist_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_dist *) smpl->ctx; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static void llama_sampler_dist_free(struct llama_sampler * smpl) { delete (llama_sampler_dist *) smpl->ctx; } static bool llama_sampler_dist_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { auto * sctx = (llama_sampler_dist *) smpl->ctx; bool res = true; // determine backend support { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx_ptr { ggml_init(params) }; if (!ctx_ptr) { throw std::runtime_error(format("failed to create ggml context")); } ggml_context * ctx = ctx_ptr.get(); ggml_tensor * probs = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1024*1024); ggml_tensor * op = ggml_cumsum(ctx, probs); auto * device = ggml_backend_buft_get_device(buft); if (device && !ggml_backend_dev_supports_op(device, op)) { res = false; } sctx->init(res); } if (res) { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; sctx->inp_ctx.reset(ggml_init(params)); // Create the uniform random scalar input tensor. This will be set by // llama_sampler_dist_backend_set_input after this graph is built. sctx->inp_uniform = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1); ggml_set_name(sctx->inp_uniform, "uniform"); ggml_set_input(sctx->inp_uniform); // Allocate all tensors from our context to the backend sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft)); } return res; } static void llama_sampler_dist_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { GGML_UNUSED(gf); auto * sctx = (llama_sampler_dist *) smpl->ctx; struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits); ggml_set_name(probs, "dist_probs"); struct ggml_tensor * cumsum = ggml_cumsum(ctx, probs); ggml_set_name(cumsum, "cumsum"); // The uniform tensor has a random value and we subtract this tensor with // the cumsum tensor (the uniform tensor will be broadcasted by ggml_sub). // Recall that each entry in cumsum is the cumulative probability up to that // index so values stay negative while the cumulative total is below the // random value, and become zero/positive once the threshold is crossed. struct ggml_tensor * diff = ggml_sub(ctx, cumsum, sctx->inp_uniform); ggml_set_name(diff, "dist_cumsum"); // The ggml_step function produces a tensor where entries are 1 if the // corresponding entry in diff is > 0, and 0 otherwise. So all values up to // the index where the cumulative probability exceeds the random value are 0, // and all entries after that are 1. struct ggml_tensor * mask = ggml_step(ctx, diff); ggml_set_name(mask, "dist_mask"); // Taking the sum of the mask gives us the sum of elements after the threshold // we are interested in. struct ggml_tensor * idxf = ggml_sum(ctx, mask); ggml_set_name(idxf, "dist_index_f32"); // Use ggml_scale_bias to scale the index value by -1 and then add the size // of the mask to that value so we get the correct index ((-1 * idxf) + n). struct ggml_tensor * idx = ggml_cast(ctx, ggml_scale_bias(ctx, idxf, -1.0f, mask->ne[0]), GGML_TYPE_I32); ggml_set_name(idx, "dist_index_i32"); // Map back to original vocab ids if a candidates tensor is available. struct ggml_tensor * sampled_token = idx; if (data->candidates != nullptr) { struct ggml_tensor * candidates = data->candidates; struct ggml_tensor * candidates_reshaped = ggml_view_2d(ctx, candidates, 1, ggml_nelements(candidates), ggml_type_size(candidates->type), 0); sampled_token = ggml_get_rows(ctx, candidates_reshaped, idx); ggml_set_name(sampled_token, "dist_sampled_token"); } data->sampled = sampled_token; } static void llama_sampler_dist_backend_set_input(struct llama_sampler * smpl) { auto * sctx = (llama_sampler_dist *) smpl->ctx; GGML_ASSERT(sctx->inp_uniform != nullptr); std::uniform_real_distribution dist(0.0f, 1.0f); const float rnd = dist(sctx->rng); ggml_backend_tensor_set(sctx->inp_uniform, &rnd, 0, sizeof(float)); } static struct llama_sampler_i llama_sampler_dist_i = { /* .name = */ llama_sampler_dist_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_dist_apply, /* .reset = */ llama_sampler_dist_reset, /* .clone = */ llama_sampler_dist_clone, /* .free = */ llama_sampler_dist_free, /* .backend_init = */ llama_sampler_dist_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_dist_backend_apply, /* .backend_set_input = */ llama_sampler_dist_backend_set_input, }; struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { auto seed_cur = get_rng_seed(seed); return llama_sampler_init( /* .iface = */ &llama_sampler_dist_i, /* .ctx = */ new llama_sampler_dist { ("dist"), /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .rng = */ std::mt19937(seed_cur), /* .inp_uniform = */ nullptr, /* .inp_ctx = */ nullptr, /* .inp_buf = */ nullptr, } ); } // top-k struct llama_sampler_top_k : public llama_sampler_backend { const int32_t k; }; static const char * llama_sampler_top_k_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_top_k *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_top_k *) smpl->ctx; llama_sampler_top_k_impl(cur_p, ctx->k); } static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; return llama_sampler_init_top_k(ctx->k); } static void llama_sampler_top_k_free(struct llama_sampler * smpl) { delete (llama_sampler_top_k *) smpl->ctx; } static bool llama_sampler_top_k_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { auto * sctx = (llama_sampler_top_k *) smpl->ctx; bool res = true; // determine backend support { ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead()*8, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ggml_context_ptr ctx_ptr { ggml_init(params) }; if (!ctx_ptr) { throw std::runtime_error(format("failed to create ggml context")); } ggml_context * ctx = ctx_ptr.get(); ggml_tensor * logits = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1024*1024); ggml_tensor * op = ggml_top_k(ctx, logits, sctx->k); auto * device = ggml_backend_buft_get_device(buft); if (device && !ggml_backend_dev_supports_op(device, op)) { res = false; } sctx->init(res); } return res; } static void llama_sampler_top_k_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * sctx = (llama_sampler_top_k *) smpl->ctx; struct ggml_tensor * top_k = ggml_top_k(ctx, data->logits, sctx->k); ggml_set_name(top_k, "top_k"); struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]); struct ggml_tensor * top_k_rows = ggml_get_rows(ctx, logits_rows, top_k); ggml_set_name(top_k_rows, "top_k_rows"); if (data->candidates) { data->candidates = ggml_get_rows(ctx, data->candidates, top_k); } else { data->candidates = top_k; } data->logits = ggml_reshape_1d(ctx, top_k_rows, sctx->k); GGML_UNUSED(gf); } static struct llama_sampler_i llama_sampler_top_k_i = { /* .name = */ llama_sampler_top_k_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_top_k_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_top_k_clone, /* .free = */ llama_sampler_top_k_free, /* .backend_init = */ llama_sampler_top_k_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_top_k_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_top_k(int32_t k) { const bool is_empty = (k <= 0); if (is_empty) { return llama_sampler_init_empty("?top-k"); } return llama_sampler_init( /* .iface = */ &llama_sampler_top_k_i, /* .ctx = */ new llama_sampler_top_k { ("top-k"), /* .k = */ k, } ); } // top-p struct llama_sampler_top_p : public llama_sampler_backend { const float p; const size_t min_keep; std::vector buf_sort; }; static const char * llama_sampler_top_p_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_top_p *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_top_p *) smpl->ctx; if (ctx->p >= 1.0f) { return; } llama_sampler_softmax_impl(cur_p, false); size_t k = cur_p->size; auto * pdata = cur_p->data; auto & buf_sort = ctx->buf_sort; // if not sorted, try adaptive top-k sorting if (!cur_p->sorted && cur_p->size > 1024) { k = std::min(256, cur_p->size); llama_token_data_array_partial_sort(*cur_p, k, buf_sort); pdata = buf_sort.data(); } else if (!cur_p->sorted) { // small candidates -> sort inplace llama_token_data_array_partial_sort_inplace(cur_p, k); } // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = cur_p->size; for (size_t i = 0; i < cur_p->size; ++i) { cum_sum += pdata[i].p; // Check if the running sum is at least p or if we have kept at least min_keep tokens // we set the last index to i+1 to indicate that the current iterate