Commit Graph

6486 Commits

Author SHA1 Message Date
Georgi Gerganov 4efd5a8316
metal : fix checks for available FA kernels (#15700)
* metal : fix checks for available FA kernels

ggml-ci

* cont : fix comment [no ci]
2025-08-31 19:43:30 +03:00
Diego Devesa 274966226f
llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa 9777032dcc
llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Sigbjørn Skjæret 7d3c9f2b21
ci : explicitly set fa off or on (#15692) 2025-08-31 15:30:20 +02:00
Jeff Bolz bbbf5ecccb
vulkan: handle large sizes for get_rows (#15686) 2025-08-31 10:13:27 +02:00
Jeff Bolz c37052ab4d
vulkan: mul_mat_id coopmat2 optimizations (#15546)
* vulkan: mul_mat_id coopmat2 optimizations

Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.

Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.

* Also add a path for BN/4 - worth a couple more percent
2025-08-31 09:06:43 +02:00
Daniel Bevenius 5c16b9c87d
vulkan : remove unused portability_enumeration_ext variable (#15679)
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
2025-08-31 08:46:42 +02:00
Jeff Bolz b97c9edc59
vulkan: Allow fallback to sysmem memory when vidmem is full (#15649)
* vulkan: Allow fallback to sysmem memory when vidmem is full

* vulkan: Add env var GGML_VK_ALLOW_SYSMEM_FALLBACK
2025-08-31 08:30:54 +02:00
Jeff Bolz 94e82c7ead
vulkan: clamp matmul and FA results to the max finite value (#15652)
* vulkan: clamp matmul and FA results to the max finite value

* only clamp for fp16
2025-08-31 08:27:57 +02:00
Charles Xu 4d74393bcc
ggml: update kleidiai to v1.13.0 (#15663) 2025-08-31 00:03:42 +08:00
Diego Devesa dd892555b0
Update build.md to remove MSVC arm64 notes (#15684)
Removed information about MSVC compiler limitations for arm64 builds.
2025-08-30 23:51:28 +08:00
Johannes Gäßler e81b8e4b7f
llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Johannes Gäßler 38ad381f9f
CUDA: use FP32 arithmetic for conv2d (#15683) 2025-08-30 16:20:32 +02:00
Jeff Bolz 696fccf354
vulkan: Skip syncing for prealloc_y when it is reused (#15544) 2025-08-30 11:11:22 +02:00
Chenguang Li ef476916bb
CANN: FIx compiler warnings (#15661)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-30 10:18:35 +08:00
Sergey Alirzaev d82f6aa34a
server : removed obsolete doc (#15670)
completing a4090d1174
2025-08-30 00:12:53 +02:00
Johannes Gäßler 3d16b29c3b
scripts: strip "AMD Instinct" from GPU name (#15668) 2025-08-29 22:04:08 +02:00
ExtReMLapin 792b44f2ed
server : add documentation for `parallel_tool_calls` param (#15647)
Co-authored-by: Pierre F <no@p.e>
2025-08-29 20:25:40 +03:00
Aman Gupta 81017865ee
CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
2025-08-29 21:30:06 +08:00
Piotr Wilkin (ilintar) 60e5eee31f
chat : Seed OSS thinking + tool call support (#15552)
* Reasoning and tool-calling support for Seed OSS

* Fix grammar and partial parsing

* Whitespace

* New chat template

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update common/chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove unused 'purge_healing_marker' helper

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-29 14:53:41 +02:00
Aman Gupta 009b709d6e
CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
2025-08-29 11:35:58 +08:00
Gabe Goodhart e8d99dd0b6
nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
2025-08-28 18:39:31 -06:00
Gabe Goodhart a8bca68f72
fix: Compute the full sum in llama-eval-callback, not just the sum of printed values (#15637)
This makes it much easier to compare between llama.cpp and transformers!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-08-28 15:27:36 -05:00
mnehete32 c97dc09391
CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
2025-08-28 20:33:03 +02:00
Aaron Teo 6c442f42ff
ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-28 22:39:27 +08:00
compilade 73804145ab
ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
Georgi Gerganov c8d0d14e77
kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret 84ab83cc0b
model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Aman Gupta 55042b3692
scripts: add sqlite3 check for compare-commits.sh (#15633) 2025-08-28 19:23:22 +08:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Aleksei Nikiforov 64387f6e95
gguf-py: byteswapping improvements (#12851)
* gguf-py: implement byteswapping for Q4_0

This is needed to byteswap Mistral model.

Also restore original shapes after byteswapping tensors.
It is not needed at the moment, but do it in case
they'd be used in future.

