# Diffusion Text Generation This directory contains implementations for Diffusion LLMs (DLLMs) More Info: - https://github.com/ggml-org/llama.cpp/pull/14644 - https://github.com/ggml-org/llama.cpp/pull/14771 ## Parameters The diffusion CLI supports various parameters to control the generation process: ### Core Diffusion Parameters - `--diffusion-steps`: Number of diffusion steps (default: 256) - `--diffusion-algorithm`: Algorithm for token selection - `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006. - `1`: ENTROPY_BASED - Entropy-based selection - `2`: MARGIN_BASED - Margin-based selection - `3`: RANDOM - Random selection - `4`: CONFIDENCE_BASED - Confidence-based selection (default) - More documentation here https://github.com/DreamLM/Dream - `--diffusion-visual`: Enable live visualization during generation ### Scheduling Parameters Choose one of the following scheduling methods: **Timestep-based scheduling:** - `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001) **Block-based scheduling:** - `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32) ### Sampling Parameters - `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random) - `--top-k`: Top-k filtering for sampling - `--top-p`: Top-p (nucleus) filtering for sampling - `--seed`: Random seed for reproducibility ### Model Parameters - `-m`: Path to the GGUF model file - `-p`: Input prompt text - `-ub`: Maximum sequence length (ubatch size) - `-c`: Context size - `-b`: Batch size ### Examples #### Dream architechture: ``` llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual ``` #### LLaDA architechture: ``` llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual ``` #### RND1 architecture: ``` llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001 ```