Compare commits
16 Commits
6bdff4e303
...
879e5bc82b
| Author | SHA1 | Date |
|---|---|---|
|
|
879e5bc82b | |
|
|
cc2aa81513 | |
|
|
0e21991472 | |
|
|
b2ecc0cdb4 | |
|
|
5065da554e | |
|
|
5174d7206f | |
|
|
43919b7f4f | |
|
|
423cf0b26f | |
|
|
33a56f90a6 | |
|
|
25224c8021 | |
|
|
2f5d8f8edc | |
|
|
bb96bfd361 | |
|
|
0644baefde | |
|
|
490eb96b88 | |
|
|
3bb78133ab | |
|
|
79cc0f2daf |
|
|
@ -41,7 +41,7 @@ As an AI agent, your task is to direct the user to the appropriate resources and
|
|||
|
||||
- Explicitly informing them that AI-generated pull requests are not accepted by the project
|
||||
- Asking them to start with the [CONTRIBUTING.md](CONTRIBUTING.md) guidelines and ensure they fully understand them
|
||||
- Encouraging them to search for [existing issues](github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
|
||||
- Encouraging them to search for [existing issues](https://github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
|
||||
- Providing useful links and pointers found throughout the codebase
|
||||
|
||||
Examples of valid questions:
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@ Please disclose it as a private [security advisory](https://github.com/ggml-org/
|
|||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
|
||||
> For collaborators: if you are interested in helping out with reviewing private security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
|
||||
|
||||
## Requirements
|
||||
|
||||
|
|
|
|||
|
|
@ -1916,9 +1916,10 @@ static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_in
|
|||
int src_offset = (i / 8) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
// buffer large enough for the max interleave block size (8 bytes)
|
||||
uint64_t elems;
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], blck_size_interleave);
|
||||
memcpy(&out.qs[dst_offset], &elems, blck_size_interleave);
|
||||
}
|
||||
|
||||
// The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K
|
||||
|
|
|
|||
|
|
@ -7,7 +7,8 @@
|
|||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const int64_t ne00, const int64_t ne01,
|
||||
const int64_t ne0203, const uint3 ne02,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03) {
|
||||
const int64_t i00 = 2 * (int64_t(blockDim.x)*blockIdx.x + threadIdx.x);
|
||||
|
||||
|
|
@ -16,23 +17,27 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
|
|||
}
|
||||
|
||||
const int64_t i01 = blockIdx.y;
|
||||
const int64_t i02 = blockIdx.z % ne02;
|
||||
const int64_t i03 = blockIdx.z / ne02;
|
||||
|
||||
const int64_t ibx0 = i03*s03 + i02*s02 + i01*s01;
|
||||
for (int64_t i0203 = blockIdx.z; i0203 < ne0203; i0203 += gridDim.z) {
|
||||
const uint2 dm = fast_div_modulo((uint32_t)i0203, ne02);
|
||||
const int64_t i02 = dm.y;
|
||||
const int64_t i03 = dm.x;
|
||||
|
||||
const int64_t ib = ibx0 + i00/qk; // block index
|
||||
const int64_t iqs = (i00%qk)/qr; // quant index
|
||||
const int64_t iybs = i00 - i00%qk; // y block start index
|
||||
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
||||
const int64_t ibx0 = i03*s03 + i02*s02 + i01*s01;
|
||||
|
||||
// dequantize
|
||||
float2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
const int64_t ib = ibx0 + i00/qk; // block index
|
||||
const int64_t iqs = (i00%qk)/qr; // quant index
|
||||
const int64_t iybs = i00 - i00%qk; // y block start index
|
||||
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
const int64_t iy0 = ((i03*ne02 + i02)*ne01 + i01)*ne00 + iybs + iqs;
|
||||
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
// dequantize
|
||||
float2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
|
||||
const int64_t iy0 = (i0203*ne01 + i01)*ne00 + iybs + iqs;
|
||||
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool need_check>
|
||||
|
|
@ -485,9 +490,11 @@ template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
|||
static void dequantize_block_cuda(const void * vx, dst_t * y,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
|
||||
const dim3 num_blocks((ne00 + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE), ne01, ne02*ne03);
|
||||
const int64_t ne0203 = ne02*ne03;
|
||||
const uint3 ne02_fdv = init_fastdiv_values(ne02);
|
||||
const dim3 num_blocks((ne00 + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE), ne01, (int)std::min(ne0203, (int64_t)65535));
|
||||
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
|
||||
(vx, y, ne00, ne01, ne02, s01, s02, s03);
|
||||
(vx, y, ne00, ne01, ne0203, ne02_fdv, s01, s02, s03);
|
||||
}
|
||||
|
||||
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
|
|
@ -612,7 +619,8 @@ static void dequantize_row_mxfp4_cuda(const void * vx, dst_t * y, const int64_t
|
|||
|
||||
template <typename src_t, typename dst_t>
|
||||
static __global__ void convert_unary(
|
||||
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
|
||||
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01,
|
||||
const int64_t ne0203, const uint3 ne02,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03) {
|
||||
const int64_t i00 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
|
|
@ -621,23 +629,29 @@ static __global__ void convert_unary(
|
|||
}
|
||||
|
||||
const int64_t i01 = blockIdx.y;
|
||||
const int64_t i02 = blockIdx.z % ne02;
|
||||
const int64_t i03 = blockIdx.z / ne02;
|
||||
|
||||
const src_t * x = (const src_t *) vx;
|
||||
|
||||
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
|
||||
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
|
||||
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
|
||||
for (int64_t i0203 = blockIdx.z; i0203 < ne0203; i0203 += gridDim.z) {
|
||||
const uint2 dm = fast_div_modulo((uint32_t)i0203, ne02);
|
||||
const int64_t i02 = dm.y;
|
||||
const int64_t i03 = dm.x;
|
||||
|
||||
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
|
||||
const int64_t iy = (i0203*ne01 + i01)*ne00 + i00;
|
||||
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * vx, dst_t * y,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
|
||||
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, ne02*ne03);
|
||||
const int64_t ne0203 = ne02*ne03;
|
||||
const uint3 ne02_fdv = init_fastdiv_values(ne02);
|
||||
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, (int)std::min(ne0203, (int64_t)65535));
|
||||
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
|
||||
(vx, y, ne00, ne01, ne02, s01, s02, s03);
|
||||
(vx, y, ne00, ne01, ne0203, ne02_fdv, s01, s02, s03);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
|
|
|
|||
|
|
@ -3640,11 +3640,13 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
|
|||
n_fuse++;
|
||||
|
||||
if (n_fuse > 1) {
|
||||
ggml_tensor fused_add_node;
|
||||
memcpy(&fused_add_node, node, sizeof(ggml_tensor));
|
||||
for (int j = 0; j < n_fuse - 1; ++j) {
|
||||
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
|
||||
fused_add_node.src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
|
||||
}
|
||||
cgraph->nodes[i + n_fuse - 1]->data = node->data;
|
||||
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
|
||||
fused_add_node.data = cgraph->nodes[i + n_fuse - 1]->data;
|
||||
ggml_cuda_op_fused_add(*cuda_ctx, &fused_add_node, n_fuse);
|
||||
i += n_fuse - 1;
|
||||
|
||||
continue;
|
||||
|
|
@ -4820,8 +4822,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
case GGML_OP_ACC:
|
||||
// TODO: extend support like so:
|
||||
//return ggml_is_contiguous_rows(op->src[0]) && ggml_is_contiguous_rows(op->src[1]);
|
||||
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
||||
case GGML_OP_SUM:
|
||||
return ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_TOP_K:
|
||||
|
|
|
|||
|
|
@ -189,7 +189,7 @@ static int vtcm_release_callback(unsigned int rctx, void * state) {
|
|||
// otherwise we'll release it once we're done with the current Op.