should be included in the set if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) { last_idx = i + 1; break; } // we exceeded the current top-k heuristic -> increase k and continue if (!cur_p->sorted && i == k - 1) { k = cur_p->size; llama_token_data_array_partial_sort(*cur_p, k, buf_sort); pdata = buf_sort.data(); } } // Resize the output vector to keep only the top-p tokens if (!cur_p->sorted) { std::copy(buf_sort.data(), buf_sort.data() + last_idx, cur_p->data); cur_p->sorted = true; } cur_p->size = last_idx; } static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; return llama_sampler_init_top_p(ctx->p, ctx->min_keep); } static void llama_sampler_top_p_free(struct llama_sampler * smpl) { delete (llama_sampler_top_p *) smpl->ctx; } static bool llama_sampler_top_p_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(buft); auto * sctx = (llama_sampler_top_p *) smpl->ctx; sctx->init(true); return true; } static void llama_sampler_top_p_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * sctx = (llama_sampler_top_p *) smpl->ctx; auto ggml_sort = [& ctx](struct ggml_tensor * a, struct ggml_tensor * b) { GGML_ASSERT(ggml_nrows(a) == 1); struct ggml_tensor * a_reshaped = ggml_reshape_2d(ctx, a, 1, a->ne[0]); struct ggml_tensor * a_sorted = ggml_get_rows(ctx, a_reshaped, b); return ggml_reshape_1d(ctx, a_sorted, a->ne[0]); }; // Get the sorted logits in descending order. struct ggml_tensor * sorted_idx = ggml_argsort(ctx, data->logits, GGML_SORT_ORDER_DESC); ggml_set_name(sorted_idx, "top_p_sorted_idx"); // Do the sorting via reshape + get_rows struct ggml_tensor * sorted_logits = ggml_sort(data->logits, sorted_idx); ggml_set_name(sorted_logits, "top_p_sorted_logits"); struct ggml_tensor * softmax = ggml_soft_max(ctx, sorted_logits); ggml_set_name(softmax, "top_p_softmax"); // If candidates are provided, sort them as well. Otherwise, set sorted indices as candidates. if (data->candidates != nullptr) { data->candidates = ggml_sort(data->candidates, sorted_idx); } else { data->candidates = sorted_idx; } ggml_set_name(data->candidates, "top_p_candidates"); // Compute Cumulative Distribution Function (CDF) by means of GGML_OP_CUMSUM. struct ggml_tensor * cdf = ggml_cumsum(ctx, softmax); ggml_set_name(cdf, "top_p_cdf"); // Invert CDF and add top-p value so that ggml_step yields 1 for values we want to keep struct ggml_tensor * cdf_scaled = ggml_scale_bias(ctx, cdf, -1.0f, sctx->p); ggml_set_name(cdf_scaled, "top_p_cdf_scaled"); struct ggml_tensor * mask = ggml_step(ctx, cdf_scaled); ggml_set_name(mask, "top_p_mask"); // Taking the sum of the mask gives us the sum of elements after the threshold // we are interested in. struct ggml_tensor * idxf = ggml_sum(ctx, mask); ggml_set_name(idxf, "dist_index_f32"); // Make top-p inclusive (i.e. return all values such that cum_sum/cdf >= p) struct ggml_tensor * mask_reshaped = ggml_reshape_2d(ctx, mask, 1, mask->ne[0]); // construct ones tensor to set the value in the mask struct ggml_tensor * ones = ggml_dup_tensor(ctx, mask_reshaped); ones = ggml_clamp(ctx, ones, 1.0f, 1.0f); mask_reshaped = ggml_set_rows(ctx, mask_reshaped, ones, ggml_cast(ctx, ggml_repeat(ctx, idxf, mask), GGML_TYPE_I32)); mask = ggml_reshape_1d(ctx, mask_reshaped, mask->ne[0]); // Use ggml_scale_bias (output = (a * s) + b) which in this case becomes: // top_p_bias = (mask * 1e9f) - 1e9f. // So entries in the mask that we want to discard will become -1e9f, and // others will be 0 (meaning that will not effect the logits). const float large_val = 1e9f; struct ggml_tensor * top_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val); ggml_set_name(top_p_bias, "top_p_bias"); data->logits = ggml_add(ctx, sorted_logits, top_p_bias); ggml_set_name(data->logits, "top_p_logits"); GGML_UNUSED(gf); } static struct llama_sampler_i llama_sampler_top_p_i = { /* .name = */ llama_sampler_top_p_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_top_p_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_top_p_clone, /* .free = */ llama_sampler_top_p_free, /* .backend_init = */ llama_sampler_top_p_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_top_p_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { const bool is_empty = p >= 1.0f; if (is_empty) { return llama_sampler_init_empty("?top-p"); } return llama_sampler_init( /* .iface = */ &llama_sampler_top_p_i, /* .ctx = */ new llama_sampler_top_p { ("top-p"), /* .p = */ p, /* .min_keep = */ min_keep, /* .buf_sort = */ {}, } ); } // min-p struct llama_sampler_min_p : public llama_sampler_backend { const float p; const size_t min_keep; }; static const char * llama_sampler_min_p_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_min_p *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_min_p *) smpl->ctx; if (ctx->p <= 0.0f || !cur_p->size) { return; } bool min_p_applied = false; // if the cur_p aren't sorted, try the unsorted implementation first if (!cur_p->sorted) { std::vector filtered_tokens; float max_logit = -FLT_MAX; for (size_t i = 0; i < cur_p->size; ++i) { max_logit = std::max(max_logit, cur_p->data[i].logit); } const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].logit >= min_logit) { filtered_tokens.push_back(cur_p->data[i]); } } // if we have enough values the operation was a success if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) { std::copy(filtered_tokens.begin(), filtered_tokens.end(), cur_p->data); cur_p->size = filtered_tokens.size(); min_p_applied = true; } } // if the cur_p are sorted or the unsorted implementation failed, use this implementation if (!min_p_applied) { // Sort the logits in descending order if (!cur_p->sorted) { llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size); } const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max size_t i = 1; // first token always matches for (; i < cur_p->size; ++i) { if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) { break; // prob too small } } // Resize the output vector to keep only the matching tokens cur_p->size = i; } } static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; return llama_sampler_init_min_p(ctx->p, ctx->min_keep); } static void llama_sampler_min_p_free(struct llama_sampler * smpl) { delete (llama_sampler_min_p *) smpl->ctx; } static bool llama_sampler_min_p_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(buft); auto * sctx = (llama_sampler_min_p *) smpl->ctx; sctx->init(true); return true; } static void llama_sampler_min_p_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * sctx = (llama_sampler_min_p *) smpl->ctx; struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits); ggml_set_name(max_idx, "max_idx"); struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]); ggml_set_name(logits_rows, "logits_rows"); struct ggml_tensor * max_logit = ggml_get_rows(ctx, logits_rows, max_idx); ggml_set_name(max_logit, "max_logit"); // Calculate the threshold value. struct ggml_tensor * threshold = ggml_scale_bias(ctx, max_logit, 1.0f, logf(sctx->p)); ggml_set_name(threshold, "min_p_threshold"); // Subtract the threshold from logits. struct ggml_tensor * sub = ggml_sub(ctx, data->logits, threshold); // Create a mask where logits below the threshold are 0 (discard), // and others are 1 (keep). struct ggml_tensor * mask = ggml_step(ctx, sub); ggml_set_name(mask, "min_p_mask"); // Use ggml_scale_bias (output = (a * s) + b) which in this case becomes: // min_p_bias = (mask * 1e9f) - 1e9f. // So entries in the mask that we want to discard will become -1e9f, and // others will be 0 (meaning that will not effect the logits). const float large_val = 1e9f; struct ggml_tensor * min_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val); ggml_set_name(min_p_bias, "min_p_bias"); // Add the min_p bias to the logits. data->logits = ggml_add(ctx, data->logits, min_p_bias); ggml_set_name(data->logits, "min_p_logits"); GGML_UNUSED(gf); } static struct llama_sampler_i llama_sampler_min_p_i = { /* .name = */ llama_sampler_min_p_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_min_p_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_min_p_clone, /* .free = */ llama_sampler_min_p_free, /* .backend_init = */ llama_sampler_min_p_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_min_p_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { const bool is_empty = (p <= 0.0f); if (is_empty) { return llama_sampler_init_empty("?min-p"); } return