Commit Graph

1505 Commits

Author SHA1 Message Date
nullname e1727af06c
feat: perf opt dma phase2 (#57)
* Add power management utilities to NPU device context and update DCVS settings

* Update DCVS settings in power_utils to use v3 API and enhance power management

* wip

* Enhance dequantization functions by adding load_dequant_table support and updating signatures for improved performance

* use lut

* wip

* fix test failure

* wip

* Refactor load_qual_block_generic to improve block handling and optimize vector operations

* Enhance load_dual_block_generic and load_qual_block_generic to accept a mask parameter for improved block handling

* Refactor flash_attn_impl to optimize mask l2 prefetch

* wip

* wip

* wip

* wip

* add log

* link against shared libraries instead of static ones

* fix swiglu

* wip

* refactor expf_fix to handle overflow for different data types

* enhance is_glu_op_supported to validate shapes for multiple sources

* wip

* refactor logging macros to use hexagon namespace and improve formatting

* fix printf format error

* wip

* refactor: update static_assert messages for block size validation and add HVX_VectorPred_x3 type alias

* rename

* feat: enhance fa with mask

* wip

* wip

* refactor: replace instances of Q6_V_vzero() with kZeroV for consistency

* wip

* wip

* wip

* fix: improve address alignment check in HVX_Vector handling

* refactor: streamline vector dot product implementations for improved readability

* refactor: q4k add hvx intrinsic impl

* refactor: enhance dequantize_row_q4_K for clarity and performance

* refactor: optimize scale mask usage in dequantization functions for improved performance

* refactor: optimize dequantize_row_q4_K for intrinsic usage and performance improvements

* refactor: move GLU operation implementation into separated file

* sync after swiglu

* wip

* wip

* wip

* feat: increase prc main thread stack size

* fix: replace hardcoded stack size with NPU_THREAD_STACK_SIZE constant

* wip

* feat: add optimized vector operations for exponential and division with overflow handling

* wip

* feat: refactor exponential function to handle overflow and underflow with improved logic

* wip

* wip

* feat: add vector loading and scaling functions for improved performance in block processing

* wip

* feat: optimize block loading by refactoring scale index handling for improved performance

* use Q6_Vb_vlut32_VbVbR_nomatch instead

* feat: enhance scale loading by adding static assertion and restructuring block handling

* wip

* feat: refactor vec_dot_product_mixed_impl for improved clarity and performance

* wip

* feat: simplify vector loading functions and improve alignment handling

* wip

* feat: enhance scale loading mask with quantization block size validation

* wip

* feat: implement make_scale_load_mask function and refactor vector handling in vec_ops

* feat: enhance load_dual_block_generic to include scale indices for improved vector loading

* revert q8 dequant

* wip

* feat: optimize dequantization functions by removing unnecessary masking and updating lookup methods

* wip

* wip

* add qurt_mutex

* Add DMA transfer class and integrate into thread pool

* Enhance DMA transfer functionality by adding support for multiple descriptors and initiating transfers in parallel

* fix dma crash

* fix failed unit tests

* wip

* use alignas

* Improve DMA transfer error handling and update descriptor completion check

* Fix VTCM cache size calculation in element-wise operations

* Add cache clean operations before DMA transfers in element-wise operations

* reduce cache clean operations

* Refactor DMA transfer functions to support 1D operations and rename for clarity

* Enhance DMA transfer functionality by adding 2D submission support and improving descriptor initialization

* Update read buffer method to support forced invalidation and remove unnecessary invalidation calls in element-wise operations

* wip

* Improve DMA transfer handling in mul_mat_gemv_impl by replacing memcpy with initiate_dma_row_transfer and adding wait_for_dma logic

* fix 2d dma

* feat: add DMA plane cache

* rename

* wip

* use memcpy for debug

* fix cache plane calc

* refactor: remove debug logging from mul_mat_impl and optimize cache handling

* rename

* fix 2d dma type

* refactor: enhance DMA transfer handling in mul_mat_gemv_impl and wait functions

* refactor: optimize DMA transfer handling in mul_mat_gemv_impl and wait functions

