Commit Graph

61 Commits

Author SHA1 Message Date
Georgi Gerganov fce571ee51
sampling : simplify temp sampling 2025-12-04 14:23:02 +02:00
Daniel Bevenius ac9e164714
sampling : fix backend temp sampling to use logits masking 2025-12-04 09:39:20 +01:00
Georgi Gerganov cce3b2a8ad
sampling : minor cleanup 2025-12-03 15:39:44 +02:00
Daniel Bevenius aad5a6afd7
sampling : implement temp_ext_backend sampling
This commit implements the apply function for the extended temperature
sampling.
2025-12-02 17:26:04 +01:00
Daniel Bevenius db8972e251
squash! sampling : fix backend temp sampler for zero temperature
This modifies the parent commit to simply return the most probably token
instead of masking the logits.
2025-12-02 11:53:29 +01:00
Daniel Bevenius 739b597804 sampling : fix backend temp sampler for zero temperature
This commit fixes the implementation of the temperature-based sampler
for the case when the temperature is set to zero. This now correctly
selects the most probable token by masking out all other tokens in the
logits.
2025-12-02 09:13:07 +01:00
Georgi Gerganov 88cca45bb8
sampling : fix top_p empty condition 2025-12-01 18:02:34 +02:00
Georgi Gerganov 04f2822a86
sampling : do not create empty samplers 2025-12-01 17:52:07 +02:00
Georgi Gerganov 4032ce2378
common : simplify sampler chain initialization 2025-12-01 17:11:11 +02:00
Oliver Simons 217469f07f Make backend's top_p sampler inclusive
In addition to match the algorithm proposed in the original
[paper](https://arxiv.org/abs/1904.09751), this resolves the edge-case
where `max_p is > top_p` for a single logit, where the mask would
otherwise be empty (and we thus sample from the whole vocabulary with
equal likelihood)
2025-12-01 15:28:06 +01:00
Oliver Simons ae0bb6a6da Factor out `ggml_sort` into its own function 2025-12-01 15:28:06 +01:00
Oliver Simons 8bee483c97 Fix backend_top_p_sampler
softmax(softmax) will return uniform distribution, so we should not
return the softmax but the logits instead.
2025-12-01 12:07:30 +01:00
Georgi Gerganov c187003d81
llama : naming 2025-11-30 00:05:47 +02:00
Georgi Gerganov 9028ebfea8
llama : cleanup + naming 2025-11-29 22:37:07 +02:00
Georgi Gerganov fbc8f49f3c
llama : simplify 2025-11-29 17:01:00 +02:00
Georgi Gerganov 117e2079a9
refactor : simplify and improve memory management 2025-11-28 16:09:42 +02:00
Daniel Bevenius 25f33806d3
sampling : add debug log when backend sampler selects token
This commit adds a debug log statement in the llama_sampler_sample
to indicate when a backend sampler has selected a token for a given
index.

The modification helps in tracing the sampling process and understanding
the flow of control when backend samplers are used.
2025-11-24 15:03:41 +01:00
Daniel Bevenius 79b8cf2a75
Merge remote-tracking branch 'upstream/master' into backend-sampling 2025-11-21 16:38:32 +01:00
Daniel Bevenius 61ffe41dc1
sampling : use pinned memory for backend sampling buffers 2025-11-21 14:02:16 +01:00
Georgi Gerganov 196f5083ef
common : more accurate sampling timing (#17382)
* common : more accurate sampling timing

* eval-callback : minor fixes

* cont : add time_meas impl

* cont : fix log msg [no ci]

* cont : fix multiple definitions of time_meas

* llama-cli : exclude chat template init from time measurement

* cont : print percentage of unaccounted time

* cont : do not reset timings
2025-11-20 13:40:10 +02:00
Daniel Bevenius ed4345bdd9 squash! common : fix regression caused by extra memory allocations during sampling
Apply the same changes to llama-sampling.cpp, llama_sampler_sample as
were applied in commit 38f408c25.
2025-11-20 07:56:33 +01:00
Daniel Bevenius 51fee29822
sampling : always populate logits for sampled probs
This commit updates common/sampler.cpp set_logits and
src/llama-sampling.cpp llama_sampler_sample to always populate the
logits field when backend sampled probabilities are available.

The motivation for this is that this ensure that CPU sampler always have
access to the logits values even when probabilites have been produced by
backend samplers.
2025-11-19 07:14:11 +01:00
Daniel Bevenius 0da7e7dccc
sampling : remove version from sampler chain
This commit removes the version field from the sampler chain and instead
used the sampler pointer itself for change detection.
2025-11-19 06:59:03 +01:00
Daniel Bevenius 82957a90f2
sampling : always expose sampled_ids
This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.

