#include "models.h" ggml_cgraph * clip_graph_llama4::build() { GGML_ASSERT(model.class_embedding != nullptr); GGML_ASSERT(model.position_embeddings != nullptr); const int n_pos = n_patches + 1; // +1 for [CLS] // 2D input positions ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos); ggml_set_name(pos_h, "pos_h"); ggml_set_input(pos_h); ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos); ggml_set_name(pos_w, "pos_w"); ggml_set_input(pos_w); ggml_tensor * inp = build_inp_raw(); // Llama4UnfoldConvolution { ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0, patch_size, patch_size, 3, n_embd); inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type); inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp); inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches); cb(inp, "patch_conv", -1); } // add CLS token inp = ggml_concat(ctx0, inp, model.class_embedding, 1); // build ViT with 2D position embeddings auto add_pos = [&](ggml_tensor * cur, const clip_layer &) { // first half is X axis and second half is Y axis // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312 // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441 return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false); }; ggml_tensor * cur = build_vit( inp, n_pos, NORM_TYPE_NORMAL, hparams.ffn_op, model.position_embeddings, add_pos); // remove CLS token cur = ggml_view_2d(ctx0, cur, n_embd, n_patches, ggml_row_size(cur->type, n_embd), 0); // pixel shuffle // based on Llama4VisionPixelShuffleMLP // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151 { const int scale_factor = model.hparams.n_merge; const int bsz = 1; // batch size, always 1 for now since we don't support batching GGML_ASSERT(scale_factor > 0); GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, n_patches_x / scale_factor, n_patches_y, bsz); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_cont_4d(ctx0, cur, n_embd * scale_factor * scale_factor, n_patches_x / scale_factor, n_patches_y / scale_factor, bsz); //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // flatten to 2D cur = ggml_cont_2d(ctx0, cur, n_embd * scale_factor * scale_factor, n_patches / scale_factor / scale_factor); cb(cur, "pixel_shuffle", -1); } // based on Llama4VisionMLP2 (always uses GELU activation, no bias) { cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur); cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur); cur = ggml_gelu(ctx0, cur); cb(cur, "adapter_mlp", -1); } // Llama4MultiModalProjector cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur); cb(cur, "projected", -1); // build the graph ggml_build_forward_expand(gf, cur); return gf; }