* wip

* wip

* move op impl into sub dir

* add log

* fix: correct pointer usage in mul_mat_gemv_impl for next plane access

* fix: improve DMA transfer error handling in mul_mat_impl and mul_mat_gemv_impl

* fix: fix crash by using the entire row bytes

* wip

* wip

* fix: prevent parallelization for scalar src1 in is_mul_mat_supported

* fix: add dimension checks for 2D DMA transfers and fallback to 1D if necessary

* wip

* fix: enable thread barrier for mul multiplication operations

* feat: add synchronization checks for tensor operations and update related functions

* wip

* fix: remove invalidation flag from get_read_buffer calls in element-wise and matrix multiplication operations

* Revert "fix: remove invalidation flag from get_read_buffer calls in element-wise and matrix multiplication operations"

This reverts commit af3441e67e706b2e5122369dc160353796867dd3.

* wip

* wip

* add comment

* fix: improve DMA transfer handling in mul_mat_gemv_impl for quantized source tensors

* add log

* try fix mulmat gemv

* wip

* fix: enhance DMA transfer handling in mul_mat_gemv_impl for quantized source tensors

* fix: optimize cache offset calculation and remove redundant swap in mul_mat_gemv_impl

* fix: refactor DMA transfer handling in mul_mat_gemv_impl for improved clarity and maintainability

* wip

* wip

* wip

* fix: enhance mul_mat_impl for improved cache handling and clarity

* fix: refactor tensor unflattening and DMA transfer initialization for improved clarity and type safety

* fix: improve cache handling of quant

* wip

* fix: improve cache handling in mul_mat_impl and mul_mat_gemv_impl for better memory efficiency

* rename

* add load_hexa_block_generic

* wip

* extract dequant block into separated function

* refactor: enhance dequantization functions with table parameter

* fix load_dual_block_generic

* refactor: rename dequantization functions for clarity and enhance block handling

* refactor: simplify dequantization logic by consolidating block handling and removing unused parameters

* wip

* wip
2025-10-05 22:56:08 +08:00
nullname 3994a9b7df
feat: perf opt dma (#56)
* Add power management utilities to NPU device context and update DCVS settings

* Update DCVS settings in power_utils to use v3 API and enhance power management

* wip

* Enhance dequantization functions by adding load_dequant_table support and updating signatures for improved performance

* use lut

* wip

* fix test failure

* wip

* Refactor load_qual_block_generic to improve block handling and optimize vector operations

* Enhance load_dual_block_generic and load_qual_block_generic to accept a mask parameter for improved block handling

* Refactor flash_attn_impl to optimize mask l2 prefetch

* wip

* wip

* wip

* wip

* add log

* link against shared libraries instead of static ones

* fix swiglu

* wip

* refactor expf_fix to handle overflow for different data types

* enhance is_glu_op_supported to validate shapes for multiple sources

* wip

* refactor logging macros to use hexagon namespace and improve formatting

* fix printf format error

* wip

* refactor: update static_assert messages for block size validation and add HVX_VectorPred_x3 type alias

* rename

* feat: enhance fa with mask

* wip

* wip

* refactor: replace instances of Q6_V_vzero() with kZeroV for consistency

* wip

* wip

* wip

* fix: improve address alignment check in HVX_Vector handling

* refactor: streamline vector dot product implementations for improved readability

* refactor: q4k add hvx intrinsic impl

* refactor: enhance dequantize_row_q4_K for clarity and performance

* refactor: optimize scale mask usage in dequantization functions for improved performance

* refactor: optimize dequantize_row_q4_K for intrinsic usage and performance improvements

* refactor: move GLU operation implementation into separated file

* sync after swiglu

* wip

* wip

* wip

* feat: increase prc main thread stack size

* fix: replace hardcoded stack size with NPU_THREAD_STACK_SIZE constant

* wip

* feat: add optimized vector operations for exponential and division with overflow handling

* wip

* feat: refactor exponential function to handle overflow and underflow with improved logic

* wip

* wip

* feat: add vector loading and scaling functions for improved performance in block processing

* wip

* feat: optimize block loading by refactoring scale index handling for improved performance

* use Q6_Vb_vlut32_VbVbR_nomatch instead

* feat: enhance scale loading by adding static assertion and restructuring block handling