The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.

Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.
2025-11-18 15:11:59 +01:00
Daniel Bevenius 7884b0e0ac
sampling : add support for backend sampling
This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.

The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.

For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.

It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.

Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.
2025-11-17 16:15:58 +01:00
Marek Hradil jr. 6cd0cf72ce
fix : Dangling pointer for non-empty trigger words in lazy grammar construction (#17048)
* fix : Dangling pointer for non-empty trigger words in llama_sampler_init_grammar_impl (#17047)

* Replace 'static' workaround, with keeping variable in scope for longer

* Create std::array directly and pass into llama_grammar_init_impl

* Add back the trigger pattern

* Missed array include
2025-11-14 14:35:26 +02:00
Georgi Gerganov 81086cd6a3
vocab : mark EOT token for Granite models (#16499)
* vocab : mark EOT token for Granite models

* sampling : fallback to EOS when EOT is not found
2025-10-10 17:17:31 +03:00
Georgi Gerganov cdedb70a99
sampling : optimize dist sampler (#15704)
ggml-ci
2025-09-03 18:16:26 +03:00
Georgi Gerganov e92d53b29e
sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Georgi Gerganov f9cd68398b
sampling : make sure samplers return at least 1 token (#13822)
* sampling : min-p should always return at least one token

ggml-ci

* sampling : same for typical sampling

* tests : sampling tests use min_keep == 0

ggml-ci
2025-05-27 12:07:52 +03:00
DocShotgun ffc727203a
sampling : make top_n_sigma no-op at <=0 or a single candidate (#13345) 2025-05-06 22:36:24 +02:00
oobabooga 91a86a6f35
sampling : don't consider -infinity values in top_n_sigma (#13344) 2025-05-06 20:24:15 +02:00
oobabooga 233461f812
sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
Georgi Gerganov d9d398f84f
sampling : when top-k <= 0 -> noop (#13173)
ggml-ci
2025-04-29 20:22:57 +03:00
Johannes Gäßler dd373dd3bf
llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Olivier Chafik 669912d9a5
`tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
Vinesh Janarthanan 27e8a23300
sampling: add Top-nσ sampler (#11223)
* initial sampling changes:

* completed top nsigma sampler implementation

* apply parameter to only llama-cli

* updated readme

* added tests and fixed nsigma impl

* cleaned up pr

* format

* format

* format

* removed commented tests

* cleanup pr and remove explicit floats

* added top-k sampler to improve performance

* changed sigma to float

* fixed string format to float

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* added llama_sampler_init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 08:45:57 +02:00
Christian Fillion 7ee953a64a
llama : add llama_sampler_init for safe usage of llama_sampler_free (#11727)
The C API in llama.h claims users can implement `llama_sampler_i` to
create custom `llama_sampler`. The sampler chain takes ownership and
calls `llama_sampler_free` on them. However, `llama_sampler_free` is
hard-coded to use `delete`. This is undefined behavior if the object
wasn't also allocated via `new` from libllama's C++ runtime. Callers
in C and C-compatible languages do not use C++'s `new` operator. C++
callers may not be sharing the same heap as libllama.
2025-02-07 11:33:27 +02:00
Olivier Chafik 8b576b6c55
Tool call support (generic + native for Llama, Functionary, Hermes, Mistral, Firefunction, DeepSeek) w/ lazy grammars (#9639)
---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-30 19:13:58 +00:00
Georgi Gerganov afa8a9ec9b
llama : add `llama_vocab`, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110)

* llama : add struct llama_vocab to the API (#11156)

ggml-ci

* hparams : move vocab params to llama_vocab (#11159)

ggml-ci

* vocab : more pimpl (#11165)

ggml-ci

* vocab : minor tokenization optimizations (#11160)

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names (#11167)

ggml-ci

* llama : update API names to use correct prefix (#11174)

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174)

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174)

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
Georgi Gerganov 727368c60f
llama : use LLAMA_TOKEN_NULL (#11062)
ggml-ci
2025-01-06 10:52:15 +02:00
Georgi Gerganov f66f582927
llama : refactor `src/llama.cpp` (#10902)
* llama : scatter llama.cpp into multiple modules (wip)