* Rework byteswapping code in gguf-py

Move out details from byteswapping tensor blocks code
2025-08-28 16:56:41 +08:00
Joshua Cogliati d35a1e8c41
cli : change log to warning to explain reason for stopping (#15604)
* Change to warn instead of debug, to explain reason for stopping.

* Update tools/main/main.cpp

Fix printing --2

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-08-28 10:48:20 +03:00
Daniel Bevenius 46d9caa27a
model-conversion : add mmproj conversion target (#15628)
This commit adds a new target to the Makefile for converting models that
are multimodal. This target will convert the original model and in
addition also create the mmproj GGUF model.

The motivation for this change is that for models that are multimodal,
for example those that contain a vision encoders, we will often want to
upload both the quantized model and the vision encoder model to
HuggingFace.

Example usage:
```console
$ make causal-convert-mm-model MODEL_PATH=~/work/ai/models/gemma-3-4b-it-qat-q4_0-unquantized/
...
The environment variable CONVERTED_MODEL can be set to this path using:
export CONVERTED_MODEL=/home/danbev/work/ai/llama.cpp/models/gemma-3-4b-it-qat-q4_0-unquantized.gguf
The mmproj model was created in /home/danbev/work/ai/llama.cpp/models/mmproj-gemma-3-4b-it-qat-q4_0-unquantized.gguf
```
The converted original model can then be quantized, and after that both
the quantized model and the mmproj file can then be uploaded to
HuggingFace.

Refs: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF/tree/main
2025-08-28 09:26:48 +02:00
matiaslin 5a0e3ef6f0
cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
2025-08-28 02:32:36 +02:00
Johannes Gäßler fbef0fad7a
server: higher timeout for tests (#15621) 2025-08-27 20:58:09 +02:00
Georgi Gerganov da54f9f1a2
presets : add qwen3-30B-a3b FIM (#15616) 2025-08-27 15:48:07 +03:00
uvos 47373271f9
HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) 2025-08-27 13:58:54 +02:00
Georgi Gerganov 1bded5a3b3
kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
2025-08-27 13:55:12 +03:00
Chenguang Li 1e7489745a
CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-27 17:21:41 +08:00
xctan 1cf123a343
ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
Daniel Bevenius fcca2182a1
common : add -m to bash completion for --model [no ci] (#15591)
This commit updates the bash completion script to include the -m
short option for the --model argument.

The motivation for this is that currently tab completion only works the
full --model option, and it is nice to have it work for the short option
as well.
2025-08-27 10:28:53 +02:00
rmatif 86076f92de
OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Diego Devesa bcbddcd54f
tests : fix test-opt with GGML_BACKEND_DL (#15599) 2025-08-26 22:14:38 +02:00
Akarshan Biswas 8b69686136
SYCL: fix rms_norm_mul_add for tensor dim not a multiple of sg_size (#15592)
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.

This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
2025-08-27 00:27:49 +05:30
fidoriel 8ce3ff1d91
mtmd : fix mtmd ios build (#15579) 2025-08-26 20:05:50 +02:00
Eve 44b1efa41a
tests: add performance test for mul mat id (#15543) 2025-08-26 15:42:49 +00:00
shalinib-ibm a6a58d6478
llamafile: PowerPC Sgemm Optimization (#15558)
This patch improves GEMM for FP32 Data Type on PowerPC

Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.

Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).

Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces

Performance Testing:

Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model.  Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.

model                   Size                Params     Backend       Threads   Test    Patch   Base
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp512   98.58   60.3
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp1024  95.88   57.36
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp2048  85.46   53.26
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp4096  68.66   45.78
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp6144  57.35   40.44

25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-08-26 23:35:25 +08:00
Georgi Gerganov 0373486dbc
graph : fix assert in memory-less build_attn (#15590)
ggml-ci
2025-08-26 17:45:17 +03:00
Daniel Bevenius 62cef26ac5
model-conversion : add qat-q4 quantization targets (#15588)
This commit adds two targets to the Makefile for quantizing of
Quantization Aware Trained (QAT) models to Q4_0 format.

The motivation for this is that this sets the token embedding and the
output tensors data types to Q8_0 instead of the default Q6_K. This is
someting that we wish to enforce for QAT Q4_0 models that are to be
uploaded to ggml-org on Huggingface to guarantee the best quality.
2025-08-26 16:12:29 +02:00
Johannes Gäßler 8f5afa94c4
CUDA: return -1 for nonexistent compiled arch (#15587) 2025-08-26 16:01:20 +02:00