llama_sampler_init( /* .iface = */ &llama_sampler_min_p_i, /* .ctx = */ new llama_sampler_min_p { ("min-p"), /* .p = */ p, /* .min_keep = */ min_keep, } ); } // typical struct llama_sampler_typical { const float p; const size_t min_keep; }; static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) { return "typical"; } static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_typical *) smpl->ctx; // Reference implementation: // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr if (ctx->p >= 1.0f) { return; } // Compute the softmax of logits and calculate entropy llama_sampler_softmax_impl(cur_p, true); float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); } // Compute the absolute difference between negative log probability and entropy for each candidate std::vector shifted_scores; for (size_t i = 0; i < cur_p->size; ++i) { float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); shifted_scores.push_back(shifted_score); } // Sort tokens based on the shifted_scores and their corresponding indices std::vector indices(cur_p->size); std::iota(indices.begin(), indices.end(), 0); std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { return shifted_scores[a] < shifted_scores[b]; }); // Compute the cumulative probabilities float cum_sum = 0.0f; size_t last_idx = indices.size(); for (size_t i = 0; i < indices.size(); ++i) { size_t idx = indices[i]; cum_sum += cur_p->data[idx].p; // Check if the running sum is greater than typical or if we have kept at least min_keep tokens if (cum_sum > ctx->p && (ctx->min_keep == 0 || i >= ctx->min_keep - 1)) { last_idx = i + 1; break; } } // Resize the output vector to keep only the locally typical tokens std::vector cur_p_new; for (size_t i = 0; i < last_idx; ++i) { size_t idx = indices[i]; cur_p_new.push_back(cur_p->data[idx]); } // Replace the data in cur_p with the cur_p_new data std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); cur_p->size = cur_p_new.size(); cur_p->sorted = false; } static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_typical *) smpl->ctx; return llama_sampler_init_typical(ctx->p, ctx->min_keep); } static void llama_sampler_typical_free(struct llama_sampler * smpl) { delete (llama_sampler_typical *) smpl->ctx; } static struct llama_sampler_i llama_sampler_typical_i = { /* .name = */ llama_sampler_typical_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_typical_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_typical_clone, /* .free = */ llama_sampler_typical_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { const bool is_empty = (p >= 1.0f); if (is_empty) { return llama_sampler_init_empty("?typical"); } return llama_sampler_init( /* .iface = */ &llama_sampler_typical_i, /* .ctx = */ new llama_sampler_typical { /* .p = */ p, /* .min_keep = */ min_keep, } ); } // temp struct llama_sampler_temp : public llama_sampler_backend { const float temp; }; static const char * llama_sampler_temp_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_temp *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { const auto * ctx = (llama_sampler_temp *) smpl->ctx; llama_sampler_temp_impl(cur_p, ctx->temp); } static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp *) smpl->ctx; return llama_sampler_init_temp(ctx->temp); } static void llama_sampler_temp_free(struct llama_sampler * smpl) { delete (llama_sampler_temp *) smpl->ctx; } static void llama_sampler_backend_temp_sampling( struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data, float temp) { if (temp <= 0.0f) { // Find the most probable token index. struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits); ggml_set_name(max_idx, "temp_max_idx"); if (data->candidates) { data->candidates = ggml_get_rows(ctx, data->candidates, max_idx); } else { data->candidates = max_idx; } struct ggml_tensor * logits = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]); data->logits = ggml_get_rows(ctx, logits, max_idx); return; } struct ggml_tensor * scaled = ggml_scale(ctx, data->logits, 1.0f / temp); ggml_set_name(scaled, "temp_scaled"); // Make sure the scaled tensor is contiguous for subsequent operations data->logits = ggml_cont(ctx, scaled); ggml_set_name(data->logits, "temp_scaled_logits"); GGML_UNUSED(gf); } static bool llama_sampler_temp_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(buft); auto * sctx = (llama_sampler_temp *) smpl->ctx; sctx->init(true); return true; } static void llama_sampler_temp_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * sctx = (llama_sampler_temp *) smpl->ctx; llama_sampler_backend_temp_sampling(ctx, gf, data, sctx->temp); } static struct llama_sampler_i llama_sampler_temp_i = { /* .name = */ llama_sampler_temp_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_temp_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_temp_clone, /* .free = */ llama_sampler_temp_free, /* .backend_init = */ llama_sampler_temp_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_temp_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_temp(float temp) { const bool is_empty = temp == 1.0f; if (is_empty) { return llama_sampler_init_empty("?temp"); } return llama_sampler_init( /* .iface = */ &llama_sampler_temp_i, /* .ctx = */ new llama_sampler_temp { ("temp"), /*.temp = */ temp, } ); } // temp-ext struct llama_sampler_temp_ext : public llama_sampler_backend { const float temp; const float delta; const float exponent; }; static const char * llama_sampler_temp_ext_name(const struct llama_sampler * smpl) { auto * sctx = (llama_sampler_temp_ext *) smpl->ctx; return sctx->get_name(); } static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; if (ctx->delta > 0) { const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); const float max_temp = ctx->temp + ctx->delta; float exponent_val = ctx->exponent; // no need to do anything if there is only one (or zero) candidates if (cur_p->size <= 1) { return; } // Calculate maximum possible entropy float max_entropy = -logf(1.0f / cur_p->size); llama_sampler_softmax_impl(cur_p, true); // Calculate entropy of the softmax probabilities float entropy = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { float prob = cur_p->data[i].p; if (prob > 0.0f) { // Ensure no log(0) entropy -= prob * logf(prob); } } // Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above) float normalized_entropy = entropy / max_entropy; // Map the normalized entropy to the desired temperature range using the power function float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); #ifdef DEBUG LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); LLAMA_LOG_INFO("Entropy: %f\n", entropy); LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); #endif // Apply the dynamically calculated temperature scaling llama_sampler_temp_impl(cur_p, dyn_temp); // Re-compute softmax probabilities after scaling logits with dynamic temperature const double max_l_double = cur_p->data[0].logit; double cum_sum_double = 0.0; for (size_t i = 0; i < cur_p->size; ++i) { double p = exp(cur_p->data[i].logit - max_l_double); cur_p->data[i].p = p; // Store the scaled probability cum_sum_double += p; } for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities } #ifdef DEBUG // Print the updated top 25 probabilities after temperature scaling LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); } #endif } else { llama_sampler_temp_impl(cur_p, ctx->temp); } } static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); } static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) { delete (llama_sampler_temp_ext *) smpl->ctx; } static bool llama_sampler_temp_ext_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { GGML_UNUSED(buft); auto * sctx = (llama_sampler_temp_ext *) smpl->ctx; sctx->init(true); return true; } static void llama_sampler_temp_ext_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { auto * sctx = (llama_sampler_temp_ext *) smpl->ctx; // Revert to standard temperature scaling if delta or temp are non-positive. if (sctx->delta <= 0.0f || sctx->temp <= 0.0f) { llama_sampler_backend_temp_sampling(ctx, gf, data, sctx->temp); return; } // Calculate min_temp, max_temp, and max_entropy. const float min_temp = std::max(0.0f, sctx->temp - sctx->delta); const float max_temp = sctx->temp + sctx->delta; const float max_entropy = logf(data->logits->ne[0]); // Calculate the