#!/usr/bin/env python3 import argparse import os import sys import importlib from pathlib import Path # Add parent directory to path for imports sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig import torch import numpy as np from utils.common import debug_hook parser = argparse.ArgumentParser(description="Process model with specified path") parser.add_argument("--model-path", "-m", help="Path to the model") parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False) parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output") args = parser.parse_args() model_path = os.environ.get("MODEL_PATH", args.model_path) if model_path is None: parser.error( "Model path must be specified either via --model-path argument or MODEL_PATH environment variable" ) ### If you want to dump RoPE activations, uncomment the following lines: ### === START ROPE DEBUG === # from utils.common import setup_rope_debug # setup_rope_debug("transformers.models.apertus.modeling_apertus") ### == END ROPE DEBUG === print("Loading model and tokenizer using AutoTokenizer:", model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) config = AutoConfig.from_pretrained(model_path, trust_remote_code=True) multimodal = False full_config = config print("Model type: ", config.model_type) if "vocab_size" not in config and "text_config" in config: config = config.text_config multimodal = True print("Vocab size: ", config.vocab_size) print("Hidden size: ", config.hidden_size) print("Number of layers: ", config.num_hidden_layers) print("BOS token id: ", config.bos_token_id) print("EOS token id: ", config.eos_token_id) unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME") if unreleased_model_name: model_name_lower = unreleased_model_name.lower() unreleased_module_path = ( f"transformers.models.{model_name_lower}.modular_{model_name_lower}" ) class_name = f"{unreleased_model_name}ForCausalLM" print(f"Importing unreleased model module: {unreleased_module_path}") try: model_class = getattr( importlib.import_module(unreleased_module_path), class_name ) model = model_class.from_pretrained( model_path ) # Note: from_pretrained, not fromPretrained except (ImportError, AttributeError) as e: print(f"Failed to import or load model: {e}") exit(1) else: if multimodal: model = AutoModelForImageTextToText.from_pretrained( model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config ) else: model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config ) if args.verbose: for name, module in model.named_modules(): if len(list(module.children())) == 0: # only leaf modules module.register_forward_hook(debug_hook(name)) model_name = os.path.basename(model_path) # Printing the Model class to allow for easier debugging. This can be useful # when working with models that have not been publicly released yet and this # migth require that the concrete class is imported and used directly instead # of using AutoModelForCausalLM. print(f"Model class: {model.__class__.__name__}") device = next(model.parameters()).device if args.prompt_file: with open(args.prompt_file, encoding='utf-8') as f: prompt = f.read() elif os.getenv("MODEL_TESTING_PROMPT"): prompt = os.getenv("MODEL_TESTING_PROMPT") else: prompt = "Hello, my name is" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) print(f"Input tokens: {input_ids}") print(f"Input text: {repr(prompt)}") print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}") batch_size = 512 with torch.no_grad(): past = None outputs = None for i in range(0, input_ids.size(1), batch_size): print(f"Processing chunk with tokens {i} to {i + batch_size}") chunk = input_ids[:, i:i + batch_size] outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True) past = outputs.past_key_values logits = outputs.logits # type: ignore # Extract logits for the last token (next token prediction) last_logits = logits[0, -1, :].float().cpu().numpy() print(f"Logits shape: {logits.shape}") print(f"Last token logits shape: {last_logits.shape}") print(f"Vocab size: {len(last_logits)}") data_dir = Path("data") data_dir.mkdir(exist_ok=True) bin_filename = data_dir / f"pytorch-{model_name}.bin" txt_filename = data_dir / f"pytorch-{model_name}.txt" # Save to file for comparison last_logits.astype(np.float32).tofile(bin_filename) # Also save as text file for easy inspection with open(txt_filename, "w") as f: for i, logit in enumerate(last_logits): f.write(f"{i}: {logit:.6f}\n") # Print some sample logits for quick verification print(f"First 10 logits: {last_logits[:10]}") print(f"Last 10 logits: {last_logits[-10:]}") # Show top 5 predicted tokens top_indices = np.argsort(last_logits)[-5:][::-1] print("Top 5 predictions:") for idx in top_indices: token = tokenizer.decode([idx]) print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}") print(f"Saved bin logits to: {bin_filename}") print(f"Saved txt logist to: {txt_filename}")