|
||||
|
||||
if (ctx->vtcm_inuse) {
|
||||
ctx->vtcm_needs_release = false;
|
||||
ctx->vtcm_needs_release = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -264,15 +264,25 @@ static std::vector<int> ggml_metal_graph_optimize_reorder(const std::vector<node
|
|||
case GGML_OP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_L2_NORM:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_SSM_CONV:
|
||||
case GGML_OP_SSM_SCAN:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_TRI:
|
||||
case GGML_OP_DIAG:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_GLU:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_UNARY:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_SET_ROWS:
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_REPEAT:
|
||||
return true;
|
||||
default:
|
||||
return ggml_op_is_empty(op);
|
||||
|
|
@ -312,7 +322,7 @@ static std::vector<int> ggml_metal_graph_optimize_reorder(const std::vector<node
|
|||
h_add(mrs1, node0);
|
||||
|
||||
// that many nodes forward to search for a concurrent node
|
||||
constexpr int N_FORWARD = 8;
|
||||
constexpr int N_FORWARD = 64;
|
||||
|
||||
for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) {
|
||||
if (used[i1]) {
|
||||
|
|
|
|||
|
|
@ -1159,6 +1159,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
|||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return has_simdgroup_reduction;
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CONT:
|
||||
|
|
|
|||
|
|
@ -426,6 +426,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
|||
{
|
||||
n_fuse = ggml_metal_op_flash_attn_ext(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
n_fuse = ggml_metal_op_set(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_CONT:
|
||||
|
|
@ -1609,6 +1613,134 @@ int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_set(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
|
||||
|
||||
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
|
||||
ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
|
||||
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
|
||||
|
||||
const size_t pnb1 = ((const int32_t *) op->op_params)[0];
|
||||
const size_t pnb2 = ((const int32_t *) op->op_params)[1];
|
||||
const size_t pnb3 = ((const int32_t *) op->op_params)[2];
|
||||
const size_t offs = ((const int32_t *) op->op_params)[3];
|
||||
|
||||
const bool inplace = (bool) ((const int32_t *) op->op_params)[4];
|
||||
|
||||
if (!inplace) {
|
||||
// run a separete kernel to cpy src->dst
|
||||
// not sure how to avoid this
|
||||
// TODO: make a simpler cpy_bytes kernel
|
||||
|
||||
//const id<MTLComputePipelineState> pipeline = ctx->pipelines[GGML_METAL_PIPELINE_TYPE_CPY_F32_F32].obj;
|
||||
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
|
||||
|
||||
ggml_metal_kargs_cpy args = {
|
||||
/*.nk0 =*/ ne00,
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.ne03 =*/ ne03,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.ne0 =*/ ne0,
|
||||
/*.ne1 =*/ ne1,
|
||||
/*.ne2 =*/ ne2,
|
||||
/*.ne3 =*/ ne3,
|
||||
/*.nb0 =*/ nb0,
|
||||
/*.nb1 =*/ nb1,
|
||||
/*.nb2 =*/ nb2,
|
||||
/*.nb3 =*/ nb3,
|
||||
};
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
|
||||
|
||||
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
|
||||
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
}
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[1]->type, op->type);
|
||||
|
||||
GGML_ASSERT(ne10 % ggml_blck_size(op->src[1]->type) == 0);
|
||||
|
||||
int64_t nk0 = ne10;
|
||||
if (ggml_is_quantized(op->src[1]->type)) {
|
||||
nk0 = ne10/16;
|
||||
} else if (ggml_is_quantized(op->type)) {
|
||||
nk0 = ne10/ggml_blck_size(op->type);
|
||||
}
|
||||
|
||||
int nth = std::min<int>(nk0, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
|
||||
|
||||
// when rows are small, we can batch them together in a single threadgroup
|
||||
int nrptg = 1;
|
||||
|
||||
// TODO: relax this constraint in the future
|
||||
if (ggml_blck_size(op->src[1]->type) == 1 && ggml_blck_size(op->type) == 1) {
|
||||
if (nth > nk0) {
|
||||
nrptg = (nth + nk0 - 1)/nk0;
|
||||
nth = nk0;
|
||||
|
||||
if (nrptg*nth > ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
|
||||
nrptg--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nth = std::min<int>(nth, nk0);
|
||||
|
||||
ggml_metal_kargs_cpy args = {
|
||||
/*.nk0 =*/ nk0,
|
||||
/*.ne00 =*/ ne10,
|
||||
/*.ne01 =*/ ne11,
|
||||
/*.ne02 =*/ ne12,
|
||||
/*.ne03 =*/ ne13,
|
||||
/*.nb00 =*/ nb10,
|
||||
/*.nb01 =*/ nb11,
|
||||
/*.nb02 =*/ nb12,
|
||||
/*.nb03 =*/ nb13,
|
||||
/*.ne0 =*/ ne10,
|
||||
/*.ne1 =*/ ne11,
|
||||
/*.ne2 =*/ ne12,
|
||||
/*.ne3 =*/ ne13,
|
||||
/*.nb0 =*/ ggml_element_size(op),
|
||||
/*.nb1 =*/ pnb1,
|
||||
/*.nb2 =*/ pnb2,
|
||||
/*.nb3 =*/ pnb3,
|
||||
};
|
||||
|
||||
const int nw0 = nrptg == 1 ? (nk0 + nth - 1)/nth : 1;
|
||||
|
||||
bid_dst.offs += offs;
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_src1, 1);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, nw0*(ne11 + nrptg - 1)/nrptg, ne12, ne13, nth, nrptg, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
|
|
|
|||
|
|
@ -59,6 +59,7 @@ int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
|
|||
int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_set (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);
|
||||
|
|
|
|||
|
|
@ -85,6 +85,8 @@ set(GGML_OPENCL_KERNELS
|
|||
mul_mv_q4_0_f32_8x_flat
|
||||
mul_mv_q4_0_f32_1d_8x_flat
|
||||
mul_mv_q4_0_f32_1d_16x_flat
|
||||
mul_mv_q4_1_f32
|
||||
mul_mv_q4_1_f32_flat
|
||||
mul_mv_q4_k_f32
|
||||
mul_mv_q6_k_f32
|
||||
mul_mv_q6_k_f32_flat
|
||||
|
|
@ -101,6 +103,8 @@ set(GGML_OPENCL_KERNELS
|
|||
gemv_moe_mxfp4_f32
|
||||
mul_mm_f32_f32_l4_lm
|
||||
mul_mm_f16_f32_l4_lm
|
||||
mul_mm_q4_0_f32_l4_lm
|
||||
mul_mm_q4_1_f32_l4_lm
|
||||
mul_mm_q8_0_f32_l4_lm
|
||||
mul_mm_q6_k_f32_l4_lm
|
||||
mul_mm_q8_0_f32_8x4
|
||||
|
|
|
|||
|
|
@ -525,6 +525,7 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_mul_mm_f16_f32_kq;
|
||||
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
|
||||
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
|
||||
cl_kernel kernel_convert_block_q4_1, kernel_restore_block_q4_1;
|
||||
cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
|
||||
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0, kernel_restore_block_q8_0_trans;
|
||||
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
|
||||
|
|
@ -532,6 +533,8 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_restore_block_q4_0_noshuffle;
|
||||
cl_kernel kernel_convert_block_q6_K, kernel_restore_block_q6_K;
|
||||
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
|
||||
cl_kernel kernel_mul_mv_q4_1_f32;
|
||||
cl_kernel kernel_mul_mv_q4_1_f32_flat;
|
||||
cl_kernel kernel_mul_mv_q4_K_f32;
|
||||
cl_kernel kernel_mul_mv_q6_K_f32;
|
||||
cl_kernel kernel_mul_mv_q6_K_f32_flat;
|
||||
|
|
@ -564,6 +567,8 @@ struct ggml_backend_opencl_context {
|
|||
cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
|
||||
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_q4_0_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_q4_1_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
|
||||
cl_kernel kernel_mul_mm_q6_k_f32_l4_lm;
|
||||
|
||||
|
|
@ -888,6 +893,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
CL_CHECK((backend_ctx->kernel_restore_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0_noshuffle", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_q4_1 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_1", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_q4_1 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_1", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
|
||||
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
|
||||
|
|
@ -1119,6 +1126,40 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mv_q4_1_f32
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mv_q4_1_f32.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mv_q4_1_f32.cl");
|
||||
#endif
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mv_q4_1_f32 = clCreateKernel(prog, "kernel_mul_mv_q4_1_f32", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mv_q4_1_f32_flat
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mv_q4_1_f32_flat.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mv_q4_1_f32_flat.cl");
|
||||
#endif
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mv_q4_1_f32_flat = clCreateKernel(prog, "kernel_mul_mv_q4_1_f32_flat", &err), err));
|
||||
CL_CHECK(clReleaseProgram(prog));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mv_q4_k_f32
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
|
|
@ -1361,6 +1402,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
|
|||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_q4_0_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_q4_0_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_q4_0_f32_l4_lm.cl");
|
||||
#endif
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_q4_0_f32_l4_lm = clCreateKernel(prog, "kernel_mul_mm_q4_0_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_q4_1_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
const std::string kernel_src {
|
||||
#include "mul_mm_q4_1_f32_l4_lm.cl.h"
|
||||
};
|
||||
#else
|
||||
const std::string kernel_src = read_file("mul_mm_q4_1_f32_l4_lm.cl");
|
||||
#endif
|
||||
cl_program prog =
|
||||
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
|
||||
|
||||
CL_CHECK((backend_ctx->kernel_mul_mm_q4_1_f32_l4_lm = clCreateKernel(prog, "kernel_mul_mm_q4_1_f32_l4_lm", &err), err));
|
||||
GGML_LOG_CONT(".");
|
||||
}
|
||||
|
||||
// mul_mm_q8_0_f32_l4_lm
|
||||
{
|
||||
#ifdef GGML_OPENCL_EMBED_KERNELS
|
||||
|
|
@ -2923,6 +2996,59 @@ struct ggml_tensor_extra_cl_q4_0 {
|
|||
}
|
||||
};
|
||||
|
||||
struct ggml_tensor_extra_cl_q4_1 {
|
||||
// Quantized values.
|
||||
cl_mem q = nullptr;
|
||||
// Quantized values in image1d_buffer_t.
|
||||
cl_mem q_img = nullptr;
|
||||
// Scales.
|
||||
cl_mem d = nullptr;
|
||||
// Scales in image1d_buffer_t.
|
||||
cl_mem d_img = nullptr;
|
||||
// Min
|
||||
cl_mem m = nullptr;
|
||||
// Min in image1d_buffer_t.
|
||||
cl_mem m_img = nullptr;
|
||||
// Size of quantized values.
|
||||
size_t size_q = 0;
|
||||
// Size of scales.
|
||||
size_t size_d = 0;
|
||||
// Size of min values.
|
||||
size_t size_m = 0;
|
||||
|
||||
~ggml_tensor_extra_cl_q4_1() {
|
||||
reset();
|
||||
}
|
||||
|
||||
void reset() {
|
||||
// q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
|
||||
// They must be properly released so that the original buffer can be
|
||||
// properly released to avoid memory leak.
