#include "models.h" ggml_cgraph * clip_graph_internvl::build() { GGML_ASSERT(model.class_embedding != nullptr); GGML_ASSERT(model.position_embeddings != nullptr); const int n_pos = n_patches + 1; ggml_tensor * inp = build_inp(); // add CLS token inp = ggml_concat(ctx0, inp, model.class_embedding, 1); // The larger models use a different ViT, which uses RMS norm instead of layer norm // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188 norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45) ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B) : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models) ggml_tensor * cur = build_vit( inp, n_pos, norm_t, hparams.ffn_op, model.position_embeddings, nullptr); // remove CLS token cur = ggml_view_2d(ctx0, cur, n_embd, n_patches, ggml_row_size(cur->type, n_embd), 0); // pixel shuffle { const int scale_factor = model.hparams.n_merge; const int bsz = 1; // batch size, always 1 for now since we don't support batching const int height = n_patches_y; const int width = n_patches_x; GGML_ASSERT(scale_factor > 0); cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); cur = ggml_cont_4d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor, bsz); cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // flatten to 2D cur = ggml_cont_2d(ctx0, cur, n_embd * scale_factor * scale_factor, cur->ne[1] * cur->ne[2]); } // projector (always using GELU activation) { // projector LayerNorm uses pytorch's default eps = 1e-5 // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79 cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1); cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_3_w, model.mm_3_b, FFN_GELU, -1); } // build the graph ggml_build_forward_expand(gf, cur); return gf; }