* wip

* feat: refactor vec_dot_product_mixed_impl for improved clarity and performance

* wip

* feat: simplify vector loading functions and improve alignment handling

* wip

* feat: enhance scale loading mask with quantization block size validation

* wip

* feat: implement make_scale_load_mask function and refactor vector handling in vec_ops

* feat: enhance load_dual_block_generic to include scale indices for improved vector loading

* revert q8 dequant

* wip

* feat: optimize dequantization functions by removing unnecessary masking and updating lookup methods

* wip

* wip

* add qurt_mutex

* Add DMA transfer class and integrate into thread pool

* Enhance DMA transfer functionality by adding support for multiple descriptors and initiating transfers in parallel

* fix dma crash

* fix failed unit tests

* wip

* use alignas

* Improve DMA transfer error handling and update descriptor completion check

* Fix VTCM cache size calculation in element-wise operations

* Add cache clean operations before DMA transfers in element-wise operations

* reduce cache clean operations

* Refactor DMA transfer functions to support 1D operations and rename for clarity

* Enhance DMA transfer functionality by adding 2D submission support and improving descriptor initialization

* Update read buffer method to support forced invalidation and remove unnecessary invalidation calls in element-wise operations

* wip

* Improve DMA transfer handling in mul_mat_gemv_impl by replacing memcpy with initiate_dma_row_transfer and adding wait_for_dma logic

* fix 2d dma

* feat: add DMA plane cache

* rename

* wip

* use memcpy for debug

* fix cache plane calc

* refactor: remove debug logging from mul_mat_impl and optimize cache handling

* rename

* fix 2d dma type

* refactor: enhance DMA transfer handling in mul_mat_gemv_impl and wait functions

* refactor: optimize DMA transfer handling in mul_mat_gemv_impl and wait functions

* wip

* wip

* move op impl into sub dir

* add log

* fix: correct pointer usage in mul_mat_gemv_impl for next plane access

* fix: improve DMA transfer error handling in mul_mat_impl and mul_mat_gemv_impl

* fix: fix crash by using the entire row bytes

* wip

* wip

* fix: prevent parallelization for scalar src1 in is_mul_mat_supported

* fix: add dimension checks for 2D DMA transfers and fallback to 1D if necessary

* wip

* fix: enable thread barrier for mul multiplication operations

* feat: add synchronization checks for tensor operations and update related functions

* wip

* fix: remove invalidation flag from get_read_buffer calls in element-wise and matrix multiplication operations

* Revert "fix: remove invalidation flag from get_read_buffer calls in element-wise and matrix multiplication operations"

This reverts commit af3441e67e706b2e5122369dc160353796867dd3.

* wip

* wip

* add comment

* wip
2025-09-24 21:40:17 +08:00
nullname 3686cb5fea fix compiling error 2025-09-17 23:50:55 +00:00
chraac dd56e72e55 Merge branch 'master' into dev-refactoring 2025-09-15 20:52:34 +08:00
Aman Gupta 106220562a
CUDA: some micro-optimizations in mmf.cuh for mul_mat_id (#15926) 2025-09-15 17:35:11 +08:00
Georgi Gerganov 9dcd200d57
metal : remove memory pools (#15966)
* metal : remove mem pool usage

ggml-ci

* metal : remove mem pool implementation

ggml-ci

* metal : take into account the actual allocated memory of the tensor

ggml-ci

* cont : use ggml_backend_buft_get_alloc_size

ggml-ci

* cont : improve, comments

ggml-ci

* cont : add functions for the extra tensor sizes

* metal : add comments

ggml-ci

* metal : implement .get_alloc_size for the rest of the buffer types

ggml-ci

* metal : remove ggml_metal_heap

ggml-ci
2025-09-14 22:02:32 +03:00
Ruben Ortlam 261e6a20ff
Vulkan: Clean up mul_mm shader (#15987)
* vulkan: move mul_mm dequantization steps into a separate file and functions

* improve mul_mm vector load code

* fix debug mode issues and warnings
2025-09-14 16:56:28 +02:00
Georgi Gerganov a14bd35014
metal : fix kernel requirements (#15983)
* metal : fix kernel requirements

ggml-ci

* cont : fix supports_op

* cont : fix supports_op for ARGMAX
2025-09-14 15:33:22 +03:00
Aaron Teo 6380d6a3e7
ggml-zdnn: rm user mapped buffers (#15965)
* ggml-zdnn: rm user mapped buffers