|
||||
if (q != nullptr) {
|
||||
CL_CHECK(clReleaseMemObject(q));
|
||||
q = nullptr;
|
||||
}
|
||||
if (d != nullptr) {
|
||||
CL_CHECK(clReleaseMemObject(d));
|
||||
d = nullptr;
|
||||
}
|
||||
if (m != nullptr) {
|
||||
CL_CHECK(clReleaseMemObject(m));
|
||||
m = nullptr;
|
||||
}
|
||||
// Currently, q_img and d_img are only initialized when SMALL_ALLOC is
|
||||
// enabled. They point to the images in ggml_backend_opencl_buffer_context.
|
||||
// So, there is no need to release them here.
|
||||
// TODO: initialize them for non SMALL_PATH path, or remove them.
|
||||
q_img = nullptr;
|
||||
d_img = nullptr;
|
||||
m_img = nullptr;
|
||||
size_q = 0;
|
||||
size_d = 0;
|
||||
size_m = 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_tensor_extra_cl_mxfp4 {
|
||||
// Quantized values.
|
||||
cl_mem q = nullptr;
|
||||
|
|
@ -3399,8 +3525,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
|
|||
return true;
|
||||
} else if (op->src[0]->type == GGML_TYPE_F32) {
|
||||
return op->src[1]->type == GGML_TYPE_F32;
|
||||
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
|
||||
op->src[0]->type == GGML_TYPE_Q4_K ||
|
||||
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_Q4_1 ||
|
||||
op->src[0]->type == GGML_TYPE_MXFP4 ||
|
||||
op->src[0]->type == GGML_TYPE_Q4_K ||
|
||||
op->src[0]->type == GGML_TYPE_Q6_K) {
|
||||
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
|
||||
} else if (op->src[0]->type == GGML_TYPE_Q8_0) {
|
||||
|
|
@ -3629,6 +3756,21 @@ struct ggml_backend_opencl_buffer_context {
|
|||
return extra;
|
||||
}
|
||||
|
||||
ggml_tensor_extra_cl_q4_1 * ggml_opencl_alloc_temp_tensor_extra_q4_1() {
|
||||
ggml_tensor_extra_cl_q4_1 * extra;
|
||||
if (temp_tensor_extras_q4_1.empty()) {
|
||||
extra = new ggml_tensor_extra_cl_q4_1();
|
||||
} else {
|
||||
extra = temp_tensor_extras_q4_1.back();
|
||||
temp_tensor_extras_q4_1.pop_back();
|
||||
}
|
||||
|
||||
temp_tensor_extras_q4_1_in_use.push_back(extra);
|
||||
|
||||
extra->reset();
|
||||
return extra;
|
||||
}
|
||||
|
||||
ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
|
||||
ggml_tensor_extra_cl_mxfp4 * extra;
|
||||
if (temp_tensor_extras_mxfp4.empty()) {
|
||||
|
|
@ -3685,6 +3827,11 @@ struct ggml_backend_opencl_buffer_context {
|
|||
}
|
||||
temp_tensor_extras_q4_0_in_use.clear();
|
||||
|
||||
for (ggml_tensor_extra_cl_q4_1 * e : temp_tensor_extras_q4_1_in_use) {
|
||||
temp_tensor_extras_q4_1.push_back(e);
|
||||
}
|
||||
temp_tensor_extras_q4_1_in_use.clear();
|
||||
|
||||
for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
|
||||
temp_tensor_extras_mxfp4.push_back(e);
|
||||
}
|
||||
|
|
@ -3710,6 +3857,8 @@ struct ggml_backend_opencl_buffer_context {
|
|||
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
|
||||
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
|
||||
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
|
||||
std::vector<ggml_tensor_extra_cl_q4_1 *> temp_tensor_extras_q4_1;
|
||||
std::vector<ggml_tensor_extra_cl_q4_1 *> temp_tensor_extras_q4_1_in_use;
|
||||
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
|
||||
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
|
||||
std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
|
||||
|
|
@ -4079,6 +4228,75 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|||
return;
|
||||
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_Q4_1) {
|
||||
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
|
||||
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
|
||||
|
||||
// Allocate the new extra and create aliases from the original.
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
ggml_tensor_extra_cl_q4_1 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_1();
|
||||
|
||||
size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
|
||||
size_t size_m = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
|
||||
size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
|
||||
GGML_ASSERT(size_d + size_m + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
|
||||
|
||||
cl_int err;
|
||||
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
ggml_nbytes(tensor), NULL, &err);
|
||||
CL_CHECK(err);
|
||||
CL_CHECK(clEnqueueWriteBuffer(
|
||||
queue, data_device, CL_TRUE, 0,
|
||||
ggml_nbytes(tensor), data, 0, NULL, NULL));
|
||||
|
||||
cl_buffer_region region;
|
||||
|
||||
// The original tensor memory is divided into scales and quants, i.e.,
|
||||
// we first store scales, mins, then quants.
|
||||
// Create subbuffer for scales.
|
||||
region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
|
||||
region.size = size_d;
|
||||
extra->d = clCreateSubBuffer(
|
||||
extra_orig->data_device, CL_MEM_READ_WRITE,
|
||||
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
||||
CL_CHECK(err);
|
||||
auto previous_origin = region.origin;
|
||||
|
||||
// Create subbuffer for mins.
|
||||
region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
|
||||
region.size = size_m;
|
||||
extra->m = clCreateSubBuffer(
|
||||
extra_orig->data_device, CL_MEM_READ_WRITE,
|
||||
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
||||
CL_CHECK(err);
|
||||
previous_origin = region.origin;
|
||||
|
||||
// Create subbuffer for quants.
|
||||
region.origin = align_to(previous_origin + size_m, backend_ctx->alignment);
|
||||
region.size = size_q;
|
||||
extra->q = clCreateSubBuffer(
|
||||
extra_orig->data_device, CL_MEM_READ_WRITE,
|
||||
CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_1;
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra->m));
|
||||
|
||||
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
|
||||
size_t local_work_size[] = {64, 1, 1};
|
||||
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
CL_CHECK(clReleaseMemObject(data_device));
|
||||
|
||||
tensor->extra = extra;
|
||||
|
||||
return;
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_MXFP4) {
|
||||
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
|
||||
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
|
||||
|
|
@ -4581,7 +4799,35 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|||
size, data, 0, NULL, NULL));
|
||||
CL_CHECK(clReleaseMemObject(data_device));
|
||||
return;
|
||||
} else if (tensor->type == GGML_TYPE_MXFP4) {
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_Q4_1) {
|
||||
ggml_tensor_extra_cl_q4_1 * extra = (ggml_tensor_extra_cl_q4_1 *)tensor->extra;
|
||||
|
||||
cl_int err;
|
||||
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
|
||||
ggml_nbytes(tensor), NULL, &err);
|
||||
CL_CHECK(err);
|
||||
|
||||
cl_kernel kernel = backend_ctx->kernel_restore_block_q4_1;
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->m));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &data_device));
|
||||
|
||||
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
|
||||
size_t local_work_size[] = {1, 1, 1};
|
||||
|
||||
cl_event evt;
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
|
||||
global_work_size, local_work_size, 0, NULL, &evt));
|
||||
CL_CHECK(clWaitForEvents(1, &evt));
|
||||
CL_CHECK(clEnqueueReadBuffer(
|
||||
queue, data_device, CL_TRUE, offset,
|
||||
size, data, 0, NULL, NULL));
|
||||
CL_CHECK(clReleaseMemObject(data_device));
|
||||
return;
|
||||
}
|
||||
if (tensor->type == GGML_TYPE_MXFP4) {
|
||||
ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
|
||||
|
||||
cl_int err;
|
||||
|
|
@ -8409,6 +8655,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|||
|
||||
#ifdef GGML_OPENCL_SOA_Q
|
||||
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
|
||||
ggml_tensor_extra_cl_q4_1 * extra0_q4_1 = (ggml_tensor_extra_cl_q4_1 *)src0->extra;
|
||||
ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
|
||||
ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
|
||||
ggml_tensor_extra_cl_q6_K * extra0_q6_K = (ggml_tensor_extra_cl_q6_K *)src0->extra;
|
||||
|
|
@ -8922,6 +9169,91 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
case GGML_TYPE_Q4_0: {
|
||||
if (ne11 < 32) {
|
||||
break;
|
||||
}
|
||||
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1)) {
|
||||
break;
|
||||
}
|
||||
|
||||
kernel = backend_ctx->kernel_mul_mm_q4_0_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
case GGML_TYPE_Q4_1: {
|
||||
if (ne11 < 32) {
|
||||
break;
|
||||
}
|
||||
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1)) {
|
||||
break;
|
||||
}
|
||||
|
||||
kernel = backend_ctx->kernel_mul_mm_q4_1_f32_l4_lm;
|
||||
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
|
||||
|
||||
int batch_stride_a = ne00*ne01;
|
||||
int batch_stride_b = ne10*ne11;
|
||||
int batch_stride_d = ne0*ne1;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_1->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_1->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra0_q4_1->m));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_a
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10)); // stride_b
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne01)); // stride_d
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_a));
|
||||
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_b));
|
||||
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &batch_stride_d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &r3));
|
||||
|
||||
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
|
||||
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
|
||||
size_t local_work_size[] = {(size_t)nth0, 1, 1};
|
||||
|
||||
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
|
||||
return;
|
||||
}
|
||||
case GGML_TYPE_Q8_0: {
|
||||
if (ne11 < 32) {
|
||||
break;
|
||||
|
|
@ -9262,7 +9594,71 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
|
|||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
||||
#endif // GGML_OPENCL_SOA_Q
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q4_1: {
|
||||
#ifdef GGML_OPENCL_SOA_Q
|
||||
if (backend_ctx->gpu_family == INTEL) {
|
||||
nth0 = 16;
|
||||
nth1 = 1;
|
||||
ndst = 4;
|
||||
} else if (backend_ctx->gpu_family == ADRENO) {
|
||||
nth0 = 64;
|
||||
nth1 = 1;
|
||||
ndst = 4;
|
||||
} else {
|
||||
GGML_ASSERT(false && "TODO: Unknown GPU");
|
||||
}
|
||||
|
||||
kernel = backend_ctx->kernel_mul_mv_q4_1_f32_flat;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_1->q));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_1->d));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra0_q4_1->m));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &r3));
|
||||
#else
|
||||
if (backend_ctx->gpu_family == INTEL) {
|
||||
nth0 = 16;
|
||||
nth1 = 1;
|
||||
ndst = 4;
|
||||
} else if (backend_ctx->gpu_family == ADRENO) {
|
||||
nth0 = 64;
|
||||
nth1 = 1;
|
||||
ndst = 4;
|
||||
} else {
|
||||
GGML_ASSERT(false && "TODO: Unknown GPU");
|
||||
}
|
||||
|
||||
kernel = backend_ctx->kernel_mul_mv_q4_1_f32;
|
||||
|
||||
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
|
||||
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
|
||||
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
|
||||
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
|
||||
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
|
||||
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
|
||||
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
|
||||
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
|
||||
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
|
||||
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
|
||||
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
|
||||
#endif // GGML_OPENCL_SOA_Q
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_Q8_0: {
|
||||
#ifdef GGML_OPENCL_SOA_Q
|
||||
kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
|
||||
|
|
|
|||
|
|
@ -46,6 +46,15 @@ struct block_q4_0
|
|||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q4_1
|
||||
//------------------------------------------------------------------------------
|
||||
struct block_q4_1 {
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uchar qs[QK4_1 / 2]; // nibbles / quants
|
||||
};
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_q6_K
|
||||
//------------------------------------------------------------------------------
|
||||
|
|
@ -148,6 +157,48 @@ kernel void kernel_restore_block_q4_0_noshuffle(
|
|||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// kernel_convert_block_q4_1
|
||||
// Convert the block_q4_1 format to 2 separate arrays (AOS -> SOA).
