#include "common.h" #include "log.h" #include "llama.h" #include "mtmd.h" #include "mtmd-helper.h" #include "chat.h" #include "arg.h" // for common_remote_get_content; TODO: use download.h only #include "base64.hpp" #include "server-common.h" #include #include #include json format_error_response(const std::string & message, const enum error_type type) { std::string type_str; int code = 500; switch (type) { case ERROR_TYPE_INVALID_REQUEST: type_str = "invalid_request_error"; code = 400; break; case ERROR_TYPE_AUTHENTICATION: type_str = "authentication_error"; code = 401; break; case ERROR_TYPE_NOT_FOUND: type_str = "not_found_error"; code = 404; break; case ERROR_TYPE_SERVER: type_str = "server_error"; code = 500; break; case ERROR_TYPE_PERMISSION: type_str = "permission_error"; code = 403; break; case ERROR_TYPE_NOT_SUPPORTED: type_str = "not_supported_error"; code = 501; break; case ERROR_TYPE_UNAVAILABLE: type_str = "unavailable_error"; code = 503; break; case ERROR_TYPE_EXCEED_CONTEXT_SIZE: type_str = "exceed_context_size_error"; code = 400; break; } return json { {"code", code}, {"message", message}, {"type", type_str}, }; } // // random string / id // std::string random_string() { static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"); std::random_device rd; std::mt19937 generator(rd()); std::string result(32, ' '); for (int i = 0; i < 32; ++i) { result[i] = str[generator() % str.size()]; } return result; } std::string gen_chatcmplid() { return "chatcmpl-" + random_string(); } std::string gen_tool_call_id() { return random_string(); } // // lora utils // bool lora_all_alora(const std::vector & loras) { bool found_alora = false; for (const auto & lora : loras) { if (lora.scale != 0) { if (llama_adapter_get_alora_n_invocation_tokens(lora.ptr) == 0) { return false; } found_alora = true; } } return found_alora; } bool lora_should_clear_cache( const std::vector & current, const std::vector & next) { // This should always be called after determining that the two sets are // _not_ equal. This assert is therefore some slightly wasted work and // should be safe to remove as long as this method is called correctly. GGML_ASSERT(!are_lora_equal(current, next)); return ( !(lora_get_enabled_ids(current).empty() || lora_all_alora(current)) || !lora_all_alora(next)); } std::vector parse_lora_request( const std::vector & lora_base, const json & data) { std::vector lora(lora_base); int max_idx = lora.size(); // clear existing value for (auto & entry : lora) { entry.scale = 0.0f; } // set value for (const auto & entry : data) { int id = json_value(entry, "id", -1); float scale = json_value(entry, "scale", 0.0f); if (0 <= id && id < max_idx) { lora[id].scale = scale; } else { throw std::runtime_error("invalid adapter id"); } } return lora; } bool are_lora_equal( const std::vector & l1, const std::vector & l2) { if (l1.size() != l2.size()) { return false; } for (size_t i = 0; i < l1.size(); ++i) { // we don't check lora.path to reduce the time complexity if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) { return false; } } return true; } std::vector lora_get_enabled_ids(const std::vector & loras) { std::vector enabled_ids; for (size_t i = 0; i < loras.size(); ++i) { if (loras[i].scale > 0) { enabled_ids.push_back(i); } } return enabled_ids; } // // base64 utils (TODO: use the base64::decode from base64.hpp) // static const std::string base64_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; static inline bool is_base64(uint8_t c) { return (isalnum(c) || (c == '+') || (c == '/')); } static inline raw_buffer base64_decode(const std::string & encoded_string) { int i = 0; int j = 0; int in_ = 0; int in_len = encoded_string.size(); uint8_t char_array_4[4]; uint8_t char_array_3[3]; raw_buffer ret; while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) { char_array_4[i++] = encoded_string[in_]; in_++; if (i == 4) { for (i = 0; i < 4; i++) { char_array_4[i] = base64_chars.find(char_array_4[i]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (i = 0; (i < 3); i++) { ret.push_back(char_array_3[i]); } i = 0; } } if (i) { for (j = i; j < 4; j++) { char_array_4[j] = 0; } for (j = 0; j < 4; j++) { char_array_4[j] = base64_chars.find(char_array_4[j]); } char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4); char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2); char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3]; for (j = 0; j < i - 1; j++) { ret.push_back(char_array_3[j]); } } return ret; } // // server_tokens implementation // server_tokens::server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) { for (size_t i = 0; i < mtmd_chunks.size(); ++i) { push_back(mtmd_chunks[i]); } } server_tokens::server_tokens(const llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) { } llama_pos server_tokens::pos_next() const { if (!has_mtmd) { return tokens.size(); } llama_pos res = tokens.size(); for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) { const auto & chunk = it->second; res += mtmd_input_chunk_get_n_pos(chunk.get()) - mtmd_input_chunk_get_n_tokens(chunk.get()); } return res; } std::string server_tokens::str() const { std::ostringstream oss; oss << "tokens: "; for (size_t idx = 0; idx < tokens.size(); ++idx) { llama_token t = tokens[idx]; oss << "idx:" << idx << " "; if (t == LLAMA_TOKEN_NULL) { oss << " "; } else { oss << t << " "; } } oss << "\n"; oss << "image idx: "; for (const auto & it : map_idx_to_media) { oss << it.first << ", "; } return oss.str(); } const mtmd::input_chunk_ptr & server_tokens::find_chunk(size_t idx) const { auto it = map_idx_to_media.find(idx); if (it != map_idx_to_media.end()) { return it->second; } throw std::runtime_error("Chunk not found"); } void server_tokens::push_back(llama_token tok) { if (tok == LLAMA_TOKEN_NULL) { throw std::runtime_error("Invalid token"); } tokens.emplace_back(tok); } void server_tokens::push_back(const mtmd_input_chunk * chunk) { auto type = mtmd_input_chunk_get_type(chunk); if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) { GGML_ASSERT(has_mtmd); const size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk); size_t start_idx = tokens.size(); for (size_t i = 0; i < n_tokens; ++i) { tokens.emplace_back(LLAMA_TOKEN_NULL); } mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk)); map_idx_to_media[start_idx] = std::move(new_chunk); } else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) { size_t n_tokens; const auto * text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens); for (size_t i = 0; i < n_tokens; ++i) { push_back(text_tokens[i]); } } else { GGML_ABORT("Invalid chunk type"); } } void server_tokens::push_back(server_tokens & tokens) { size_t start_idx = size(); for (size_t i = 0; i < tokens.size(); i++) { push_back(tokens[i]); } if (tokens.has_mtmd) { // Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd. // We could also just check, but this will prevent silently dropping MTMD data. GGML_ASSERT(has_mtmd); for (auto it = tokens.map_idx_to_media.begin(); it != tokens.map_idx_to_media.end(); ) { auto * chunk = tokens.map_idx_to_media[it->first].get(); mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk)); map_idx_to_media[start_idx + it->first] = std::move(new_chunk); } } } void server_tokens::insert(const llama_tokens & inp_tokens) { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end()); } const llama_tokens & server_tokens::get_text_tokens() const { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled return tokens; } void server_tokens::set_token(llama_pos pos, llama_token id) { GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled tokens[pos] = id; } void server_tokens::keep_first(size_t n) { GGML_ASSERT(n <= tokens.size()); if (has_mtmd) { if (n == tokens.size()) { return; // nothing to do } // we throw an error if we try to remove a token in the middle of an image // for ex. with input of 5 text tokens and 2 images: // [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] // n 1 2 3 4 5 6 7 8 9 10 // allowed to resize ^ ^ // disallowed to resize ^ ^ ^ if (n > 0) { // make sure we never remove tokens in the middle of an image // note that the case where we keep a full image at the end is allowed: // tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] != LLAMA_TOKEN_NULL if (tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] == LLAMA_TOKEN_NULL) { find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk } } // remove all image chunks that are not used anymore for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ) { size_t idx = it->first; if (idx >= n) { it = map_idx_to_media.erase(it); } else { ++it; } } } tokens.resize(n); } std::string server_tokens::detokenize(const llama_context * ctx, bool special) const { llama_tokens text_tokens; text_tokens.reserve(tokens.size()); for (const auto & t : tokens) { if (t != LLAMA_TOKEN_NULL) { text_tokens.push_back(t); } } return common_detokenize(ctx, text_tokens, special); } size_t server_tokens::get_common_prefix(const server_tokens & b) const { const size_t max_idx = std::min(tokens.size(), b.tokens.size()); if (!has_mtmd) { for (size_t i = 0; i < max_idx; ++i) { if (tokens[i] == b.tokens[i]) { continue; } return i; } return max_idx; } for (size_t i = 0; i < max_idx; ++i) { const llama_token ai = tokens[i]; const llama_token bi = b.tokens[i]; if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) { const auto & a_chunk = find_chunk(i); const auto & b_chunk = b.find_chunk(i); GGML_ASSERT(a_chunk && b_chunk); const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get()); const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get()); const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get()); const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get()); if (id_ai == id_bi && n_tok_a == n_tok_b) { GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen i += n_tok_a - 1; // will be +1 by the for loop continue; } return i; } if (ai == bi) { continue; } return i; } return max_idx; // all tokens are equal } bool server_tokens::validate(const struct llama_context * ctx) const { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const int32_t n_vocab = llama_vocab_n_tokens(vocab); for (size_t i = 0; i < tokens.size(); ++i) { const auto & t = tokens[i]; if (t == LLAMA_TOKEN_NULL) { try { const auto & chunk = find_chunk(i); size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get()); i += n_tokens - 1; // will be +1 by the for loop } catch (const std::exception & e) { return false; } } else if (t < 0 || t >= n_vocab) { return false; } } return true; } int32_t server_tokens::process_chunk( llama_context * ctx, mtmd_context * mctx, size_t idx, llama_pos pos, int32_t seq_id, size_t & n_tokens_out) const { const auto & chunk = find_chunk(idx); const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE ? "image" : "audio"; SRV_INF("processing %s...\n", name); int32_t n_batch = llama_n_batch(ctx); int64_t t0 = ggml_time_ms(); llama_pos new_n_past; // unused for now int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx, chunk.get(), pos, seq_id, n_batch, true, // logits last &new_n_past); SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0); if (result != 0) { LOG_ERR("mtmd_helper_eval failed with status %d", result); n_tokens_out = 0; return result; } n_tokens_out = mtmd_input_chunk_get_n_tokens(chunk.get()); return 0; } // // tokenizer and input processing utils // bool json_is_array_of_numbers(const json & data) { if (data.is_array()) { for (const auto & e : data) { if (!e.is_number_integer()) { return false; } } return true; } return false; } bool json_is_array_of_mixed_numbers_strings(const json & data) { bool seen_string = false; bool seen_number = false; if (data.is_array()) { for (const auto & e : data) { seen_string |= e.is_string(); seen_number |= e.is_number_integer(); if (seen_number && seen_string) { return true; } } } return false; } bool json_is_array_and_contains_numbers(const json & data) { if (data.is_array()) { for (const auto & e : data) { if (e.is_number_integer()) { return true; } } return false; } return false; } json json_get_nested_values(const std::vector & paths, const json & js) { json result = json::object(); for (const std::string & path : paths) { json current = js; const auto keys = string_split(path, /*separator*/ '/'); bool valid_path = true; for (const std::string & k : keys) { if (valid_path && current.is_object() && current.contains(k)) { current = current[k]; } else { valid_path = false; } } if (valid_path) { result[path] = current; } } return result; } llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) { // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. llama_tokens prompt_tokens; if (json_prompt.is_array()) { bool first = true; for (const auto & p : json_prompt) { if (p.is_string()) { auto s = p.template get(); llama_tokens p; if (first) { p = common_tokenize(vocab, s, add_special, parse_special); first = false; } else { p = common_tokenize(vocab, s, false, parse_special); } prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end()); } else { if (first) { first = false; } prompt_tokens.push_back(p.template get()); } } } else { auto s = json_prompt.template get(); prompt_tokens = common_tokenize(vocab, s, add_special, parse_special); } return prompt_tokens; } size_t validate_utf8(const std::string& text) { size_t len = text.size(); if (len == 0) return 0; // Check the last few bytes to see if a multi-byte character is cut off for (size_t i = 1; i <= 4 && i <= len; ++i) { unsigned char c = text[len - i]; // Check for start of a multi-byte sequence from the end if ((c & 0xE0) == 0xC0) { // 2-byte character start: 110xxxxx // Needs at least 2 bytes if (i < 2) return len - i; } else if ((c & 0xF0) == 0xE0) { // 3-byte character start: 1110xxxx // Needs at least 3 bytes if (i < 3) return len - i; } else if ((c & 0xF8) == 0xF0) { // 4-byte character start: 11110xxx // Needs at least 4 bytes if (i < 4) return len - i; } } // If no cut-off multi-byte character is found, return full length return len; } // Computes FNV-1a hash of the data static std::string fnv_hash(const uint8_t * data, size_t len) { const uint64_t fnv_prime = 0x100000001b3ULL; uint64_t hash = 0xcbf29ce484222325ULL; for (size_t i = 0; i < len; ++i) { hash ^= data[i]; hash *= fnv_prime; } return std::to_string(hash); } server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector files) { mtmd::bitmaps bitmaps; for (auto & file : files) { mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size())); if (!bmp.ptr) { throw std::runtime_error("Failed to load image or audio file"); } // calculate bitmap hash (for KV caching) std::string hash = fnv_hash(bmp.data(), bmp.n_bytes()); bmp.set_id(hash.c_str()); bitmaps.entries.push_back(std::move(bmp)); } // process prompt std::vector inputs; // multimodal mtmd_input_text inp_txt = { prompt.c_str(), /* add_special */ true, /* parse_special */ true, }; mtmd::input_chunks chunks(mtmd_input_chunks_init()); auto bitmaps_c_ptr = bitmaps.c_ptr(); int32_t tokenized = mtmd_tokenize(mctx, chunks.ptr.get(), &inp_txt, bitmaps_c_ptr.data(), bitmaps_c_ptr.size()); if (tokenized != 0) { throw std::runtime_error("Failed to tokenize prompt"); } auto result = server_tokens(chunks, true); return result; } /** * break the input "prompt" object into multiple prompt if needed, then tokenize them * use tokenize_input_prompts() if the input could be an array. * this supports these cases: * - "prompt": "string" * - "prompt": [12, 34, 56] * - "prompt": [12, 34, "string", 56, 78] * - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] } */ static server_tokens tokenize_input_subprompt(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) { constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string"; constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data"; const bool has_mtmd = mctx != nullptr; if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) { // string or mixed llama_tokens tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special); return server_tokens(tmp, false); } else if (json_is_array_of_numbers(json_prompt)) { // array of tokens llama_tokens tmp = json_prompt.get(); return server_tokens(tmp, false); } else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) { // JSON object with prompt key. if (json_prompt.contains(JSON_MTMD_DATA_KEY)) { if (!has_mtmd) throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests."); // JSON object with prompt and multimodal key. std::vector files; for (const auto & entry : json_prompt.at(JSON_MTMD_DATA_KEY)) { files.push_back(base64_decode(entry)); } return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files); } else { // Not multimodal, but contains a subobject. llama_tokens tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special); return server_tokens(tmp, false); } } else { throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens."); } } std::vector tokenize_input_prompts(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) { std::vector result; if (json_prompt.is_array() && !json_is_array_and_contains_numbers(json_prompt)) { result.reserve(json_prompt.size()); for (const auto & p : json_prompt) { result.push_back(tokenize_input_subprompt(vocab, mctx, p,add_special, parse_special)); } } else { result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special)); } if (result.empty()) { throw std::runtime_error("\"prompt\" must not be empty"); } return result; } // // OAI utils // // used by /completions endpoint json oaicompat_completion_params_parse(const json & body) { json llama_params; if (!body.contains("prompt")) { throw std::runtime_error("\"prompt\" is required"); } // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::runtime_error("Only one completion choice is allowed"); } // Handle "echo" field if (json_value(body, "echo", false)) { throw std::runtime_error("Only no echo is supported"); } // Params supported by OAI but unsupported by llama.cpp static const std::vector unsupported_params { "best_of", "suffix" }; for (const auto & param : unsupported_params) { if (body.contains(param)) { throw std::runtime_error("Unsupported param: " + param); } } // Copy remaining properties to llama_params for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } // media_path always end with '/', see arg.cpp static void handle_media( std::vector & out_files, json & media_obj, const std::string & media_path) { std::string url = json_value(media_obj, "url", std::string()); if (string_starts_with(url, "http")) { // download remote image // TODO @ngxson : maybe make these params configurable common_remote_params params; params.headers.push_back("User-Agent: llama.cpp/" + build_info); params.max_size = 1024 * 1024 * 10; // 10MB params.timeout = 10; // seconds SRV_INF("downloading image from '%s'\n", url.c_str()); auto res = common_remote_get_content(url, params); if (200 <= res.first && res.first < 300) { SRV_INF("downloaded %zu bytes\n", res.second.size()); raw_buffer data; data.insert(data.end(), res.second.begin(), res.second.end()); out_files.push_back(data); } else { throw std::runtime_error("Failed to download image"); } } else if (string_starts_with(url, "file://")) { if (media_path.empty()) { throw std::invalid_argument("file:// URLs are not allowed unless --media-path is specified"); } // load local image file std::string file_path = url.substr(7); // remove "file://" raw_buffer data; if (!fs_validate_filename(file_path, true)) { throw std::invalid_argument("file path is not allowed: " + file_path); } SRV_INF("loading image from local file '%s'\n", (media_path + file_path).c_str()); std::ifstream file(media_path + file_path, std::ios::binary); if (!file) { throw std::invalid_argument("file does not exist or cannot be opened: " + file_path); } data.assign((std::istreambuf_iterator(file)), std::istreambuf_iterator()); out_files.push_back(data); } else { // try to decode base64 image std::vector parts = string_split(url, /*separator*/ ','); if (parts.size() != 2) { throw std::runtime_error("Invalid url value"); } else if (!string_starts_with(parts[0], "data:image/")) { throw std::runtime_error("Invalid url format: " + parts[0]); } else if (!string_ends_with(parts[0], "base64")) { throw std::runtime_error("url must be base64 encoded"); } else { auto base64_data = parts[1]; auto decoded_data = base64_decode(base64_data); out_files.push_back(decoded_data); } } } // used by /chat/completions endpoint json oaicompat_chat_params_parse( json & body, /* openai api json semantics */ const oaicompat_parser_options & opt, std::vector & out_files) { json llama_params; auto tools = json_value(body, "tools", json()); auto has_tools = tools.is_array() && !tools.empty(); auto stream = json_value(body, "stream", false); auto tool_choice = json_value(body, "tool_choice", std::string("auto")); if (!opt.use_jinja) { if (has_tools) { throw std::runtime_error("tools param requires --jinja flag"); } if (tool_choice != "auto") { throw std::runtime_error("tool_choice param requires --jinja flag"); } } // Handle "stop" field if (body.contains("stop") && body.at("stop").is_string()) { llama_params["stop"] = json::array({body.at("stop").get()}); } else { llama_params["stop"] = json_value(body, "stop", json::array()); } auto json_schema = json_value(body, "json_schema", json()); auto grammar = json_value(body, "grammar", std::string()); if (!json_schema.is_null() && !grammar.empty()) { throw std::runtime_error("Cannot use both json_schema and grammar"); } // Handle "response_format" field if (body.contains("response_format")) { json response_format = json_value(body, "response_format", json::object()); std::string response_type = json_value(response_format, "type", std::string()); if (response_type == "json_object") { json_schema = json_value(response_format, "schema", json::object()); } else if (response_type == "json_schema") { auto schema_wrapper = json_value(response_format, "json_schema", json::object()); json_schema = json_value(schema_wrapper, "schema", json::object()); } else if (!response_type.empty() && response_type != "text") { throw std::invalid_argument("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type); } } // get input files if (!body.contains("messages")) { throw std::invalid_argument("'messages' is required"); } json & messages = body.at("messages"); if (!messages.is_array()) { throw std::invalid_argument("Expected 'messages' to be an array"); } for (auto & msg : messages) { std::string