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rm dead code

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: attempt to fix missing extra data buffer free

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-14 13:37:03 +08:00
Jeff Bolz aa0c461efe
vulkan: fix failing dequant shaders (#15862)
* vulkan: fix failing dequant shaders

* add missing const
2025-09-13 17:29:43 +02:00
Jeff Bolz b9c9c9f789
vulkan: initialize vulkan-hpp to allow using extension function pointers (#15705)
Use this to query register count for shader compiles on NVIDIA. Currently
this is only for performance debug, but it could eventually be used in some
heuristics like split_k.
2025-09-13 17:23:30 +02:00
Georgi Gerganov 55758b00ca
metal : refactor kernel loading (#15964)
* metal : refactor bin kernels loading

ggml-ci

* metal : refactor rms kernel loading

ggml-ci

* ci : try to add memory leaks check

ggml-ci

* ci : try to enable memory leak detection for Mac

* cont : seems to be working
2025-09-13 16:24:22 +03:00
Georgi Gerganov f161463a54
metal : allow ops to run concurrently (#15929)
* metal : run graphs ops concurrently

ggml-ci

* cont : add flags for debugging and disabling concurrency

ggml-ci

* cont : refactor and handle fusing

ggml-ci

* cont : simplify - no need to use GPU address

ggml-ci

* cont : prepare mem ranges for reuse + add ggml-metal-common.cpp

ggml-ci

* cont : avoid redundant keywords in cpp [no ci]

* metal : reorder graph for better concurrency

ggml-ci

* metal : fix race on mem pool buffers

ggml-ci

* cont : add env GGML_METAL_GRAPH_OPTIMIZE_DISABLE

ggml-ci

* cont : refactor, optimize, add comments

ggml-ci

* cont : refactor ggml-metal.m

ggml-ci

* minor : update logs [no ci]
2025-09-13 13:54:28 +03:00
Georgi Gerganov 84d7b2fca1
metal : fix memory leaks (#15962)
ggml-ci
2025-09-13 12:45:04 +03:00
Aaron Teo 40be51152d
ggml-zdnn: fix #15414, activate FP16 and BF16 acceleration and incorrect zTensor free (#15839) 2025-09-13 02:39:52 +08:00
Ruben Ortlam 304ac5693d
Vulkan iGPU device selection overhaul and PCI ID API support (#15947)
* vulkan: implement ggml igpu device type, implement pci id support

* fix compiler warning

* prevent printf overflow warning
2025-09-12 13:24:21 +02:00
Mathieu Baudier 6c88ad8fa7
vulkan: Make device memory check more portable (#15939) 2025-09-12 09:06:20 +02:00
Neo Zhang Jianyu 704d90c987
Revert "sycl: add usage of enqueue_functions extension (#14244)" (#15910)
* Revert "sycl: add usage of enqueue_functions extension (#14244)"

This reverts commit 8308f98c7f.

* fix missed revert code, format the code
2025-09-12 09:15:12 +08:00
Diego Devesa 360d6533db
ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type (#15797)
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type

ggml-backend : add device id to device props

llama : only use iGPU devices if there are no GPU devices

llama : do not use multiple devices from different backends with the same device id
2025-09-11 22:47:38 +02:00
Johannes Gäßler 0e6ff0046f
CUDA: larger SRAM reads for tile FA, AMD FP16 dot (#15927)
* CUDA: larger SRAM reads for tile FA, AMD FP16 dot

* fix logic for availability of v_dot2_f32_f16
2025-09-11 21:19:58 +02:00
Daniel Bevenius 24a6734daf
ggml-cpu : add check for ARM MATMUL_INT8/i8mm support (#15922)
This commit adds a check for GGML_MACHINE_SUPPORTS_i8mm when enabling
MATMUL_INT8 features, ensuring that i8mm intrinsics are only used when
the target hardware actually supports them.

The motivation for this is to fix ggml CI build failures where the
feature detection correctly identifies that i8mm is not supported,
adding the +noi8mm flag, but MATMUL_INT8 preprocessor definitions are
still enabled, causing the compiler to attempt to use vmmlaq_s32
intrinsics without i8mm support.