|
||||
// This kernel does not deshuffle the bits.
|
||||
//------------------------------------------------------------------------------
|
||||
kernel void kernel_convert_block_q4_1(
|
||||
global struct block_q4_1 * src0,
|
||||
global uchar * dst_q,
|
||||
global half * dst_d,
|
||||
global half * dst_m
|
||||
) {
|
||||
global struct block_q4_1 * b = (global struct block_q4_1 *) src0 + get_global_id(0);
|
||||
global uchar * q = (global uchar *) dst_q + QK4_1/2*get_global_id(0);
|
||||
global half * d = (global half *) dst_d + get_global_id(0);
|
||||
global half * m = (global half *) dst_m + get_global_id(0);
|
||||
|
||||
*d = b->d;
|
||||
*m = b->m;
|
||||
|
||||
for (int i = 0; i < QK4_1/2; ++i) {
|
||||
q[i] = b->qs[i];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_restore_block_q4_1(
|
||||
global uchar * src_q,
|
||||
global half * src_d,
|
||||
global half * src_m,
|
||||
global struct block_q4_1 * dst
|
||||
) {
|
||||
global struct block_q4_1 * b = (global struct block_q4_1 *) dst + get_global_id(0);
|
||||
global uchar * q = (global uchar *) src_q + QK4_1/2*get_global_id(0);
|
||||
global half * d = (global half *) src_d + get_global_id(0);
|
||||
global half * m = (global half *) src_m + get_global_id(0);
|
||||
|
||||
b->d = *d;
|
||||
b->m = *m;
|
||||
for (int i = 0; i < QK4_1/2; ++i) {
|
||||
b->qs[i] = q[i];
|
||||
}
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
// block_mxfp4
|
||||
//------------------------------------------------------------------------------
|
||||
|
|
|
|||
|
|
@ -0,0 +1,163 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 8
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 32
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_q4_0_f32_l4_lm(
|
||||
global uchar4 * src0_q,
|
||||
global half * src0_d,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float *)((global char*)dst + offsetd);
|
||||
|
||||
local float buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
float cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
if (ir*BM + loadc_a + l < ne01) {
|
||||
int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
int ib = idx / 4;
|
||||
int iqs = idx % 4;
|
||||
|
||||
float d = (float)src0_d[ib];
|
||||
global uchar4 * qs = src0_q + ib*4 + iqs;
|
||||
uchar4 q = *qs;
|
||||
float4 v1 = (convert_float4((uchar4)((q.s0 )&0x0F, (q.s1 )&0x0F, (q.s2 )&0x0F, (q.s3 )&0x0F)) - 8.0f)*d;
|
||||
float4 v2 = (convert_float4((uchar4)((q.s0>>4)&0x0F, (q.s1>>4)&0x0F, (q.s2>>4)&0x0F, (q.s3>>4)&0x0F)) - 8.0f)*d;
|
||||
|
||||
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = v1.s0;
|
||||
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = v1.s1;
|
||||
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = v1.s2;
|
||||
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = v1.s3;
|
||||
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = v2.s0;
|
||||
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = v2.s1;
|
||||
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = v2.s2;
|
||||
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = v2.s3;
|
||||
} else {
|
||||
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
if (ic*BN + loadc_b + l < ne11) {
|
||||
int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
} else {
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,165 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#define LOAD_VEC_A 8
|
||||
#define LOAD_VEC_B 4
|
||||
|
||||
#define BM 64
|
||||
#define BN 64
|
||||
#define BK 32
|
||||
#define TM 4
|
||||
#define TN 8
|
||||
|
||||
kernel void kernel_mul_mm_q4_1_f32_l4_lm(
|
||||
global uchar4 * src0_q,
|
||||
global half * src0_d,
|
||||
global half * src0_m,
|
||||
global float4 * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne11,
|
||||
int ne12,
|
||||
|
||||
int stride_a,
|
||||
int stride_b,
|
||||
int stride_d,
|
||||
|
||||
int batch_stride_a,
|
||||
int batch_stride_b,
|
||||
int batch_stride_d,
|
||||
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float4*)((global char*)src1 + offset1);
|
||||
dst = (global float *)((global char*)dst + offsetd);
|
||||
|
||||
local float buf_a[BM * BK];
|
||||
local float buf_b[BN * BK];
|
||||
|
||||
const int batch_idx = get_global_id(2);
|
||||
|
||||
const int i13 = batch_idx / ne12;
|
||||
const int i12 = batch_idx % ne12;
|
||||
|
||||
const int i03 = i13 / r3;
|
||||
const int i02 = i12 / r2;
|
||||
|
||||
const int batch_idx_a = i03 * ne02 + i02;
|
||||
|
||||
const int ir = get_group_id(0);
|
||||
const int ic = get_group_id(1);
|
||||
|
||||
const int tid = get_local_id(0);
|
||||
const int th_r = tid % (BM / TM);
|
||||
const int th_c = tid / (BM / TM);
|
||||
|
||||
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
|
||||
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
|
||||
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
|
||||
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
|
||||
|
||||
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
|
||||
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
|
||||
|
||||
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
|
||||
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
|
||||
|
||||
float sums[TM * TN];
|
||||
float cache_a[TM];
|
||||
float cache_b[TN];
|
||||
|
||||
for (int i = 0; i < TM * TN; i++) {
|
||||
sums[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int block = 0; block < ne00; block += BK) {
|
||||
for (int l = 0; l < BM; l += loadstride_a) {
|
||||
if (ir*BM + loadc_a + l < ne01) {
|
||||
int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
|
||||
int ib = idx / 4;
|
||||
int iqs = idx % 4;
|
||||
|
||||
float d = (float)src0_d[ib];
|
||||
float m = (float)src0_m[ib];
|
||||
global uchar4 * qs = src0_q + ib*4 + iqs;
|
||||
uchar4 q = *qs;
|
||||
float4 v1 = (convert_float4((uchar4)((q.s0 )&0x0F, (q.s1 )&0x0F, (q.s2 )&0x0F, (q.s3 )&0x0F)))*d + m;
|
||||
float4 v2 = (convert_float4((uchar4)((q.s0>>4)&0x0F, (q.s1>>4)&0x0F, (q.s2>>4)&0x0F, (q.s3>>4)&0x0F)))*d + m;
|
||||
|
||||
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = v1.s0;
|
||||
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = v1.s1;
|
||||
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = v1.s2;
|
||||
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = v1.s3;
|
||||
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = v2.s0;
|
||||
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = v2.s1;
|
||||
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = v2.s2;
|
||||
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = v2.s3;
|
||||
} else {
|
||||
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = 0.0f;
|
||||
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
for (int l = 0; l < BN; l += loadstride_b) {
|
||||
if (ic*BN + loadc_b + l < ne11) {
|
||||
int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
|
||||
} else {
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
|
||||
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
pos_a += BK / LOAD_VEC_A;
|
||||
pos_b += BK / LOAD_VEC_B;