* llama : control-vector -> adapter

* llama : arch

* llama : mmap

ggml-ci

* ci : remove BUILD_SHARED_LIBS=OFF

ggml-ci

* llama : arch (cont)

ggml-ci

* llama : chat

ggml-ci

* llama : model

ggml-ci

* llama : hparams

ggml-ci

* llama : adapter

ggml-ci

* examples : fix

ggml-ci

* rebase

ggml-ci

* minor

* llama : kv cache

ggml-ci

* llama : impl

ggml-ci

* llama : batch

ggml-ci

* cont

ggml-ci

* llama : context

ggml-ci

* minor

* llama : context (cont)

ggml-ci

* llama : model loader

ggml-ci

* common : update lora

ggml-ci

* llama : quant

ggml-ci

* llama : quant (cont)

ggml-ci

* minor [no ci]
2025-01-03 10:18:53 +02:00
Georgi Gerganov 644fd71b44
sampling : refactor + optimize penalties sampler (#10803)
* sampling : refactor + optimize penalties sampler

ggml-ci

* common : apply ignore_eos as logit bias

ggml-ci

* batched : remove penalties sampler

* params : allow penalty_last_n == -1 to be equal to context size

ggml-ci

* common : by default, move the penalties at the end of the sampling chain

ggml-ci

* common : ignore all EOG tokens

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* common : move back the penalties at the front of the sampling chain

ggml-ci

* readme : restore hint about --ignore-eos flag [no ci]

* llama : minor

ggml-ci

* webui : update

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-16 12:31:14 +02:00
wwoodsTM 5107e8cea3
DRY: Fixes clone functionality (#10192) 2024-11-07 16:20:25 +01:00
Georgi Gerganov 8d8ff71536
llama : remove Tail-Free sampling (#10071)
ggml-ci
2024-10-29 10:42:05 +02:00
wwoodsTM ff252ea48e
llama : add DRY sampler (#9702)
* sampling : add DRY sampler (post-refactor)

* DRY: Trying to fix coauthors, removed unneeded line

* DRY: Fixed redundant code

* DRY: Fixed crash issue due to DRY being in chain but uninitialized

---------

Co-authored-by: l3utterfly <gc.pthzfoldr@gmail.com>
Co-authored-by: pi6am <34464159+pi6am@users.noreply.github.com>
2024-10-25 19:07:34 +03:00
Georgi Gerganov 55e47786e3
llama : default sampling changes + greedy update (#9897)
* llama : deprecate softmax sampler + fix dist sampler

ggml-ci

* tests : replace macros with functions

ggml-ci

* sampling : change temperature sampler logic

For t <= 0.0f, keep the max logit intact and set the rest to -inf

* cont : no need for special "greedy" logic

top-k == 1 is the same

* tests : init prob correctly

* llama : handle temp <= 0.0 in the temp_ext sampler too

ggml-ci

* cont : avoid extra loop in temperature sampler for sub-zero temp

ggml-ci
2024-10-21 09:46:40 +03:00
Georgi Gerganov 99bd4ac28c
llama : infill sampling handle very long tokens (#9924)
* llama : infill sampling handle very long tokens

ggml-ci

* cont : better indices

ggml-ci
2024-10-17 22:32:47 +03:00
Georgi Gerganov 755a9b2bf0
llama : add infill sampler (#9896)
ggml-ci
2024-10-15 16:35:33 +03:00
MaggotHATE fbc98b748e
sampling : add XTC sampler (#9742)
* Initial XTC commit

Adds XTC sampler, not activated by default, but recommended settings by default.

* Cleanup

* Simplified chances calculation

To be more inline with the original implementation, chance is calculated once at the beginning.

* First fixes by comments

Still need to look into sorting

* Fixed trailing backspaces

* Fixed RNG to be reproduceable 

Thanks to @slaren for directions

* Fixed forgotten header

* Moved `min_keep` 

Moved from conditions to a simple check at the end.

* Fixed broken randomization

Thanks to @slaren for explanation

* Swapped sorting for a custom algorithm

Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.

* Algorithm rework

1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.

* Added XTC to `test-sampling`

* Simplified algorithm and more tests

* Updated info in common and args

* Merged back lost commits in common and arg

* Update dump info in common

* Fixed incorrect min_keep check

* Added XTC to README

* Renamed parameters, fixed info and defaults

* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off

* Initial server support

* Added XTC to server UIs

* Fixed labels in old server UI

* Made algorithm safer and more readable

* Removed xtc_threshold_max

* Fixed arg after update

* Quick fixes by comments

* Simplified algorithm since threshold_max is removed

* Renamed random distribution

* Fixed tests and outdated README

* Small fixes
2024-10-15 12:54:55 +02:00