probabilities. struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits); ggml_set_name(probs, "temp_ext_softmax_probs"); // Clamp probabilities to avoid log(0) which would give -inf struct ggml_tensor * probs_clamped = ggml_clamp(ctx, probs, 1e-10f, 1.0f); ggml_set_name(probs_clamped, "temp_ext_probs_clamped"); // Calculate the entropy, entropy = -Σ(p * log(p)). struct ggml_tensor * log_probs = ggml_log(ctx, probs_clamped); struct ggml_tensor * p_log_p = ggml_mul(ctx, probs_clamped, log_probs); struct ggml_tensor * sum_p_log_p = ggml_sum(ctx, p_log_p); struct ggml_tensor * entropy = ggml_scale(ctx, sum_p_log_p, -1.0f); ggml_set_name(log_probs, "temp_ext_log_probs"); ggml_set_name(p_log_p, "temp_ext_p_log_p"); ggml_set_name(sum_p_log_p, "temp_ext_sum_p_log_p"); ggml_set_name(entropy, "temp_ext_entropy"); // Normalize the entropy, norm_entropy = entropy / max_entropy struct ggml_tensor * norm_entropy = ggml_scale(ctx, entropy, 1.0f / max_entropy); ggml_set_name(norm_entropy, "temp_ext_norm_entropy"); // Calculate the dynamic temperature: // dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent); // // Calculate powf(normalized_entropy, exponent) as // norm_entropy^exponent = exp(exponent * log(norm_entropy)) struct ggml_tensor * log_norm_entropy = ggml_log(ctx, norm_entropy); struct ggml_tensor * scaled_log = ggml_scale(ctx, log_norm_entropy, sctx->exponent); struct ggml_tensor * pow_entropy = ggml_exp(ctx, scaled_log); // With pow_entropy computed we can now compute dyn_temp, scaling by // (max_temp - min_temp) and then adding min_temp. struct ggml_tensor * dyn_temp = ggml_scale_bias(ctx, pow_entropy, max_temp - min_temp, min_temp); ggml_set_name(log_norm_entropy, "temp_ext_log_norm_entropy"); ggml_set_name(scaled_log, "temp_ext_scaled_log"); ggml_set_name(pow_entropy, "temp_ext_pow_entropy"); ggml_set_name(dyn_temp, "temp_ext_dyn_temp"); // Scale the logits by the dynamic temperature struct ggml_tensor * scaled_logits = ggml_div(ctx, data->logits, dyn_temp); ggml_set_name(scaled_logits, "temp_ext_scaled_logits"); data->logits = scaled_logits; } static struct llama_sampler_i llama_sampler_temp_ext_i = { /* .name = */ llama_sampler_temp_ext_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_temp_ext_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_temp_ext_clone, /* .free = */ llama_sampler_temp_ext_free, /* .backend_init = */ llama_sampler_temp_ext_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_temp_ext_backend_apply, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { const bool is_empty = temp == 1.0f && delta <= 0.0f; if (is_empty) { return llama_sampler_init_empty("?temp-ext"); } auto * res = llama_sampler_init( /* .iface = */ &llama_sampler_temp_ext_i, /* .ctx = */ new llama_sampler_temp_ext { ("temp-ext"), /* .temp = */ temp, /* .delta = */ delta, /* .exponent = */ exponent, } ); return res; } // xtc struct llama_sampler_xtc { const float probability; const float threshold; const size_t min_keep; const uint32_t seed; uint32_t seed_cur; std::mt19937 rng; }; static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) { return "xtc"; } static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_xtc *) smpl->ctx; if (ctx->probability <= 0.0f || ctx->threshold > 0.5f || cur_p->size < 2) { return; } std::uniform_real_distribution distribution(0.0f, 1.0f); float chance = distribution(ctx->rng); if (chance > ctx->probability) { return; } llama_sampler_softmax_impl(cur_p, true); int pos_last = 0; for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].p >= ctx->threshold) { pos_last = i; } else { break; } } if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { cur_p->data += pos_last; cur_p->size -= pos_last; } } static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed); // copy the state { auto * result_ctx = (llama_sampler_xtc *) result->ctx; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_xtc_free(struct llama_sampler * smpl) { delete (llama_sampler_xtc *) smpl->ctx; } static void llama_sampler_xtc_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_xtc *) smpl->ctx; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static struct llama_sampler_i llama_sampler_xtc_i = { /* .name = */ llama_sampler_xtc_name, /* .accept = */ nullptr, /* .apply = */ llama_sample_xtc_apply, /* .reset = */ llama_sampler_xtc_reset, /* .clone = */ llama_sampler_xtc_clone, /* .free = */ llama_sampler_xtc_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) { const bool is_empty = (p <= 0.0f || t > 0.5f); if (is_empty) { return llama_sampler_init_empty("?xtc"); } const auto seed_cur = get_rng_seed(seed); return llama_sampler_init( /* .iface = */ &llama_sampler_xtc_i, /* .ctx = */ new llama_sampler_xtc { /* .probability = */ p, /* .threshold = */ t, /* .min_keep = */ min_keep, /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .rng = */ std::mt19937(seed_cur), } ); } // mirostat struct llama_sampler_mirostat { const int32_t n_vocab; const uint32_t seed; uint32_t seed_cur; const float tau; const float eta; const int32_t m; float mu; std::mt19937 rng; }; static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) { return "mirostat"; } static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; llama_sampler_softmax_impl(cur_p, true); // Estimate s_hat using the most probable m tokens float s_hat = 0.0; float sum_ti_bi = 0.0; float sum_ti_sq = 0.0; for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { float t_i = logf(float(i + 2) / float(i + 1)); float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); sum_ti_bi += t_i * b_i; sum_ti_sq += t_i * t_i; } s_hat = sum_ti_bi / sum_ti_sq; // Compute k from the estimated s_hat and target surprise value float epsilon_hat = s_hat - 1; float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); llama_sampler_softmax_impl(cur_p, true); const int idx = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; } static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); // copy the state { auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static void llama_sampler_mirostat_free(struct llama_sampler * smpl) { delete (llama_sampler_mirostat *) smpl->ctx; } static struct llama_sampler_i llama_sampler_mirostat_i = { /* .name = */ llama_sampler_mirostat_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_mirostat_apply, /* .reset = */ llama_sampler_mirostat_reset, /* .clone = */ llama_sampler_mirostat_clone, /* .free = */ llama_sampler_mirostat_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { const auto seed_cur = get_rng_seed(seed); return llama_sampler_init( /* .iface = */ &llama_sampler_mirostat_i, /* .ctx = */ new llama_sampler_mirostat { /* .n_vocab = */ n_vocab, /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .tau = */ tau, /* .eta = */ eta, /* .m = */ m, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed_cur), } ); } // mirostat v2 struct llama_sampler_mirostat_v2 { const uint32_t seed; uint32_t seed_cur; const float tau; const float eta; float mu; std::mt19937 rng; }; static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) { return "mirostat-v2"; } static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; llama_sampler_softmax_impl(cur_p, true); // Truncate the words with surprise values greater than mu cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { return -log2f(candidate.p) > ctx->mu; })); if (cur_p->size == 0) { cur_p->size = 1; } // Normalize the probabilities of the remaining words llama_sampler_softmax_impl(cur_p, true); const int idx = llama_sample_dist(cur_p, ctx->rng); cur_p->selected = idx; float observed_surprise = -log2f(cur_p->data[idx].p); float e = observed_surprise - ctx->tau; // Update mu using the learning rate and error ctx->mu = ctx->mu - ctx->eta * e; } static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; ctx->mu = 2.0f*ctx->tau; ctx->seed_cur = get_rng_seed(ctx->seed); ctx->rng.seed(ctx->seed_cur); } static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); // copy the state { auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; result_ctx->mu = ctx->mu; result_ctx->rng = ctx->rng; } return result; } static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) { delete (llama_sampler_mirostat_v2 *) smpl->ctx; } static struct llama_sampler_i llama_sampler_mirostat_v2_i = { /* .name = */ llama_sampler_mirostat_v2_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_mirostat_v2_apply, /* .reset = */ llama_sampler_mirostat_v2_reset, /* .clone = */ llama_sampler_mirostat_v2_clone, /* .free = */ llama_sampler_mirostat_v2_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { auto seed_cur = get_rng_seed(seed); return llama_sampler_init( /* .iface = */ &llama_sampler_mirostat_v2_i, /* .ctx = */ new llama_sampler_mirostat_v2 { /* .seed = */ seed, /* .seed_cur = */ seed_cur, /* .tau = */ tau, /* .eta = */ eta, /* .mu = */ 2.0f*tau, /* .rng = */ std::mt19937(seed_cur), } ); } // grammar struct llama_sampler_grammar { const struct llama_vocab * vocab; std::string grammar_str; std::string grammar_root; struct llama_grammar * grammar; }; static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) { return "grammar"; } static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_accept_impl(*ctx->grammar, token); } } static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_apply_impl(*ctx->grammar, cur_p); } } // Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle. static struct llama_sampler * llama_sampler_init_grammar_impl( const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root, bool lazy, const char ** trigger_words, size_t num_trigger_words, const llama_token * trigger_tokens, size_t num_trigger_tokens, const char ** trigger_patterns, size_t num_trigger_patterns); static void llama_sampler_grammar_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (!ctx->grammar) { return; } std::vector trigger_patterns_c; trigger_patterns_c.reserve(ctx->grammar->trigger_patterns.size()); for (auto & trigger_pattern : ctx->grammar->trigger_patterns) { trigger_patterns_c.push_back(trigger_pattern.pattern.c_str()); } auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(), ctx->grammar->lazy, trigger_patterns_c.data(), trigger_patterns_c.size(), ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size()); llama_grammar_free_impl(ctx->grammar); ctx->grammar = grammar_new; } static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0, nullptr, 0); GGML_ASSERT(result); // copy the state { auto * result_ctx = (llama_sampler_grammar *) result->ctx; if (ctx->grammar) { result_ctx->grammar_str = ctx->grammar_str; result_ctx->grammar_root = ctx->grammar_root; result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); } } return result; } static void llama_sampler_grammar_free(struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_grammar *) smpl->ctx; if (ctx->grammar) { llama_grammar_free_impl(ctx->grammar); } delete ctx; } static struct llama_sampler_i llama_sampler_grammar_i = { /* .name = */ llama_sampler_grammar_name, /* .accept = */ llama_sampler_grammar_accept_impl, /* .apply = */ llama_sampler_grammar_apply, /* .reset = */ llama_sampler_grammar_reset, /* .clone = */ llama_sampler_grammar_clone, /* .free = */ llama_sampler_grammar_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; static struct llama_sampler * llama_sampler_init_grammar_impl( const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root, bool lazy, const char ** trigger_words, size_t num_trigger_words, const llama_token * trigger_tokens, size_t num_trigger_tokens, const char ** trigger_patterns, size_t num_trigger_patterns) { auto * ctx = new llama_sampler_grammar; if (grammar_str != nullptr && grammar_str[0] != '\0') { std::string trigger_pattern; llama_grammar * grammar = nullptr; // TODO: remove trigger_words support. if (trigger_words != nullptr && num_trigger_words > 0) { GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0); trigger_pattern = "[\\s\\S]*?("; for (size_t i = 0; i < num_trigger_words; ++i) { static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]"); if (i > 0) { trigger_pattern += "|"; } trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0"); } trigger_pattern += ")[\\s\\S]*"; std::array tmp_trigger_patterns = { trigger_pattern.c_str() }; grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, tmp_trigger_patterns.data(), tmp_trigger_patterns.size(), trigger_tokens, num_trigger_tokens); } else { grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens); } *ctx = { /* .vocab = */ vocab, /* .grammar_str = */ grammar_str, /* .grammar_root = */ grammar_root, /* .grammar = */ grammar, }; if (!ctx->grammar) { delete ctx; return nullptr; } } else { *ctx = { /* .vocab = */ vocab, /* .grammar_str = */ {}, /* .grammar_root = */ {}, /* .grammar = */ nullptr, }; } return llama_sampler_init( /* .iface = */ &llama_sampler_grammar_i, /* .ctx = */ ctx ); } struct llama_sampler * llama_sampler_init_grammar( const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root) { return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0, nullptr, 0); } struct llama_sampler * llama_sampler_init_grammar_lazy( const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root, const char ** trigger_words, size_t num_trigger_words, const llama_token * trigger_tokens, size_t num_trigger_tokens) { return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens, nullptr, 0); } struct llama_sampler * llama_sampler_init_grammar_lazy_patterns( const struct llama_vocab * vocab, const char * grammar_str, const char * grammar_root, const char ** trigger_patterns, size_t num_trigger_patterns, const llama_token * trigger_tokens, size_t num_trigger_tokens) { return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, nullptr, 0, trigger_tokens, num_trigger_tokens, trigger_patterns, num_trigger_patterns); } // penalties struct llama_sampler_penalties { const int32_t penalty_last_n; const float penalty_repeat; const float penalty_freq; const float penalty_present; ring_buffer prev; // a frequency map to count token occurrences std::unordered_map token_count; }; static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) { return "penalties"; } static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if (ctx->penalty_last_n == 0) { return; } ctx->token_count[token]++; // if the ring buffer is full, remove the oldest token if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) { const auto old = ctx->prev.front(); ctx->token_count[old]--; if (ctx->token_count[old] == 0) { ctx->token_count.erase(old); } } ctx->prev.push_back(token); #if 0 // sanity check std::unordered_map tmp; for (int i = 0; i < std::min(ctx->penalty_last_n, ctx->prev.size()); ++i) { tmp[ctx->prev.rat(i)]++; } assert(ctx->token_count == tmp); #endif } static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; if ((ctx->penalty_last_n == 0) || (ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { return; } // Apply frequency and presence penalties to the cur_p for (size_t i = 0; i < cur_p->size; ++i) { const auto token_iter = ctx->token_count.find(cur_p->data[i].id); if (token_iter == ctx->token_count.end()) { continue; } const int count = token_iter->second; assert(count > 0 && count <= ctx->penalty_last_n); // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. // This is common fix for this problem, which is to multiply by the penalty instead of dividing. if (cur_p->data[i].logit <= 0) { cur_p->data[i].logit *= ctx->penalty_repeat; } else { cur_p->data[i].logit /= ctx->penalty_repeat; } cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present; } cur_p->sorted = false; } static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_penalties *) smpl->ctx; ctx->prev.clear(); ctx->token_count.clear(); } static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; auto * result = llama_sampler_init_penalties( ctx->penalty_last_n, ctx->penalty_repeat, ctx->penalty_freq, ctx->penalty_present); // copy the state { auto * result_ctx = (llama_sampler_penalties *) result->ctx; result_ctx->prev = ctx->prev; } return result; } static void llama_sampler_penalties_free(struct llama_sampler * smpl) { delete (llama_sampler_penalties *) smpl->ctx; } static struct llama_sampler_i llama_sampler_penalties_i = { /* .name = */ llama_sampler_penalties_name, /* .accept = */ llama_sampler_penalties_accept, /* .apply = */ llama_sampler_penalties_apply, /* .reset = */ llama_sampler_penalties_reset, /* .clone = */ llama_sampler_penalties_clone, /* .free = */ llama_sampler_penalties_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_penalties( int32_t penalty_last_n, float penalty_repeat, float penalty_freq, float penalty_present) { penalty_last_n = std::max(penalty_last_n, 0); const bool is_empty = (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)); if (is_empty) { return llama_sampler_init_empty("?penalties"); } return