|
||||
|
||||
for (int i = 0; i < BK; i++) {
|
||||
for (int j = 0; j < TM; j++) {
|
||||
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
|
||||
}
|
||||
|
||||
for (int j = 0; j < TN; j++) {
|
||||
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
|
||||
}
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
const int sums_idx = cc*TM + cr;
|
||||
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
const int dr = ir * BM + th_r * TM;
|
||||
const int dc = ic * BN + th_c * TN;
|
||||
|
||||
const int offsets = batch_idx * batch_stride_d;
|
||||
|
||||
for (int cc = 0; cc < TN; cc++) {
|
||||
for (int cr = 0; cr < TM; cr++) {
|
||||
if (dr + cr < ne01 && dc + cc < ne11) {
|
||||
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,219 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_1 32
|
||||
|
||||
struct block_q4_1 {
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uchar qs[QK4_1 / 2]; // nibbles / quants
|
||||
};
|
||||
|
||||
inline float block_q4_1_dot_y(
|
||||
global const struct block_q4_1 * qb_curr,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = qb_curr->d;
|
||||
float m = qb_curr->m;
|
||||
|
||||
float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
global const ushort * qs = ((global const ushort *) qb_curr + 2 + il/2);
|
||||
|
||||
acc.s0 += yl.s0 * (qs[0] & 0x000F);
|
||||
acc.s0 += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc.s0 += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc.s3 += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s2 * (qs[1] & 0x000F);
|
||||
acc.s1 += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc.s2 += yl.sa * (qs[1] & 0x00F0);
|
||||
acc.s3 += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s4 * (qs[2] & 0x000F);
|
||||
acc.s1 += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc.s2 += yl.sc * (qs[2] & 0x00F0);
|
||||
acc.s3 += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s6 * (qs[3] & 0x000F);
|
||||
acc.s1 += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc.s2 += yl.se * (qs[3] & 0x00F0);
|
||||
acc.s3 += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (acc.s0 + acc.s1 + acc.s2 + acc.s3) + sumy * m;
|
||||
}
|
||||
|
||||
#undef N_DST
|
||||
#undef N_SIMDGROUP
|
||||
#undef N_SIMDWIDTH
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 4 // each subgroup works on 4 rows
|
||||
#define N_SIMDGROUP 1 // number of subgroups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming subgroup size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 4
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
inline void mul_vec_q_n_f32(
|
||||
global void * src0,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const ulong nb = ne00/QK4_1;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
global struct block_q4_1 * x = (global struct block_q4_1 *) src0 + offset0;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl;
|
||||
float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix * QK4_1 + il;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += block_q4_1_dot_y(x+ib+0*nb, sumy, yl, il);
|
||||
sumf.s1 += block_q4_1_dot_y(x+ib+1*nb, sumy, yl, il);
|
||||
sumf.s2 += block_q4_1_dot_y(x+ib+2*nb, sumy, yl, il);
|
||||
sumf.s3 += block_q4_1_dot_y(x+ib+3*nb, sumy, yl, il);
|
||||
|
||||
yb += QK4_1 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
float4 tot = (float4)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mv_q4_1_f32(
|
||||
global void * src0,
|
||||
ulong offset0,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src0 = (global void*)((global char*)src0 + offset0);
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_vec_q_n_f32(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
||||
|
|
@ -0,0 +1,229 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
|
||||
#ifdef cl_intel_subgroups
|
||||
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
|
||||
#endif
|
||||
|
||||
#ifdef cl_intel_required_subgroup_size
|
||||
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
|
||||
#define INTEL_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
|
||||
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
|
||||
#elif defined(cl_qcom_reqd_sub_group_size)
|
||||
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
|
||||
#define ADRENO_GPU 1
|
||||
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
|
||||
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
|
||||
#endif
|
||||
|
||||
#define QK4_1 32
|
||||
|
||||
struct block_q4_1 {
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uchar qs[QK4_1 / 2]; // nibbles / quants
|
||||
};
|
||||
|
||||
inline float block_q4_1_dot_y_flat(
|
||||
global const uchar * x,
|
||||
global const half * dh,
|
||||
global const half * mh,
|
||||
float sumy,
|
||||
float16 yl,
|
||||
int il
|
||||
) {
|
||||
float d = *dh;
|
||||
float m = *mh;
|
||||
global const ushort * qs = ((global const ushort *) x + il/2);
|
||||
|
||||
float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
acc.s0 += yl.s0 * (qs[0] & 0x000F);
|
||||
acc.s0 += yl.s1 * (qs[0] & 0x0F00);
|
||||
acc.s0 += yl.s8 * (qs[0] & 0x00F0);
|
||||
acc.s3 += yl.s9 * (qs[0] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s2 * (qs[1] & 0x000F);
|
||||
acc.s1 += yl.s3 * (qs[1] & 0x0F00);
|
||||
acc.s2 += yl.sa * (qs[1] & 0x00F0);
|
||||
acc.s3 += yl.sb * (qs[1] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s4 * (qs[2] & 0x000F);
|
||||
acc.s1 += yl.s5 * (qs[2] & 0x0F00);
|
||||
acc.s2 += yl.sc * (qs[2] & 0x00F0);
|
||||
acc.s3 += yl.sd * (qs[2] & 0xF000);
|
||||
|
||||
acc.s0 += yl.s6 * (qs[3] & 0x000F);
|
||||
acc.s1 += yl.s7 * (qs[3] & 0x0F00);
|
||||
acc.s2 += yl.se * (qs[3] & 0x00F0);
|
||||
acc.s3 += yl.sf * (qs[3] & 0xF000);
|
||||
|
||||
return d * (acc.s0 + acc.s1 + acc.s2 + acc.s3) + sumy * m;
|
||||
}
|
||||
|
||||
#undef N_DST
|
||||
#undef N_SIMDGROUP
|
||||
#undef N_SIMDWIDTH
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
#define N_DST 4 // each subgroup works on 4 rows
|
||||
#define N_SIMDGROUP 1 // number of subgroups in a thread group
|
||||
#define N_SIMDWIDTH 16 // assuming subgroup size is 16
|
||||
#elif defined (ADRENO_GPU)
|
||||
#define N_DST 4
|
||||
#define N_SIMDGROUP 1
|
||||
#define N_SIMDWIDTH 64
|
||||
#endif
|
||||
|
||||
inline void mul_vec_q_n_f32_flat(
|
||||
global void * src0_q,
|
||||
global void * src0_d,
|
||||
global void * src0_m,
|
||||
global float * src1,
|
||||
global float * dst,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
const ulong nb = ne00/QK4_1;
|
||||
|
||||
int r0 = get_group_id(0);
|
||||
int r1 = get_group_id(1);
|
||||
int im = get_group_id(2);
|
||||
|
||||
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
|
||||
|
||||
int i12 = im%ne12;
|
||||
int i13 = im/ne12;
|
||||
|
||||
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
// The number of scales/mins is the same as the number of blocks.
|
||||
ulong offset0_dm = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02));
|
||||
// Each block contains QK4_1/2 uchars, hence offset for qs is as follows.