role = json_value(msg, "role", std::string()); if (role != "assistant" && !msg.contains("content")) { throw std::invalid_argument("All non-assistant messages must contain 'content'"); } if (role == "assistant") { if (!msg.contains("content") && !msg.contains("tool_calls")) { throw std::invalid_argument("Assistant message must contain either 'content' or 'tool_calls'!"); } if (!msg.contains("content")) { continue; // avoid errors with no content } } json & content = msg.at("content"); if (content.is_string() || content.is_null()) { continue; } if (!content.is_array()) { throw std::invalid_argument("Expected 'content' to be a string or an array"); } for (auto & p : content) { std::string type = json_value(p, "type", std::string()); if (type == "image_url") { if (!opt.allow_image) { throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj"); } json image_url = json_value(p, "image_url", json::object()); handle_media(out_files, image_url, opt.media_path); // replace this chunk with a marker p["type"] = "text"; p["text"] = mtmd_default_marker(); p.erase("image_url"); } else if (type == "input_audio") { if (!opt.allow_audio) { throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj"); } json input_audio = json_value(p, "input_audio", json::object()); std::string data = json_value(input_audio, "data", std::string()); std::string format = json_value(input_audio, "format", std::string()); // while we also support flac, we don't allow it here so we matches the OAI spec if (format != "wav" && format != "mp3") { throw std::invalid_argument("input_audio.format must be either 'wav' or 'mp3'"); } auto decoded_data = base64_decode(data); // expected to be base64 encoded out_files.push_back(decoded_data); // TODO: add audio_url support by reusing handle_media() // replace this chunk with a marker p["type"] = "text"; p["text"] = mtmd_default_marker(); p.erase("input_audio"); } else if (type != "text") { throw std::invalid_argument("unsupported content[].type"); } } } common_chat_templates_inputs inputs; inputs.messages = common_chat_msgs_parse_oaicompat(messages); inputs.tools = common_chat_tools_parse_oaicompat(tools); inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(tool_choice); inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump(); inputs.grammar = grammar; inputs.use_jinja = opt.use_jinja; inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false); inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true); inputs.reasoning_format = opt.reasoning_format; inputs.enable_thinking = opt.enable_thinking; if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) { if (body.contains("grammar")) { throw std::invalid_argument("Cannot use custom grammar constraints with tools."); } llama_params["parse_tool_calls"] = true; } // merge the template args provided from command line with the args provided in the user request auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object()); inputs.chat_template_kwargs = opt.chat_template_kwargs; for (const auto & item : chat_template_kwargs_object.items()) { inputs.chat_template_kwargs[item.key()] = item.value().dump(); } // parse the "enable_thinking" kwarg to override the default value auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string("")); if (enable_thinking_kwarg == "true") { inputs.enable_thinking = true; } else if (enable_thinking_kwarg == "false") { inputs.enable_thinking = false; } else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') { throw std::invalid_argument("invalid type for \"enable_thinking\" (expected boolean, got string)"); } // if the assistant message appears at the end of list, we do not add end-of-turn token // for ex. this can be useful to modify the reasoning process in reasoning models bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant; common_chat_msg last_message; if (prefill_assistant_message) { last_message = inputs.messages.back(); inputs.messages.pop_back(); /* sanity check, max one assistant message at the end of the list */ if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){ throw std::invalid_argument("Cannot have 2 or more assistant messages at the end of the list."); } /* TODO: test this properly */ inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE; if ( inputs.enable_thinking ) { throw std::invalid_argument("Assistant response prefill is incompatible with enable_thinking."); } inputs.add_generation_prompt = true; } // Apply chat template to the list of messages auto chat_params = common_chat_templates_apply(opt.tmpls, inputs); /* Append assistant prefilled message */ if (prefill_assistant_message) { if (!last_message.content_parts.empty()) { for (auto & p : last_message.content_parts) { chat_params.prompt += p.text; } } else { chat_params.prompt += last_message.content; } } llama_params["chat_format"] = static_cast(chat_params.format); llama_params["prompt"] = chat_params.prompt; if (!chat_params.grammar.empty()) { llama_params["grammar"] = chat_params.grammar; } llama_params["grammar_lazy"] = chat_params.grammar_lazy; auto grammar_triggers = json::array(); for (const auto & trigger : chat_params.grammar_triggers) { server_grammar_trigger ct(trigger); grammar_triggers.push_back(ct.to_json()); } llama_params["grammar_triggers"] = grammar_triggers; llama_params["preserved_tokens"] = chat_params.preserved_tokens; llama_params["thinking_forced_open"] = chat_params.thinking_forced_open; for (const auto & stop : chat_params.additional_stops) { llama_params["stop"].push_back(stop); } if (!chat_params.parser.empty()) { llama_params["chat_parser"] = chat_params.parser; } // Handle "n" field int n_choices = json_value(body, "n", 1); if (n_choices != 1) { throw std::invalid_argument("Only one completion choice is allowed"); } // Handle "logprobs" field // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future if (json_value(body, "logprobs", false)) { if (has_tools && stream) { throw std::invalid_argument("logprobs is not supported with tools + stream"); } llama_params["n_probs"] = json_value(body, "top_logprobs", 20); } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) { throw std::invalid_argument("top_logprobs requires logprobs to be set to true"); } // Copy remaining properties to llama_params // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint. // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp for (const auto & item : body.items()) { // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens" if (!llama_params.contains(item.key()) || item.key() == "n_predict") { llama_params[item.key()] = item.value(); } } return llama_params; } json convert_anthropic_to_oai(const json & body) { json oai_body; // Convert system prompt json oai_messages = json::array(); auto system_param = json_value(body, "system", json()); if (!system_param.is_null()) { std::string system_content; if (system_param.is_string()) { system_content = system_param.get(); } else if (system_param.is_array()) { for (const auto & block : system_param) { if (json_value(block, "type", std::string()) == "text") { system_content += json_value(block, "text", std::string()); } } } oai_messages.push_back({ {"role", "system"}, {"content", system_content} }); } // Convert messages if (!body.contains("messages")) { throw std::runtime_error("'messages' is required"); } const json & messages = body.at("messages"); if (messages.is_array()) { for (const auto & msg : messages) { std::string role = json_value(msg, "role", std::string()); if (!msg.contains("content")) { if (role == "assistant") { continue; } oai_messages.push_back(msg); continue; } const json & content = msg.at("content"); if (content.is_string()) { oai_messages.push_back(msg); continue; } if (!content.is_array()) { oai_messages.push_back(msg); continue; } json tool_calls = json::array(); json converted_content = json::array(); json tool_results = json::array(); bool has_tool_calls = false; for (const auto & block : content) { std::string type = json_value(block, "type", std::string()); if (type == "text") { converted_content.push_back(block); } else if (type == "image") { json source = json_value(block, "source", json::object()); std::string source_type = json_value(source, "type", std::string()); if (source_type == "base64") { std::string media_type = json_value(source, "media_type", std::string("image/jpeg")); std::string data = json_value(source, "data", std::string()); std::ostringstream ss; ss << "data:" << media_type << ";base64," << data; converted_content.push_back({ {"type", "image_url"}, {"image_url", { {"url", ss.str()} }} }); } else if (source_type == "url") { std::string url = json_value(source, "url", std::string()); converted_content.push_back({ {"type", "image_url"}, {"image_url", { {"url", url} }} }); } } else if (type == "tool_use") { tool_calls.push_back({ {"id", json_value(block, "id", std::string())}, {"type", "function"}, {"function", { {"name", json_value(block, "name", std::string())}, {"arguments", json_value(block, "input", json::object()).dump()} }} }); has_tool_calls = true; } else if (type == "tool_result") { std::string tool_use_id = json_value(block, "tool_use_id", std::string()); auto result_content = json_value(block, "content", json()); std::string result_text; if (result_content.is_string()) { result_text = result_content.get(); } else if (result_content.is_array()) { for (const auto & c : result_content) { if (json_value(c, "type", std::string()) == "text") { result_text += json_value(c, "text", std::string()); } } } tool_results.push_back({ {"role", "tool"}, {"tool_call_id", tool_use_id}, {"content", result_text} }); } } if (!converted_content.empty() || has_tool_calls) { json new_msg = {{"role", role}}; if (!converted_content.empty()) { new_msg["content"] = converted_content; } else if (has_tool_calls) { new_msg["content"] = ""; } if (!tool_calls.empty()) { new_msg["tool_calls"] = tool_calls; } oai_messages.push_back(new_msg); } for (const auto & tool_msg : tool_results) { oai_messages.push_back(tool_msg); } } } oai_body["messages"] = oai_messages; // Convert tools if (body.contains("tools")) { const json & tools = body.at("tools"); if (tools.is_array()) { json oai_tools = json::array(); for (const auto & tool : tools) { oai_tools.push_back({ {"type", "function"}, {"function", { {"name", json_value(tool, "name", std::string())}, {"description", json_value(tool, "description", std::string())}, {"parameters", tool.contains("input_schema") ? tool.at("input_schema") : json::object()} }} }); } oai_body["tools"] = oai_tools; } } // Convert tool_choice if (body.contains("tool_choice")) { const json & tc = body.at("tool_choice"); if (tc.is_object()) { std::string type = json_value(tc, "type", std::string()); if (type == "auto") { oai_body["tool_choice"] = "auto"; } else if (type == "any" || type == "tool") { oai_body["tool_choice"] = "required"; } } } // Convert stop_sequences to stop if (body.contains("stop_sequences")) { oai_body["stop"] = body.at("stop_sequences"); } // Handle max_tokens (required in Anthropic, but we're permissive) if (body.contains("max_tokens")) { oai_body["max_tokens"] = body.at("max_tokens"); } else { oai_body["max_tokens"] = 4096; } // Pass through common params for (const auto & key : {"temperature", "top_p", "top_k", "stream"}) { if (body.contains(key)) { oai_body[key] = body.at(key); } } // Handle Anthropic-specific thinking param if (body.contains("thinking")) { json thinking = json_value(body, "thinking", json::object()); std::string thinking_type = json_value(thinking, "type", std::string()); if (thinking_type == "enabled") { int budget_tokens = json_value(thinking, "budget_tokens", 10000); oai_body["thinking_budget_tokens"] = budget_tokens; } } // Handle Anthropic-specific metadata param if (body.contains("metadata")) { json metadata = json_value(body, "metadata", json::object()); std::string user_id = json_value(metadata, "user_id", std::string()); if (!user_id.empty()) { oai_body["__metadata_user_id"] = user_id; } } return oai_body; } json format_embeddings_response_oaicompat( const json & request, const std::string & model_name, const json & embeddings, bool use_base64) { json data = json::array(); int32_t n_tokens = 0; int i = 0; for (const auto & elem : embeddings) { json embedding_obj; if (use_base64) { const auto& vec = json_value(elem, "embedding", json::array()).get>(); const char* data_ptr = reinterpret_cast(vec.data()); size_t data_size = vec.size() * sizeof(float); embedding_obj = { {"embedding", base64::encode(data_ptr, data_size)}, {"index", i++}, {"object", "embedding"}, {"encoding_format", "base64"} }; } else { embedding_obj = { {"embedding", json_value(elem, "embedding", json::array())}, {"index", i++}, {"object", "embedding"} }; } data.push_back(embedding_obj); n_tokens += json_value(elem, "tokens_evaluated", 0); } json res = json { {"model", json_value(request, "model", model_name)}, {"object", "list"}, {"usage", json { {"prompt_tokens", n_tokens}, {"total_tokens", n_tokens} }}, {"data", data} }; return res; } json format_response_rerank( const json & request, const std::string & model_name, const json & ranks, bool is_tei_format, std::vector & texts, int top_n) { int32_t n_tokens = 0; bool return_text = is_tei_format && json_value(request, "return_text", false); std::vector elements; // Temporary vector to hold unsorted elements std::string score_label = is_tei_format ? "score" : "relevance_score"; for (const auto & rank : ranks) { int index = json_value(rank, "index", 0); json elem = json{ {"index", index}, {score_label, json_value(rank, "score", 0.0)}, }; n_tokens += json_value(rank, "tokens_evaluated", 0); if (return_text) { elem["text"] = std::move(texts[index]); } elements.push_back(elem); } std::sort(elements.begin(), elements.end(), [score_label](const json& a, const json& b) { return json_value(a, score_label, 0.0) > json_value(b, score_label, 0.0); }); elements.resize(std::min(top_n, (int)elements.size())); json results = elements; if (is_tei_format) return results; json res = json{ {"model", json_value(request, "model", model_name)}, {"object", "list"}, {"usage", json{ {"prompt_tokens", n_tokens}, {"total_tokens", n_tokens} }}, {"results", results} }; return res; } // // other utils // std::vector get_token_probabilities(llama_context * ctx, int idx) { std::vector cur; const auto * logits = llama_get_logits_ith(ctx, idx); const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx); const int n_logits = llama_get_sampled_logits_count_ith(ctx, idx); cur.resize(n_logits); if (sampled_ids) { for (int i = 0; i < n_logits; i++) { cur[i] = llama_token_data{sampled_ids[i], logits[i], 0.0f}; } } else { for (llama_token token_id = 0; token_id < n_logits; token_id++) { cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; } } // sort tokens by logits std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }); // apply softmax float max_l = cur[0].logit; float cum_sum = 0.0f; for (size_t i = 0; i < cur.size(); ++i) { float p = expf(cur[i].logit - max_l); cur[i].p = p; cum_sum += p; } for (size_t i = 0; i < cur.size(); ++i) { cur[i].p /= cum_sum; } return cur; } std::string safe_json_to_str(const json & data) { return data.dump(-1, ' ', false, json::error_handler_t::replace); } // TODO: reuse llama_detokenize template static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) { std::string ret; for (; begin != end; ++begin) { ret += common_token_to_piece(ctx, *begin); } return ret; } std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens) { return tokens_to_str(ctx, tokens.begin(), tokens.end()); } // format incomplete utf-8 multibyte character for output std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) { std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token); // if the size is 1 and first bit is 1, meaning it's a partial character // (size > 1 meaning it's already a known token) if (out.size() == 1 && (out[0] & 0x80) == 0x80) { std::stringstream ss; ss << std::hex << (out[0] & 0xff); std::string res(ss.str()); out = "byte: \\x" + res; } return out; } // format server-sent event (SSE), return the formatted string to send // note: if data is a json array, it will be sent as multiple events, one per item std::string format_oai_sse(const json & data) { std::ostringstream ss; auto send_single = [&ss](const json & data) { ss << "data: " << safe_json_to_str(data) << "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row). }; if (data.is_array()) { for (const auto & item : data) { send_single(item); } } else { send_single(data); } return ss.str(); } std::string format_anthropic_sse(const json & data) { std::ostringstream ss; auto send_event = [&ss](const json & event_obj) { if (event_obj.contains("event") && event_obj.contains("data")) { ss << "event: " << event_obj.at("event").get() << "\n"; ss << "data: " << safe_json_to_str(event_obj.at("data")) << "\n\n"; } else { ss << "data: " << safe_json_to_str(event_obj) << "\n\n"; } }; if (data.is_array()) { for (const auto & event : data) { send_event(event); } } else { send_event(data); } return ss.str(); } bool is_valid_utf8(const std::string & str) { const unsigned char* bytes = reinterpret_cast(str.data()); const unsigned char* end = bytes + str.length(); while (bytes < end) { if (*bytes <= 0x7F) { // 1-byte sequence (0xxxxxxx) bytes++; } else if ((*bytes & 0xE0) == 0xC0) { // 2-byte sequence (110xxxxx 10xxxxxx) if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80) return false; bytes += 2; } else if ((*bytes & 0xF0) == 0xE0) { // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx) if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80) return false; bytes += 3; } else if ((*bytes & 0xF8) == 0xF0) { // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx) if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80) return false; bytes += 4; } else { // Invalid UTF-8 lead byte return false; } } return true; } llama_tokens format_prompt_infill( const llama_vocab * vocab, const json & input_prefix, const json & input_suffix, const json & input_extra, const int n_batch, const int n_predict, const int n_ctx, const bool spm_infill, const llama_tokens & tokens_prompt ) { // TODO: optimize this block by reducing memory allocations and movement // use FIM repo-level pattern: // ref: https://arxiv.org/pdf/2409.12186 // // [FIM_REP]myproject // [FIM_SEP]filename0 // extra chunk 0 // [FIM_SEP]filename1 // extra chunk 1 // ... // [FIM_SEP]filename // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt // llama_tokens extra_tokens; extra_tokens.reserve(n_ctx); auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false); auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false); if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) { // TODO: make project name an input static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false); extra_tokens.push_back(llama_vocab_fim_rep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end()); } for (const auto & chunk : input_extra) { // { "text": string, "filename": string } const std::string text = json_value(chunk, "text", std::string()); const std::string filename = json_value(chunk, "filename", std::string("tmp")); if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } else { // chunk separator in binary form to avoid confusing the AI static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00}; static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false); extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end()); } const auto chunk_tokens = common_tokenize(vocab, text, false, false); extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end()); } if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) { // TODO: current filename static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false); extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab)); extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end()); } // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?) const int n_prefix_take = std::min(tokens_prefix.size(), 3*(n_batch/4)); const int n_suffix_take = std::min(tokens_suffix.size(), std::max(0, (n_batch/4) - (2 + tokens_prompt.size()))); SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take)); // fill the rest of the context with extra chunks const int n_extra_take = std::min(std::max(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size()); tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take); tokens_suffix.resize(n_suffix_take); tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab)); tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end()); tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab)); auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix; auto embd_end = spm_infill ? tokens_prefix : tokens_suffix; if (llama_vocab_get_add_bos(vocab)) { embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab)); } SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size()); // put the extra context before the FIM prefix embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end()); embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end()); embd_inp.push_back(llama_vocab_fim_mid(vocab)); return embd_inp; } server_tokens format_prompt_rerank( const struct llama_model * model, const struct llama_vocab * vocab, mtmd_context * mctx, const std::string & query, const std::string & doc) { server_tokens result = {}; const char * rerank_prompt = llama_model_chat_template(model, "rerank"); if (rerank_prompt != nullptr) { std::string prompt = rerank_prompt; string_replace_all(prompt, "{query}" , query); string_replace_all(prompt, "{document}", doc ); server_tokens tokens = tokenize_input_subprompt(vocab, mctx, prompt, false, true); result.push_back(tokens); } else { // Get EOS token - use SEP token as fallback if EOS is not available server_tokens query_tokens = tokenize_input_subprompt(vocab, mctx, query, false, false); server_tokens doc_tokens = tokenize_input_subprompt(vocab, mctx, doc, false, false); llama_token eos_token = llama_vocab_eos(vocab); if (eos_token == LLAMA_TOKEN_NULL) { eos_token = llama_vocab_sep(vocab); } if (llama_vocab_get_add_bos(vocab)) { result.push_back(llama_vocab_bos(vocab)); } result.push_back(query_tokens); if (llama_vocab_get_add_eos(vocab)) { result.push_back(eos_token); } if (llama_vocab_get_add_sep(vocab)) { result.push_back(llama_vocab_sep(vocab)); } result.push_back(doc_tokens); if (llama_vocab_get_add_eos(vocab)) { result.push_back(eos_token); } } return result; }