llama_sampler_init( /* .iface = */ &llama_sampler_penalties_i, /* .ctx = */ new llama_sampler_penalties { /* .penalty_last_n = */ penalty_last_n, /* .penalty_repeat = */ penalty_repeat, /* .penalty_freq = */ penalty_freq, /* .penalty_present = */ penalty_present, /* .prev = */ ring_buffer(penalty_last_n), /* .token_count = */ {}, } ); } // top-n-sigma struct llama_sampler_top_n_sigma { const float n; }; static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) { return "top-n-sigma"; } static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; if (ctx->n <= 0.0f || cur_p->size <= 1) { return; } // find max logit and calculate mean float max = cur_p->data[0].logit; float logits_sum = 0; size_t valid_count = 0; for (size_t i = 0; i < cur_p->size; ++i) { // Only count non-negative infinity values if (cur_p->data[i].logit != -INFINITY) { max = std::max(max, cur_p->data[i].logit); logits_sum += cur_p->data[i].logit; valid_count++; } } float mean = valid_count > 0 ? logits_sum/valid_count : 0; // calculate standard deviation float acc = 0; for (size_t i = 0; i < cur_p->size; ++i) { // Skip -infinity in std calculation if (cur_p->data[i].logit != -INFINITY) { acc += pow(cur_p->data[i].logit - mean, 2); } } float std = valid_count > 0 ? sqrt(acc/valid_count) : 0; // apply mask for (size_t i = 0; i < cur_p->size; ++i) { if (cur_p->data[i].logit < max - (ctx->n * std)) { cur_p->data[i].logit = -INFINITY; } } llama_sampler_softmax_impl(cur_p, true); } static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx; return llama_sampler_init_top_n_sigma(ctx->n); } static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) { delete (llama_sampler_top_n_sigma *) smpl->ctx; } static struct llama_sampler_i llama_sampler_top_n_sigma_i = { /* .name = */ llama_sampler_top_n_sigma_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_top_n_sigma_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_top_n_sigma_clone, /* .free = */ llama_sampler_top_n_sigma_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_top_n_sigma(float n) { const bool is_empty = (n <= 0.0f); if (is_empty) { return llama_sampler_init_empty("?top-n-sigma"); } return llama_sampler_init( /* .iface = */ &llama_sampler_top_n_sigma_i, /* .ctx = */ new llama_sampler_top_n_sigma { /* .n = */ n, } ); } // DRY struct llama_sampler_dry { int32_t total_context_size; const float dry_multiplier; const float dry_base; const int32_t dry_allowed_length; const int32_t dry_penalty_last_n; std::unordered_multimap> dry_processed_breakers; std::vector dry_repeat_count; std::unordered_map dry_max_token_repeat; ring_buffer last_tokens; }; // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap>& token_sequences, int max_tail_len = -1) { for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) { std::string word = vocab.detokenize({token_id}, true); if (word.find(str) != std::string::npos) { token_sequences.emplace(token_id, std::vector()); } else { size_t word_len = word.size(); size_t str_len = str.size(); size_t pos = -1; while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { bool match = true; size_t i; for (i = 1; i < str_len && i + pos < word_len; ++i) { if (word[pos + i] != str[i]) { match = false; break; } } if (match) { std::vector tokenization = vocab.tokenize(str.substr(i), false, false); if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { tokenization.resize(max_tail_len); } // Ensure we don't already have a duplicate matching tokenization auto its = token_sequences.equal_range(token_id); bool found = false; for (auto it = its.first; it != its.second; ++it) { if (tokenization == it->second) { found = true; break; } } if (!found) { token_sequences.emplace(token_id, tokenization); } } } } } } static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) { return "dry"; } static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) { auto * ctx = (llama_sampler_dry *) smpl->ctx; if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { return; } ctx->last_tokens.push_back(token); } // Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am) static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_dry *) smpl->ctx; if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { return; } int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0); int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size); if (last_n_repeat <= ctx->dry_allowed_length) { return; } ctx->dry_repeat_count.assign(last_n_repeat, 0); ctx->dry_max_token_repeat.clear(); // Step 1: Look for restart sequences to limit the maximum repetition length. // Work backwards through the context looking for any token that begins a restart sequence. // // The collection `restart_sequences` is a mapping from a "head" token to all "tail" // sequences that together comprise a restart sequence. This allows us to quickly check // whether each token is the head of a complete sequence. Most restart sequences are actually // a single token, and for these the "tail" is an empty vector. // // If the token is a "head", test all restart sequences that begin with this token // (there will often only be one sequence for each token, but if sequences like 'aaaq1' and // 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The // longest matching sequence (if any) is used to limit the maximum repetition length. // // Note that in the case case of a short sequence contained in a longer one, this might fail to // find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as // restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress // 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare. // // This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we // have already clamped the maximum tail sequence length when generating `restart_sequences`. // With clamping, this scan is O(N) in the context length. int rep_limit = last_n_repeat; for (int i = 0; i < last_n_repeat; ++i) { llama_token token = ctx->last_tokens.rat(i); auto its = ctx->dry_processed_breakers.equal_range(token); if (its.first == ctx->dry_processed_breakers.end()) { continue; } int longest_match = -1; for (auto it = its.first; it != its.second; ++it) { // Note that (*it) does not contain the head character, so seq_len will be // the restart sequence length minus 1. // In the common case of a single-token restart sequence, (*it) will be empty // and we will trivially match. int seq_len = (int)it->second.size(); if (seq_len > longest_match && seq_len <= (int)i) { bool match = true; for (int offset = 0; offset < seq_len; ++offset) { // The -1 when indexing `last_tokens` is because we already matched the head. if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) { match = false; break; } } if (match) { longest_match = seq_len; } } } if (longest_match >= 0) { // We found a restart sequence starting `i` tokens from the end and continuing for // `longest_match` tokens. rep_limit = i - longest_match; break; } } if (rep_limit < ctx->dry_allowed_length) { return; } // Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in // the reverse direction) to efficiently compute the positions and lengths of suffixes appearing // elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences. // // This algorithm is not currently documented on Wikipedia, but there is a clear description here: // https://ivanyu.me/blog/2014/10/15/z-algorithm/ // // The code below is adapted from the public domain implementation by the same author here: // https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py // // Example: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // ^ // This `3` means that the last three tokens of the context (a b c) also appear here. // // This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested // for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each // repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables // ensure that the inner while loops only examine each token in the context once as the outer // for loop iterates over the context. { const int last = last_n_repeat - 1; int rt = 0; int lt = 0; for (int k = 1; k < last_n_repeat; ++k) { if (k > rt) { // If k is outside the current Z-box, do naive computation. int n = 0; while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) { ++n; } ctx->dry_repeat_count[last - k] = std::min(n, rep_limit); if (n > 0) { lt = k; rt = k + n - 1; } } else { // If k is inside the current Z-box, consider