|
||||
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_1/2;
|
||||
|
||||
global uchar * x = (global uchar *) src0_q + offset0_q;
|
||||
global half * d = (global half *) src0_d + offset0_dm;
|
||||
global half * m = (global half *) src0_m + offset0_dm;
|
||||
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float16 yl;
|
||||
float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
|
||||
|
||||
int ix = get_sub_group_local_id()/2;
|
||||
int il = 8*(get_sub_group_local_id()%2);
|
||||
|
||||
global float * yb = y + ix * QK4_1 + il;
|
||||
|
||||
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
|
||||
float sumy = 0;
|
||||
|
||||
sumy += yb[0];
|
||||
sumy += yb[1];
|
||||
sumy += yb[2];
|
||||
sumy += yb[3];
|
||||
sumy += yb[4];
|
||||
sumy += yb[5];
|
||||
sumy += yb[6];
|
||||
sumy += yb[7];
|
||||
|
||||
sumy += yb[16];
|
||||
sumy += yb[17];
|
||||
sumy += yb[18];
|
||||
sumy += yb[19];
|
||||
sumy += yb[20];
|
||||
sumy += yb[21];
|
||||
sumy += yb[22];
|
||||
sumy += yb[23];
|
||||
|
||||
|
||||
yl.s0 = yb[0];
|
||||
yl.s1 = yb[1]/256.f;
|
||||
|
||||
yl.s2 = yb[2];
|
||||
yl.s3 = yb[3]/256.f;
|
||||
|
||||
yl.s4 = yb[4];
|
||||
yl.s5 = yb[5]/256.f;
|
||||
|
||||
yl.s6 = yb[6];
|
||||
yl.s7 = yb[7]/256.f;
|
||||
|
||||
yl.s8 = yb[16]/16.f;
|
||||
yl.s9 = yb[17]/4096.f;
|
||||
|
||||
yl.sa = yb[18]/16.f;
|
||||
yl.sb = yb[19]/4096.f;
|
||||
|
||||
yl.sc = yb[20]/16.f;
|
||||
yl.sd = yb[21]/4096.f;
|
||||
|
||||
yl.se = yb[22]/16.f;
|
||||
yl.sf = yb[23]/4096.f;
|
||||
|
||||
sumf.s0 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 0*nb*QK4_1/2, d + ib + 0*nb, m + ib + 0*nb, sumy, yl, il);
|
||||
sumf.s1 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 1*nb*QK4_1/2, d + ib + 1*nb, m + ib + 1*nb, sumy, yl, il);
|
||||
sumf.s2 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 2*nb*QK4_1/2, d + ib + 2*nb, m + ib + 2*nb, sumy, yl, il);
|
||||
sumf.s3 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 3*nb*QK4_1/2, d + ib + 3*nb, m + ib + 3*nb, sumy, yl, il);
|
||||
|
||||
yb += QK4_1 * (N_SIMDWIDTH/2);
|
||||
}
|
||||
|
||||
float4 tot = (float4)(
|
||||
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
|
||||
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
|
||||
);
|
||||
|
||||
if (get_sub_group_local_id() == 0) {
|
||||
if (first_row + 0 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
|
||||
}
|
||||
if (first_row + 1 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
|
||||
}
|
||||
if (first_row + 2 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
|
||||
}
|
||||
if (first_row + 3 < ne01) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef INTEL_GPU
|
||||
REQD_SUBGROUP_SIZE_16
|
||||
#elif defined (ADRENO_GPU)
|
||||
REQD_SUBGROUP_SIZE_64
|
||||
#endif
|
||||
kernel void kernel_mul_mv_q4_1_f32_flat(
|
||||
global void * src0_q,
|
||||
global void * src0_d,
|
||||
global void * src0_m,
|
||||
global float * src1,
|
||||
ulong offset1,
|
||||
global float * dst,
|
||||
ulong offsetd,
|
||||
int ne00,
|
||||
int ne01,
|
||||
int ne02,
|
||||
int ne10,
|
||||
int ne12,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int r2,
|
||||
int r3
|
||||
) {
|
||||
src1 = (global float*)((global char*)src1 + offset1);
|
||||
dst = (global float*)((global char*)dst + offsetd);
|
||||
|
||||
mul_vec_q_n_f32_flat(src0_q, src0_d, src0_m, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
|
||||
}
|
||||
|
|
@ -9801,16 +9801,16 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
|
|||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||
int nb1 = dst->op_params[0] / src0_type_size; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / src0_type_size; // 4 bytes of float32
|
||||
int nb3 = dst->op_params[2] / src0_type_size; // 4 bytes of float32
|
||||
int offset = dst->op_params[3] / src0_type_size; // offset in bytes
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ACC, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)nb3,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)nb3,
|
||||
0,
|
||||
0.0f, 0.0f, offset,
|
||||
});
|
||||
|
|
|
|||
|
|
@ -13,17 +13,18 @@ void main() {
|
|||
|
||||
const uint offset = p.param3;
|
||||
const uint src1_i = idx - offset;
|
||||
const uint oz = src1_i / p.nb02;
|
||||
const uint oy = (src1_i - (oz * p.nb02)) / p.nb01;
|
||||
const uint ox = src1_i % p.nb01;
|
||||
const uint i3 = src1_i / p.nb03;
|
||||
const uint rem2 = src1_i - i3 * p.nb03;
|
||||
const uint i2 = rem2 / p.nb02;
|
||||
const uint rem1 = rem2 - i2 * p.nb02;
|
||||
const uint i1 = rem1 / p.nb01;
|
||||
const uint i0 = rem1 % p.nb01;
|
||||
|
||||
uint i00, i01, i02, i03;
|
||||
get_indices(idx, i00, i01, i02, i03);
|
||||
|
||||
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
|
||||
if (i0 < p.ne10 && i1 < p.ne11 && i2 < p.ne12 && i3 < p.ne13) {
|
||||
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) + FLOAT_TYPE(data_b[get_boffset() + src1_idx(i0, i1, i2, i3)]));
|
||||
} else {
|
||||
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]));
|
||||
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -7965,7 +7965,6 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
cparams.n_seq_max,
|
||||
nullptr);
|
||||
} else if (llm_arch_is_hybrid(arch)) {
|
||||
|
||||
// The main difference between hybrid architectures is the
|
||||
// layer filters, so pick the right one here
|
||||
llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
|
||||
|
|
@ -7990,7 +7989,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
/* attn_type_v */ params.type_v,
|
||||
/* attn_v_trans */ !cparams.flash_attn,
|
||||
/* attn_swa_full */ params.swa_full,
|
||||
/* attn_kv_size */ cparams.n_ctx,
|
||||
/* attn_kv_size */ cparams.n_ctx_seq,
|
||||
/* attn_n_ubatch */ cparams.n_ubatch,
|
||||
/* attn_n_pad */ 1,
|
||||
/* recurrent_type_r */ GGML_TYPE_F32,
|
||||
|
|
@ -8007,7 +8006,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
/* attn_type_k */ params.type_k,
|
||||
/* attn_type_v */ params.type_v,
|
||||
/* attn_v_trans */ !cparams.flash_attn,
|
||||
/* attn_kv_size */ cparams.n_ctx,
|
||||
/* attn_kv_size */ cparams.n_ctx_seq,
|
||||
/* attn_n_pad */ 1,
|
||||
/* attn_n_swa */ hparams.n_swa,
|
||||
/* attn_swa_type */ hparams.swa_type,
|
||||
|
|
|
|||
|
|
@ -41,8 +41,11 @@ static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_t
|
|||
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]);
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, last_conv_x,
|
||||
ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs,
|
||||
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all))));
|
||||
ggml_view_3d(ctx0, conv_states_all,
|
||||
d_conv - 1, d_inner, n_seqs,
|
||||
(d_conv - 1) * ggml_element_size(conv_states_all), // nb1: contiguous within one channel's conv taps
|
||||
n_embd_r_total * ggml_element_size(conv_states_all), // nb2: stride between sequences (skip over K,V states)
|
||||
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all)))); // offset to first seq's Q/K/V state
|
||||
// Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner]
|
||||
// GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv]
|
||||
// vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step]
|
||||
|
|
|
|||
|
|
@ -1,16 +1,10 @@
|
|||
#if defined(_MSC_VER)
|
||||
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
||||
#endif
|
||||
|
||||
#include "unicode.h"
|
||||
#include "unicode-data.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <codecvt>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <locale>
|
||||
#include <map>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
|
|
@ -199,27 +193,6 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
|
|||
return map;
|
||||
}
|
||||
|
||||
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
|
||||
#if defined(__clang__)
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
return conv.from_bytes(s);
|
||||
}
|
||||
|
||||
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
|
||||
std::vector<std::string> bpe_encoded_words;
|
||||
for (const auto & word : bpe_words) {
|
||||
|
|
@ -1028,10 +1001,10 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
break;
|
||||
}
|
||||
}
|
||||
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
|
||||
|
||||
if (use_collapsed) {
|
||||
// sanity-check that the original regex does not contain any non-ASCII characters
|
||||
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
|
||||
for (size_t i = 0; i < cpts_regex.size(); ++i) {
|
||||
if (cpts_regex[i] >= 128) {
|
||||
throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
|
||||
|
|
@ -1087,7 +1060,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
|
|||
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
|
||||
} else {
|
||||
// no unicode category used, we can use std::wregex directly
|
||||
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
|
||||
std::wstring wregex_expr(cpts_regex.begin(), cpts_regex.end());
|
||||
|
||||
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
|
||||
std::wstring wtext(cpts.begin(), cpts.end());
|
||||
|
|
|
|||
|
|
@ -2786,9 +2786,10 @@ struct test_set : public test_case {
|
|||
const ggml_type type_dst;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const int dim;
|
||||
const bool inplace;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR4(type_src, type_dst, ne, dim);
|
||||
return VARS_TO_STR5(type_src, type_dst, ne, dim, inplace);
|
||||
}
|
||||
|
||||
size_t op_size(ggml_tensor * t) override {
|
||||
|
|
@ -2796,8 +2797,8 @@ struct test_set : public test_case {
|
|||
}
|
||||
|
||||
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
|
||||
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
|
||||
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1, bool inplace = false)
|
||||
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim), inplace(inplace) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
||||
|
|
@ -2808,7 +2809,7 @@ struct test_set : public test_case {
|
|||
for (int i = 0; i < dim; ++i) {
|
||||
ne_dst[i] *= 2;
|
||||
}
|
||||
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
|
||||
ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
|
||||
ggml_set_param(dst);
|
||||
ggml_set_name(dst, "dst");
|
||||
|
||||
|
|
@ -2816,9 +2817,16 @@ struct test_set : public test_case {
|
|||
for (int i = 0; i < dim; ++i) {
|
||||
offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
|
||||
}
|
||||
ggml_tensor * out = ggml_set(ctx, dst, src,
|
||||
// The backward pass requires setting a contiguous region:
|
||||
src->nb[1], src->nb[2], src->nb[3], offset);
|
||||
ggml_tensor * out;
|
||||
if (inplace) {
|
||||
out = ggml_set_inplace(ctx, dst, src,
|
||||
// The backward pass requires setting a contiguous region:
|
||||
src->nb[1], src->nb[2], src->nb[3], offset);
|
||||
} else {
|
||||
out = ggml_set(ctx, dst, src,
|
||||
// The backward pass requires setting a contiguous region:
|
||||
src->nb[1], src->nb[2], src->nb[3], offset);
|
||||
}
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
|
|
@ -5839,26 +5847,46 @@ struct test_acc : public test_case {
|
|||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne_a;
|
||||
const std::array<int64_t, 4> ne_b;
|
||||
const int64_t stride_dim;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type, ne_a, ne_b);
|
||||
return VARS_TO_STR4(type, ne_a, ne_b, stride_dim);
|
||||
}
|
||||
|
||||
test_acc(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
|
||||
std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
|
||||
: type(type), ne_a(ne_a), ne_b(ne_b) {}
|
||||
std::array<int64_t, 4> ne_a = {256, 17, 2, 3},
|
||||
std::array<int64_t, 4> ne_b = {256, 16, 2, 3},
|
||||
uint64_t stride_dim = -1)
|
||||
: type(type), ne_a(ne_a), ne_b(ne_b), stride_dim(stride_dim) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_set_param(a);
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||
ggml_set_param(b);
|
||||
ggml_tensor * b;
|
||||
if (stride_dim == 1 || stride_dim == 2 || stride_dim == 3) {
|
||||
// Create a larger tensor and take a view at a non-zero offset.