Refs: https://github.com/ggml-org/ggml/actions/runs/17525174120/job/49909199499
2025-09-11 14:39:12 +01:00
Charles Xu 2b3efea9a4
kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed (#15614)
* kleidiai: fix GGML_ASSERT(*cur_backend_id != -1) failed

* removes the Whisper-specific check for GET_ROWS support
2025-09-11 12:45:40 +02:00
hipudding c0389dba43
CANN: Disable acl_graph for prefill stage (#15933)
Since the prefill length is not fixed, graphs constructed for the
prefill stage cannot be reused. For this reason, ACL graph
execution is disabled by default during prefill.
2025-09-11 15:59:37 +08:00
Oliver Simons 00681dfc16
CUDA: Add `fastdiv` to `k_bin_bcast*`, giving 1-3% E2E performance (#15872)
* Add fastdiv and fastmodulo to k_bin_bcast kernel

* Address review comments

* `prod_` instead of `prod` suffix

* Add test case for `k_bin_bcast_unravel` in CUDA backend
2025-09-10 22:04:03 +02:00
Daniel Bevenius 9de447d94e
ggml-cpu : fix padding in ggml_timestep_embedding (#15917)
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:

Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero

This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.

Resolves: https://github.com/ggml-org/ggml/issues/1324
2025-09-10 17:31:40 +02:00
Georgi Gerganov 0f0a3c2851
metal : make the backend async (#15906)
* metal : make the backend async

ggml-ci

* cont : add comments, extend op offload, clean up

ggml-ci

* metal : fix batch size for MUL_MAT_ID

* metal : remove deprecated ggml_backend_metal_buffer_from_ptr

* metal : create only metal buffers, no wrapping of host memory

ggml-ci

* metal : restore .alloc_buffer for buffer_from_ptr_type

ggml-ci

* metal : remove broken implementation of GGML_OP_SET

ggml-ci

* metal : clean-up loose ends, ready for tests

ggml-ci

* metal : support both private and shared buffers

ggml-ci

* metal : enable private buffers + add global device queue

* metal : disable host buffer to prevent races

ggml-ci

* metal : avoid extra copy during set_tensor

ggml-ci

* metal : use separate buffer types for shread and private Metal buffers

ggml-ci

* metal : simplify synchronization logic

ggml-ci

* metal : fix build

ggml-ci

* metal : do not implement cpy_tensor

ggml-ci

* metal : separate implementations for shared and private buffers

ggml-ci
2025-09-10 17:52:35 +03:00
Chenguang Li 10d8b2b6b0
CANN: Add ROPE sin/cos cache for reuse (#15912)
* CANN: Add ROPE sin/cos cache for reuse

Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.

- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
  (ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation

This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.

Co-authored-by: hipudding <huafengchun@gmail.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-10 18:42:00 +08:00
Chenguang Li 28b5f190ef
CANN: implement LRU cache for ACL graphs (#15814)
* CANN: implement LRU cache for ACL graphs in CANN backend

- Introduce ggml_cann_graph_lru_cache to store multiple ggml_cann_graph objects.
- Graphs are loaded on demand and evicted using LRU policy when capacity is exceeded.
- Updated push, move_to_front, and clear methods to manage cached graphs efficiently.
- Ensures reuse of graphs, reducing graph reconstruction overhead in CANN backend.

* fix typo

* The LRU cache capacity can be configured via an env variable

Signed-off-by: noemotiovon <757486878@qq.com>

* refactory acl graph

* refactory && fix review comments

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-09-10 15:29:12 +08:00
Ruben Ortlam ae355f6f71
vulkan: throw the oom error instead of no memory type found (#15905) 2025-09-09 22:26:03 +02:00
Jeff Bolz 4f63cd705c
vulkan: Fix OOB accesses in soft_max_back (#15861) 2025-09-09 14:41:15 +02:00
Johannes Gäßler 17bc5a815f
HIP: use v_dot2_f32_f16 instruction for FA (#15884) 2025-09-09 14:04:43 +02:00
lksj92hs ed54e32558
Workaround for subgroup arithmetic failing on MoltenVK with AMD GPUs (issue 15846) (#15886) 2025-09-09 14:01:15 +02:00
Aman Gupta a972faebed
CUDA: Add mul_mat_id support for the mmf kernel (#15767)
* CUDA: Add mul_mat_id support the mmf

Add support for mul_mat_id for bs < 16

* Review: use warp_size, fix should_use_mmf condition

* Launch one block per expert, stride along n_expert_used

* templatize mul_mat_id

* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids

* Reduce compile times by dividing mmf into f16, bf16 and f32 variants

* Divide mmf by ncols_dst

* Add missing files

* Fix MUSA/HIP builds
2025-09-09 14:38:02 +08:00
Johannes Gäßler 550cf726e1
CUDA: fix GET_ROWS for large tensors (#15882) 2025-09-09 08:11:01 +02:00
Jeff Bolz e68aa10d8f
vulkan: sort graph to allow more parallel execution (#15850)
* vulkan: sort graph to allow more parallel execution

Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.

With #15489, this reduces the number of synchronizations needed.

* call optimize_graph per-split
2025-09-09 02:10:07 +08:00
Aman Gupta 0a16bf52e6
CUDA: generate_cu_files.py - add missing mxfp4 (#15880) 2025-09-09 01:23:46 +08:00
Georgi Gerganov b0d52998b9
cuda : fix supports_op condition for get_rows when number of blocks is too large (#15868)
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1

ggml-ci

* ggml : add comment about ggml_get_rows

ggml-ci

* cuda : add FIXME [no ci]

* cuda : update support condition

ggml-ci
2025-09-08 13:56:51 +03:00
Georgi Gerganov f28d4f4ac9
metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen 9fcb29f22f
ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Sigbjørn Skjæret 5ef22d281d
CUDA: non-contiguous src0 not supported for PAD (#15869) 2025-09-08 12:55:44 +03:00
Chenguang Li 85ca66a746
CANN: Stream sync between devices for acl_graph (#15809)
* CANN: Switch to stream synchronization

Switch to stream synchronization because events are not effective.

Co-authored-by: hipudding <huafengchun@gmail.com>

* CANN: add Comments

---------

Co-authored-by: hipudding <huafengchun@gmail.com>
2025-09-08 10:03:29 +08:00
Jeff Bolz 3976dfbe00
vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Aaron Teo d36e61c580
ggml-cpu: clean up s390x SIMD (#15855)
* ggml-cpu: clean up s390x simd

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0da4b6aa07)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix hsum data types

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-08 02:18:28 +08:00
Jeff Bolz c97b5e5854
vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Jeff Bolz 267e99867f
vulkan: Use larger loads in scalar/coopmat1 matmul (#15729)
I think glslang will translate an access like x[i][1].z to
OpAccessChain ... x, i, 1, 2
OpLoad float16_t ...

rather than loading all of x[i] in a single OpLoad. Change the
code to explicitly load the vector/matrix.
2025-09-07 18:53:07 +02:00
Daniel Bevenius 3b15924d71
ggml WebGPU: remove userdata from request adapter callback (#15527)
* ggml WebGPU: remove userdata from request adapter callback

This commit removes the `userdata` parameter from the WebGPU request
adapter callback in `ggml-webgpu.cpp`. Instead, the lambda function
captures the `webgpu_context` directly.

The motivation for this change is to simplify the code and improve
readability.

* inline the callback lambda into the RequestAdapter call

This commit removes the callback lambda variable and inlines it directly
into the RequestAdapter call.
2025-09-07 11:19:45 +03:00
Johannes Gäßler 79bc429262
CUDA: faster tile FA (Pascal/AMD), headsize 256 (#15769) 2025-09-07 00:26:28 +02:00
Charles Xu c4df49a42d
kleidiai: generalize compute_forward_kv_cache to compute_forward_fp16 (#15817) 2025-09-06 22:08:43 +08:00
Johannes Gäßler 01806e7771
ggml-cpu: document use of "free" memory [no ci] (#15834) 2025-09-06 13:28:44 +02:00
Aaron Teo 186415d595
ggml-cpu: drop support for nnpa intrinsics (#15821) 2025-09-06 11:27:28 +08:00