two cases. int p = k - lt; // Pair index. int right_part_len = rt - k + 1; if (ctx->dry_repeat_count[last - p] < right_part_len) { int n = std::min(ctx->dry_repeat_count[last - p], rep_limit); ctx->dry_repeat_count[last - k] = n; } else { int i = rt + 1; while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) { i += 1; } int n = std::min(i - k, rep_limit); ctx->dry_repeat_count[last - k] = n; lt = k; rt = i - 1; } } } } // Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length // that would be generated by emitting each new token that would extend a sequence. // // Following the same example as above: // Last N tokens: a b c c b c y a b c // Repeat counts: 0 0 3 1 0 2 0 0 0 0 // // For each non-zero, look ahead one token. This token, if emitted, would extend the repetition. // c: 3 -> 4 (from `a b c` to `a b c c`) // b: 1 -> 2 (from `c` to `c b`) // y: 2 -> 3 (from `b c` to `b c y`) for (int i = 0; i < last_n_repeat - 1; ++i) { int repeat_len = ctx->dry_repeat_count[i]; if (repeat_len >= ctx->dry_allowed_length) { // This token ends a repeat, so the next token would continue one. // By convention, the value of `repeat_len` only includes the tokens currently // in the context, not the new token that would be added. llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i); // Track the maximum sequence ending in this token. const auto& it = ctx->dry_max_token_repeat.find(token); if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) { ctx->dry_max_token_repeat[token] = repeat_len; } } } // Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens. // Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`. // Compute it from `penalty_base` and the approximate log of `std::numeric_limits::max()` const float FLOAT_MAX_LOG = 88.7228391f; int max_exponent = 0; if (ctx->dry_base > 1.000001f) { max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base); } for (size_t i = 0; i < cur_p->size; ++i) { const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id); if (af_kvp != ctx->dry_max_token_repeat.end()) { // Check all sequence breakers starting with this token auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id); bool is_single_token_breaker = false; for (auto it = range.first; it != range.second; ++it) { if (it->second.empty()) { is_single_token_breaker = true; break; } } // Apply penalty only if it's not a single-token sequence breaker if (!is_single_token_breaker) { int repeat_exp = af_kvp->second - ctx->dry_allowed_length; if (max_exponent > 0 && repeat_exp > max_exponent) { repeat_exp = max_exponent; } float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp); cur_p->data[i].logit -= penalty; } } } cur_p->sorted = false; } static void llama_sampler_dry_reset(struct llama_sampler * smpl) { auto * ctx = (llama_sampler_dry *) smpl->ctx; ctx->last_tokens.clear(); ctx->dry_repeat_count.clear(); ctx->dry_max_token_repeat.clear(); } static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { const auto * ctx = (llama_sampler_dry *) smpl->ctx; llama_vocab dummy_vocab; // dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); // Copy the state, including the processed breakers { auto * result_ctx = (llama_sampler_dry *) result->ctx; result_ctx->dry_processed_breakers = ctx->dry_processed_breakers; result_ctx->dry_repeat_count = ctx->dry_repeat_count; result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat; result_ctx->last_tokens = ctx->last_tokens; } return result; } static void llama_sampler_dry_free(struct llama_sampler * smpl) { delete (llama_sampler_dry *) smpl->ctx; } static struct llama_sampler_i llama_sampler_dry_i = { /* .name = */ llama_sampler_dry_name, /* .accept = */ llama_sampler_dry_accept, /* .apply = */ llama_sampler_dry_apply, /* .reset = */ llama_sampler_dry_reset, /* .clone = */ llama_sampler_dry_clone, /* .free = */ llama_sampler_dry_free, /* .backend_init = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_apply = */ nullptr, /* .backend_set_input = */ nullptr, }; struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t n_ctx_train, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? n_ctx_train : std::max(dry_penalty_last_n, 0); std::unordered_multimap> processed_breakers; const int MAX_CHAR_LEN = 40; const int MAX_SEQ_LEN = 20; const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); if (!dry_enabled) { return llama_sampler_init_empty("?dry"); } if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { // Process sequence breakers for (size_t i = 0; i < num_breakers; ++i) { if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); continue; } std::string sequence_break(seq_breakers[i]); if (sequence_break.empty()) { LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); continue; } if (sequence_break.size() > MAX_CHAR_LEN) { LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); sequence_break.resize(MAX_CHAR_LEN); } get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); } } return llama_sampler_init( /* .iface = */ &llama_sampler_dry_i, /* .ctx = */ new llama_sampler_dry { /* .total_context_size = */ n_ctx_train, /* .dry_multiplier = */ dry_multiplier, /* .dry_base = */ dry_base, /* .dry_allowed_length = */ dry_allowed_length, /* .dry_penalty_last_n = */ dry_penalty_last_n, /* .dry_processed_breakers = */ std::move(processed_breakers), /* .dry_repeat_count = */ dry_enabled ? std::vector(effective_dry_penalty_last_n, 0) : std::vector{}, /* .dry_max_token_repeat = */ {}, /* .last_tokens = */ dry_enabled ? ring_buffer(effective_dry_penalty_last_n) : ring_buffer(0), } ); } // wrapper for test-sampling.cpp struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector>& seq_breakers) { llama_vocab dummy_vocab; auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0); auto * ctx = (llama_sampler_dry *) result->ctx; // Process the token-based sequence breakers ctx->dry_processed_breakers.clear(); if (seq_breakers.empty()) { LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n"); } else { for (const auto& breaker : seq_breakers) { if (breaker.empty()) { LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n"); continue; } llama_token head_token = breaker[0]; std::vector tail_tokens(breaker.begin() + 1, breaker.end()); ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens)); } if (ctx->dry_processed_breakers.empty()) { LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n"); } } return result; } // logit-bias struct llama_sampler_logit_bias : public llama_sampler_backend { const int32_t n_vocab; const std::vector logit_bias; std::vector to_search; struct ggml_tensor * inp_logit_bias; ggml_context_ptr inp_ctx; ggml_backend_buffer_ptr inp_buf; }; static const char * llama_sampler_logit_bias_name(const struct llama_sampler * smpl) { auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; return ctx->get_name(); } static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; if (ctx->logit_bias.empty()) { return; } ctx->to_search.clear(); // update the candidates that have not been shuffled in the vocabulary (i.e. idx == id) for (const auto & lb : ctx->logit_bias) { if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { cur_p->data[lb.token].logit += lb.bias; } else { ctx->to_search.push_back(lb); } } if (ctx->to_search.empty()) { return; } // search for the remaining candidates that were not found in the previous step for (size_t i = 0; i < cur_p->size; ++i) { for (const auto & lb : ctx->to_search) { if (cur_p->data[i].id == lb.token) { cur_p->data[i].logit += lb.bias; break; } } } } static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); } static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) { delete (llama_sampler_logit_bias *) smpl->ctx; } static void llama_sampler_logit_bias_backend_apply( struct llama_sampler * smpl, struct ggml_context * ctx, struct ggml_cgraph * gf, struct llama_sampler_data * data) { GGML_UNUSED(gf); GGML_UNUSED(ctx); auto * sctx = (llama_sampler_logit_bias *) smpl->ctx; if (sctx->logit_bias.empty()) { return; } // Add the sparse logit logit_bias to the logits struct ggml_tensor * logit_biased = ggml_add_inplace(ctx, data->logits, sctx->inp_logit_bias); data->logits = logit_biased; } static void llama_sampler_logit_bias_backend_set_input(struct llama_sampler * smpl) { auto * sctx = (llama_sampler_logit_bias *) smpl->ctx; if (sctx->logit_bias.empty()) { return; } GGML_ASSERT(sctx->inp_logit_bias != nullptr); // Create a sparse logit_bias vector from the logit_bias entries. std::vector logit_bias_sparse(sctx->n_vocab, 0.0f); for (const auto & lb : sctx->logit_bias) { GGML_ASSERT(lb.token >= 0 && lb.token < (int32_t) sctx->n_vocab); logit_bias_sparse[lb.token] = lb.bias; } ggml_backend_tensor_set(sctx->inp_logit_bias, logit_bias_sparse.data(), 0, ggml_nbytes(sctx->inp_logit_bias)); } static bool llama_sampler_logit_bias_backend_init( struct llama_sampler * smpl, ggml_backend_buffer_type_t buft) { auto * sctx = (llama_sampler_logit_bias *) smpl->ctx; sctx->init(true); if (sctx->logit_bias.empty()) { return true; } ggml_init_params params = { /*.mem_size =*/ ggml_tensor_overhead(), /*.mem_buffer =*/ nullptr, /*.no_alloc =*/ true, }; sctx->inp_ctx.reset(ggml_init(params)); sctx->inp_logit_bias = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, sctx->n_vocab); ggml_set_name(sctx->inp_logit_bias, "logit_bias"); ggml_set_input(sctx->inp_logit_bias); // Allocate all tensors from our context to the backend sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft)); return true; } static struct llama_sampler_i llama_sampler_logit_bias_i = { /* .name = */ llama_sampler_logit_bias_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_logit_bias_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_logit_bias_clone, /* .free = */ llama_sampler_logit_bias_free, /* .backend_init = */ llama_sampler_logit_bias_backend_init, /* .backend_accept = */ nullptr, /* .backend_apply = */ llama_sampler_logit_bias_backend_apply, /* .backend_set_input = */ llama_sampler_logit_bias_backend_set_input, }; struct llama_sampler * llama_sampler_init_logit_bias( int32_t n_vocab, int32_t n_logit_bias, const llama_logit_bias * logit_bias) { const bool is_empty = n_logit_bias <= 0; if (is_empty) { return llama_sampler_init_empty("?logit-bias"); } return llama_sampler_init( /* .iface = */ &llama_sampler_logit_bias_i, /* .ctx = */ new llama_sampler_logit_bias { ("logit-bias"), /* .n_vocab = */ n_vocab, /* .logit_bias = */ std::vector(logit_bias, logit_bias + n_logit_bias), /* .to_search = */ {}, /* .inp_logit_bias = */ nullptr, /* .inp_ctx = */ nullptr, /* .inp_buf = */ nullptr, } ); } // infill //#define GGML_DEBUG_SAMPLER_INFILL struct llama_sampler_infill { const struct llama_vocab * vocab; std::vector buf0; std::vector buf1; }; static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) { return "infill"; } static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { auto * ctx = (llama_sampler_infill *) smpl->ctx; llama_sampler_softmax_impl(cur_p, true); #if defined(GGML_DEBUG_SAMPLER_INFILL) #define LOG_DBG_CUR LLAMA_LOG_DEBUG #else #define LOG_DBG_CUR(...) #endif for (size_t i = 0; i < cur_p->size; ++i) { LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } float p_txt_sum = 0.0f; float p_eog_sum = 0.0f; for (size_t i = 0; i < cur_p->size; ++i) { if (ctx->vocab->is_eog(cur_p->data[i].id)) { p_eog_sum += cur_p->data[i].p; } else { p_txt_sum += cur_p->data[i].p; } } const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat); LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size); if (3*p_eog_sum*cur_p->size > p_txt_sum) { LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum); // keep just the EOG tokens const auto size_org = cur_p->size; cur_p->size = 0; float p_sum = 0.0f; for (size_t i = 0; i < size_org; ++i) { if (ctx->vocab->is_eog(cur_p->data[i].id)) { p_sum += cur_p->data[i].p; cur_p->data[cur_p->size++] = cur_p->data[i]; } } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; } return; } size_t n_combined = 0; GGML_UNUSED(n_combined); // combine tokens with common prefix for (size_t i0 = 0; i0 < cur_p->size; ++i0) { for (size_t i1 = 0; i1 < cur_p->size; ++i1) { if (cur_p->data[i0].logit == -INFINITY) { break; } if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) { continue; } int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); if (len0 < 0) { ctx->buf0.resize(len0); len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); assert(len0 > 0); } int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); if (len1 < 0) { ctx->buf1.resize(len1); len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); assert(len1 > 0); } // token i0 is a prefix of token i1 if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) { int dst = i0; int src = i1; // merge into the token with higher probability if (cur_p->data[i1].p > cur_p->data[i0].p) { std::swap(dst, src); } cur_p->data[dst].p += cur_p->data[src].p; cur_p->data[src].logit = -INFINITY; cur_p->data[src].p = 0.0f; n_combined++; } } } size_t n_non_eog = 0; size_t size_org = cur_p->size; float p_sum = 0.0f; float thold = 0.2f; cur_p->size = 0; LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold); for (size_t i = 0; i < size_org; ++i) { const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); if (cur_p->data[i].p < thold && !is_eog) { continue; } if (!is_eog) { ++n_non_eog; } p_sum += cur_p->data[i].p; // keep this token cur_p->data[cur_p->size++] = cur_p->data[i]; } LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog); // if no non-EOG tokens are left -> reduce cur_p to single EOT token if (n_non_eog == 0) { cur_p->size = 1; cur_p->data[0].id = ctx->vocab->token_eot(); if (cur_p->data[0].id == LLAMA_TOKEN_NULL) { cur_p->data[0].id = ctx->vocab->token_eos(); } cur_p->data[0].logit = 1.0f; GGML_ASSERT(cur_p->data[0].id != LLAMA_TOKEN_NULL); return; } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } size_org = cur_p->size; p_sum = 0.0f; thold = 1.0/(n_non_eog + 1); cur_p->size = 0; LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold); for (size_t i = 0; i < size_org; ++i) { const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); if (cur_p->data[i].p < thold && !is_eog) { continue; } p_sum += cur_p->data[i].p; cur_p->data[cur_p->size++] = cur_p->data[i]; } // normalize probs for (size_t i = 0; i < cur_p->size; ++i) { cur_p->data[i].p /= p_sum; LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); } #undef LOG_DBG_CUR } static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) { const auto * ctx = (const llama_sampler_infill *) smpl->ctx; return llama_sampler_init_infill(ctx->vocab); } static void llama_sampler_infill_free(struct llama_sampler * smpl) { delete (llama_sampler_infill *) smpl->ctx; } static struct llama_sampler_i llama_sampler_infill_i = { /* .name = */ llama_sampler_infill_name, /* .accept = */ nullptr, /* .apply = */ llama_sampler_infill_apply, /* .reset = */ nullptr, /* .clone = */ llama_sampler_infill_clone, /* .free = */ llama_sampler_infill_free, /* .backend_apply = */ nullptr, /* .backend_accept = */ nullptr, /* .backend_set_input = */ nullptr, /* .backend_init = */ nullptr, }; struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) { return llama_sampler_init( /* .iface = */ &llama_sampler_infill_i, /* .ctx = */ new llama_sampler_infill { /* .vocab = */ vocab, /* .buf0 = */ std::vector(512), /* .buf1 = */ std::vector(512), } ); } // utils uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) { if (smpl->iface == &llama_sampler_dist_i) { return ((const llama_sampler_dist *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_mirostat_i) { return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_mirostat_v2_i) { return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur; } if (smpl->iface == &llama_sampler_chain_i) { const auto * ctx = (const llama_sampler_chain *) smpl->ctx; for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) { const uint32_t seed = llama_sampler_get_seed(it->ptr); if (seed != LLAMA_DEFAULT_SEED) { return seed; } } } return LLAMA_DEFAULT_SEED; } // perf struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) { struct llama_perf_sampler_data data = {}; if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); } const auto * ctx = (const struct llama_sampler_chain *) chain->ctx; data.t_sample_ms = 1e-3 * ctx->t_sample_us; data.n_sample = std::max(0, ctx->n_sample); return data; } void llama_perf_sampler_print(const struct llama_sampler * chain) { const auto data = llama_perf_sampler(chain); LLAMA_LOG_INFO("%s: samplers time = %10.2f ms / %5d runs\n", __func__, data.t_sample_ms, data.n_sample); } void llama_perf_sampler_reset(struct llama_sampler * chain) { if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); } auto * ctx = (struct llama_sampler_chain *) chain->ctx; ctx->t_sample_us = 0; ctx->n_sample = 0; }