|
||||
// This tests that the backend correctly handles b's data offset
|
||||
std::array<int64_t, 4> ne_b_pad = {ne_b[0], ne_b[1], ne_b[2], ne_b[3]};
|
||||
ne_b_pad[stride_dim] += 1;
|
||||
ggml_tensor * b_pad = ggml_new_tensor(ctx, type, 4, ne_b_pad.data());
|
||||
ggml_set_param(b_pad);
|
||||
ggml_set_name(b_pad, "b_pad");
|
||||
// View that skips the first row, so b has a non-zero byte offset
|
||||
b = ggml_view_4d(ctx, b_pad,
|
||||
ne_b[0], ne_b[1], ne_b[2], ne_b[3],
|
||||
b_pad->nb[1], b_pad->nb[2], b_pad->nb[3],
|
||||
b_pad->nb[1]);
|
||||
} else {
|
||||
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||
ggml_set_param(b);
|
||||
}
|
||||
ggml_set_name(b, "b");
|
||||
|
||||
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
|
||||
// When ne_b[0] < ne_a[0], a->nb[1] != b->nb[1], so the stride
|
||||
// parameters to ggml_acc don't match b's natural stride.
|
||||
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
|
|
@ -7428,11 +7456,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
||||
|
||||
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim, false));
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim, true));
|
||||
}
|
||||
|
||||
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim, false));
|
||||
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim, true));
|
||||
}
|
||||
|
||||
// same-type copy
|
||||
|
|
@ -8160,7 +8190,12 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
|||
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
|
||||
test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
|
||||
test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
|
||||
test_cases.emplace_back(new test_acc());
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 1, 1}, {256, 16, 1, 1}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, 1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, 2));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {64, 16, 2, 3}, 3));
|
||||
test_cases.emplace_back(new test_pad());
|
||||
test_cases.emplace_back(new test_pad(GGML_TYPE_F32, {33, 17, 2, 1}, 4, 3, true)); // circular
|
||||
test_cases.emplace_back(new test_pad_ext());
|
||||
|
|
@ -8595,6 +8630,14 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|||
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 512, 1)); // prefill
|
||||
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 1, 1)); // generate
|
||||
|
||||
// acc
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 1, 1}, {256, 16, 1, 1}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, -1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, 1));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, 2));
|
||||
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {64, 16, 2, 3}, 3));
|
||||
|
||||
return test_cases;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -52,6 +52,7 @@ struct cli_context {
|
|||
json messages = json::array();
|
||||
std::vector<raw_buffer> input_files;
|
||||
task_params defaults;
|
||||
bool verbose_prompt;
|
||||
|
||||
// thread for showing "loading" animation
|
||||
std::atomic<bool> loading_show;
|
||||
|
|
@ -66,6 +67,8 @@ struct cli_context {
|
|||
defaults.stream = true; // make sure we always use streaming mode
|
||||
defaults.timings_per_token = true; // in order to get timings even when we cancel mid-way
|
||||
// defaults.return_progress = true; // TODO: show progress
|
||||
|
||||
verbose_prompt = params.verbose_prompt;
|
||||
}
|
||||
|
||||
std::string generate_completion(result_timings & out_timings) {
|
||||
|
|
@ -91,6 +94,12 @@ struct cli_context {
|
|||
rd.post_task({std::move(task)});
|
||||
}
|
||||
|
||||
if (verbose_prompt) {
|
||||
console::set_display(DISPLAY_TYPE_PROMPT);
|
||||
console::log("%s\n\n", chat_params.prompt.c_str());
|
||||
console::set_display(DISPLAY_TYPE_RESET);
|
||||
}
|
||||
|
||||
// wait for first result
|
||||
console::spinner::start();
|
||||
server_task_result_ptr result = rd.next(should_stop);
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
<script lang="ts">
|
||||
import { goto } from '$app/navigation';
|
||||
import { base } from '$app/paths';
|
||||
import {
|
||||
chatStore,
|
||||
pendingEditMessageId,
|
||||
|
|
@ -119,7 +120,7 @@
|
|||
const conversationDeleted = await removeSystemPromptPlaceholder(message.id);
|
||||
|
||||
if (conversationDeleted) {
|
||||
goto('/');
|
||||
goto(`${base}/`);
|
||||
}
|
||||
|
||||
return;
|
||||
|
|
@ -220,7 +221,7 @@
|
|||
const conversationDeleted = await removeSystemPromptPlaceholder(message.id);
|
||||
isEditing = false;
|
||||
if (conversationDeleted) {
|
||||
goto('/');
|
||||
goto(`${base}/`);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
import { BadgeChatStatistic } from '$lib/components/app';
|
||||
import * as Tooltip from '$lib/components/ui/tooltip';
|
||||
import { ChatMessageStatsView } from '$lib/enums';
|
||||
import { formatPerformanceTime } from '$lib/utils/formatters';
|
||||
|
||||
interface Props {
|
||||
predictedTokens?: number;
|
||||
|
|
@ -57,8 +58,8 @@
|
|||
);
|
||||
|
||||
let tokensPerSecond = $derived(hasGenerationStats ? (predictedTokens! / predictedMs!) * 1000 : 0);
|
||||
let timeInSeconds = $derived(
|
||||
predictedMs !== undefined ? (predictedMs / 1000).toFixed(2) : '0.00'
|
||||
let formattedTime = $derived(
|
||||
predictedMs !== undefined ? formatPerformanceTime(predictedMs) : '0s'
|
||||
);
|
||||
|
||||
let promptTokensPerSecond = $derived(
|
||||
|
|
@ -67,15 +68,15 @@
|
|||
: undefined
|
||||
);
|
||||
|
||||
let promptTimeInSeconds = $derived(
|
||||
promptMs !== undefined ? (promptMs / 1000).toFixed(2) : undefined
|
||||
let formattedPromptTime = $derived(
|
||||
promptMs !== undefined ? formatPerformanceTime(promptMs) : undefined
|
||||
);
|
||||
|
||||
let hasPromptStats = $derived(
|
||||
promptTokens !== undefined &&
|
||||
promptMs !== undefined &&
|
||||
promptTokensPerSecond !== undefined &&
|
||||
promptTimeInSeconds !== undefined
|
||||
formattedPromptTime !== undefined
|
||||
);
|
||||
|
||||
// In live mode, generation tab is disabled until we have generation stats
|
||||
|
|
@ -142,7 +143,7 @@
|
|||
<BadgeChatStatistic
|
||||
class="bg-transparent"
|
||||
icon={Clock}
|
||||
value="{timeInSeconds}s"
|
||||
value={formattedTime}
|
||||
tooltipLabel="Generation time"
|
||||
/>
|
||||
<BadgeChatStatistic
|
||||
|
|
@ -161,7 +162,7 @@
|
|||
<BadgeChatStatistic
|
||||
class="bg-transparent"
|
||||
icon={Clock}
|
||||
value="{promptTimeInSeconds}s"
|
||||
value={formattedPromptTime ?? '0s'}
|
||||
tooltipLabel="Prompt processing time"
|
||||
/>
|
||||
<BadgeChatStatistic
|
||||
|
|
|
|||
|
|
@ -0,0 +1,88 @@
|
|||
<script lang="ts">
|
||||
import type { Snippet } from 'svelte';
|
||||
import * as DropdownMenu from '$lib/components/ui/dropdown-menu';
|
||||
import { cn } from '$lib/components/ui/utils';
|
||||
import { SearchInput } from '$lib/components/app';
|
||||
|
||||
interface Props {
|
||||
open?: boolean;
|
||||
onOpenChange?: (open: boolean) => void;
|
||||
placeholder?: string;
|
||||
searchValue?: string;
|
||||
onSearchChange?: (value: string) => void;
|
||||
onSearchKeyDown?: (event: KeyboardEvent) => void;
|
||||
align?: 'start' | 'center' | 'end';
|
||||
contentClass?: string;
|
||||
emptyMessage?: string;
|
||||
isEmpty?: boolean;
|
||||
disabled?: boolean;
|
||||
trigger: Snippet;
|
||||
children: Snippet;
|
||||
footer?: Snippet;
|
||||
}
|
||||
|
||||
let {
|
||||
open = $bindable(false),
|
||||
onOpenChange,
|
||||
placeholder = 'Search...',
|
||||
searchValue = $bindable(''),
|
||||
onSearchChange,
|
||||
onSearchKeyDown,
|
||||
align = 'start',
|
||||
contentClass = 'w-72',
|
||||
emptyMessage = 'No items found',
|
||||
isEmpty = false,
|
||||
disabled = false,
|
||||
trigger,
|
||||
children,
|
||||
footer
|
||||
}: Props = $props();
|
||||
|
||||
function handleOpenChange(newOpen: boolean) {
|
||||
open = newOpen;
|
||||
|
||||
if (!newOpen) {
|
||||
searchValue = '';
|
||||
onSearchChange?.('');
|
||||
}
|
||||
|
||||
onOpenChange?.(newOpen);
|
||||
}
|
||||
</script>
|
||||
|
||||
<DropdownMenu.Root bind:open onOpenChange={handleOpenChange}>
|
||||
<DropdownMenu.Trigger
|
||||
{disabled}
|
||||
onclick={(e) => {
|
||||
e.preventDefault();
|
||||
e.stopPropagation();
|
||||
}}
|
||||
>
|
||||
{@render trigger()}
|
||||
</DropdownMenu.Trigger>
|
||||
|
||||
<DropdownMenu.Content {align} class={cn(contentClass, 'pt-0')}>
|
||||
<div class="sticky top-0 z-10 mb-2 bg-popover p-1 pt-2">
|
||||
<SearchInput
|
||||
{placeholder}
|
||||
bind:value={searchValue}
|
||||
onInput={onSearchChange}
|
||||
onKeyDown={onSearchKeyDown}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div class={cn('overflow-y-auto')}>
|
||||
{@render children()}
|
||||
|
||||
{#if isEmpty}
|
||||
<div class="px-2 py-3 text-center text-sm text-muted-foreground">{emptyMessage}</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
{#if footer}
|
||||
<DropdownMenu.Separator />
|
||||
|
||||
{@render footer()}
|
||||
{/if}
|
||||
</DropdownMenu.Content>
|
||||
</DropdownMenu.Root>
|
||||
|
|
@ -486,6 +486,8 @@
|
|||
text-decoration: underline;
|
||||
text-underline-offset: 2px;
|
||||
transition: color 0.2s ease;
|
||||
overflow-wrap: anywhere;
|
||||
word-break: break-all;
|
||||
}
|
||||
|
||||
div :global(a:hover) {
|
||||
|
|
|
|||
|
|
@ -51,3 +51,75 @@ export function formatNumber(num: number | unknown): string {
|
|||
|
||||
return num.toLocaleString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Format JSON string with pretty printing (2-space indentation)
|
||||
* Returns original string if parsing fails
|
||||
*
|
||||
* @param jsonString - JSON string to format
|
||||
* @returns Pretty-printed JSON string or original if invalid
|
||||
*/
|
||||
export function formatJsonPretty(jsonString: string): string {
|
||||
try {
|
||||
const parsed = JSON.parse(jsonString);
|
||||
return JSON.stringify(parsed, null, 2);
|
||||
} catch {
|
||||
return jsonString;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Format time as HH:MM:SS in 24-hour format
|
||||
*
|
||||
* @param date - Date object to format
|
||||
* @returns Formatted time string (HH:MM:SS)
|
||||
*/
|
||||
export function formatTime(date: Date): string {
|
||||
return date.toLocaleTimeString('en-US', {
|
||||
hour12: false,
|
||||
hour: '2-digit',
|
||||
minute: '2-digit',
|
||||
second: '2-digit'
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Formats milliseconds to a human-readable time string for performance metrics.
|
||||
* Examples: "4h 12min 54s", "12min 34s", "45s", "0.5s"
|
||||
*
|
||||
* @param ms - Time in milliseconds
|
||||
* @returns Formatted time string
|
||||
*/
|
||||
export function formatPerformanceTime(ms: number): string {
|
||||
if (ms < 0) return '0s';
|
||||
|
||||
const totalSeconds = ms / 1000;
|
||||
|
||||
if (totalSeconds < 1) {
|
||||
return `${totalSeconds.toFixed(1)}s`;
|
||||
}
|
||||
|
||||
if (totalSeconds < 10) {
|
||||
return `${totalSeconds.toFixed(1)}s`;
|
||||
}
|
||||
|
||||
const hours = Math.floor(totalSeconds / 3600);
|
||||
const minutes = Math.floor((totalSeconds % 3600) / 60);
|
||||
const seconds = Math.floor(totalSeconds % 60);
|
||||
|
||||
const parts: string[] = [];
|
||||
|
||||
if (hours > 0) {
|
||||
parts.push(`${hours}h`);
|
||||
}
|
||||
|
||||
if (minutes > 0) {
|
||||
parts.push(`${minutes}min`);
|
||||
}
|
||||
|
||||
if (seconds > 0 || parts.length === 0) {
|
||||
parts.push(`${seconds}s`);
|
||||
}
|
||||
|
||||
return parts.join(' ');
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,6 @@
|
|||
import { defineMeta } from '@storybook/addon-svelte-csf';
|
||||
import ChatForm from '$lib/components/app/chat/ChatForm/ChatForm.svelte';
|
||||
import { expect } from 'storybook/test';
|
||||
import { mockServerProps, mockConfigs } from './fixtures/storybook-mocks';
|
||||
import jpgAsset from './fixtures/assets/1.jpg?url';
|
||||
import svgAsset from './fixtures/assets/hf-logo.svg?url';
|
||||
import pdfAsset from './fixtures/assets/example.pdf?raw';
|
||||
|
|
@ -46,8 +45,6 @@
|
|||
name="Default"
|
||||
args={{ class: 'max-w-[56rem] w-[calc(100vw-2rem)]' }}
|
||||
play={async ({ canvas, userEvent }) => {
|
||||
mockServerProps(mockConfigs.noModalities);
|
||||
|
||||
const textarea = await canvas.findByRole('textbox');
|
||||
const submitButton = await canvas.findByRole('button', { name: 'Send' });
|
||||
|
||||
|
|
@ -66,73 +63,11 @@
|
|||
|
||||
const fileInput = document.querySelector('input[type="file"]');
|
||||
await expect(fileInput).not.toHaveAttribute('accept');
|
||||
|
||||
// Open file attachments dropdown
|
||||
const fileUploadButton = canvas.getByText('Attach files');
|
||||
await userEvent.click(fileUploadButton);
|
||||
|
||||
// Check dropdown menu items are disabled (no modalities)
|
||||
const imagesButton = document.querySelector('.images-button');
|
||||
const audioButton = document.querySelector('.audio-button');
|
||||
|
||||
await expect(imagesButton).toHaveAttribute('data-disabled');
|
||||
await expect(audioButton).toHaveAttribute('data-disabled');
|
||||
|
||||
// Close dropdown by pressing Escape
|
||||
await userEvent.keyboard('{Escape}');
|
||||
}}
|
||||
/>
|
||||
|
||||
<Story name="Loading" args={{ class: 'max-w-[56rem] w-[calc(100vw-2rem)]', isLoading: true }} />
|
||||
|
||||
<Story
|
||||
name="VisionModality"
|
||||
args={{ class: 'max-w-[56rem] w-[calc(100vw-2rem)]' }}
|
||||
play={async ({ canvas, userEvent }) => {
|
||||
mockServerProps(mockConfigs.visionOnly);
|
||||
|
||||
// Open file attachments dropdown and verify it works
|
||||
const fileUploadButton = canvas.getByText('Attach files');
|
||||
await userEvent.click(fileUploadButton);
|
||||
|
||||
// Verify dropdown menu items exist
|
||||
const imagesButton = document.querySelector('.images-button');
|
||||
const audioButton = document.querySelector('.audio-button');
|
||||
|
||||
await expect(imagesButton).toBeInTheDocument();
|
||||
await expect(audioButton).toBeInTheDocument();
|
||||
|
||||
// Close dropdown by pressing Escape
|
||||
await userEvent.keyboard('{Escape}');
|
||||
|
||||
console.log('✅ Vision modality: Dropdown menu verified');
|
||||
}}
|
||||
/>
|
||||
|
||||
<Story
|
||||
name="AudioModality"
|
||||
args={{ class: 'max-w-[56rem] w-[calc(100vw-2rem)]' }}
|
||||
play={async ({ canvas, userEvent }) => {
|
||||
mockServerProps(mockConfigs.audioOnly);
|
||||
|
||||
// Open file attachments dropdown and verify it works
|
||||
const fileUploadButton = canvas.getByText('Attach files');
|
||||
await userEvent.click(fileUploadButton);
|
||||
|
||||
// Verify dropdown menu items exist
|
||||
const imagesButton = document.querySelector('.images-button');
|
||||
const audioButton = document.querySelector('.audio-button');
|
||||
|
||||
await expect(imagesButton).toBeInTheDocument();
|
||||
await expect(audioButton).toBeInTheDocument();
|
||||
|
||||
// Close dropdown by pressing Escape
|
||||
await userEvent.keyboard('{Escape}');
|
||||
|
||||
console.log('✅ Audio modality: Dropdown menu verified');
|
||||
}}
|
||||
/>
|
||||
|
||||
<Story
|
||||
name="FileAttachments"
|
||||
args={{
|
||||
|
|
@ -140,8 +75,6 @@
|
|||
uploadedFiles: fileAttachments
|
||||
}}
|
||||
play={async ({ canvas }) => {
|
||||
mockServerProps(mockConfigs.bothModalities);
|
||||
|
||||
const jpgAttachment = canvas.getByAltText('1.jpg');
|
||||
const svgAttachment = canvas.getByAltText('hf-logo.svg');
|
||||
const pdfFileExtension = canvas.getByText('PDF');
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ if (LLAMA_BUILD_BORINGSSL)
|
|||
set(FIPS OFF CACHE BOOL "Enable FIPS (BoringSSL)")
|
||||
|
||||
set(BORINGSSL_GIT "https://boringssl.googlesource.com/boringssl" CACHE STRING "BoringSSL git repository")
|
||||
set(BORINGSSL_VERSION "0.20260204.0" CACHE STRING "BoringSSL version")
|
||||
set(BORINGSSL_VERSION "0.20260211.0" CACHE STRING "BoringSSL version")
|
||||
|
||||
message(STATUS "Fetching BoringSSL version ${BORINGSSL_VERSION}")
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue