Commit Graph

98 Commits

Author SHA1 Message Date
Daniel Bevenius d74eb61aa7
squash! sampling : simplify backend sampling logic decode
Fix condition to check if backend actually sampled tokens, not just that
backend samplers are available.
2025-11-19 11:29:26 +01:00
Daniel Bevenius 7e98ebcc6b
sampling : simplify backend sampling logic decode
This commit tries to simplify the backend sampling logic in
llama_context::decode.
2025-11-19 09:31:33 +01:00
Daniel Bevenius 311c1a347f
sampling : ensure at most one output token per seq
This commit adds a check in the batch allocator to ensure that when
backend sampling is enabled, at most one output token is specified per
sequence.
2025-11-18 16:06:23 +01:00
Daniel Bevenius 82957a90f2
sampling : always expose sampled_ids
This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.

The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.

Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.
2025-11-18 15:11:59 +01:00
Georgi Gerganov 4b52e59903
graph : do not include llama-model.h 2025-11-18 13:53:25 +02:00
Daniel Bevenius 7884b0e0ac
sampling : add support for backend sampling
This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.

The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.

For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.

It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.

Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.
2025-11-17 16:15:58 +01:00
Sigbjørn Skjæret 9008027aa3
hparams : add n_embd_inp() to support extended embed (#16928)
* add n_embd_full to support extended embed

* don't change output

* rename to n_embd_inp

* restore n_embd where applicable
2025-11-07 19:27:58 +01:00
Georgi Gerganov 16bcc1259d
kv-cache : pad the cache size to 256 for performance (#17046)
* kv-cache : pad the size of the small SWA cache for performance

* context : pad the total context to 256

* cont : future-proof the swa pad

* server : adjust test params to new logic
2025-11-07 20:03:25 +02:00
Johannes Gäßler aa374175c3
CUDA: fix crash on uneven context without FA (#16988) 2025-11-06 14:05:47 +01:00
Georgi Gerganov cd5e3b5754
server : support unified cache across slots (#16736)
* server : support unified context across slots

* cont : fix speculative decoding initialization

* context : fix n_ctx_per_seq computation

* server : purge slots one by one

* tests : add unified cache server tests

* llama : update per-seq context computation

* test-thread-safety : handle tiny training context of the input model

* server : fix server_tokens clear()

* server : use 4 slots + unified KV by default

* llama : add note about context size queries

* cont : update todos [no ci]

* context : do not cap the size of the context

* tests : adjust parameters to be CI friendlier

* context : add warning
2025-11-02 18:14:04 +02:00
Diego Devesa 5a4ff43e7d
llama : disable pipeline parallelism if compute buffer allocation fails (#16748) 2025-10-27 21:51:28 +01:00
takuya kodama 7062dd8460
llama-context: only warn on pooling_type when user specified (#16674)
The unexpeced pooling_type warning was incorrectly shown when users did not
specify the --pooling-type parameter. In this case, the parameter
defaults to `LLAMA_POOLING_TYPE_UNSPECIFIED (-1)`, and the code
automatically applies the model's default pooling type.

Example of spurious warning:
```
$ llama-embedding -hf ggml-org/bge-m3-Q8_0-GGUF -p "hello"
...
llama_init_from_model: model default pooling_type is [2], but [-1] was specified
...
```

This fix ensures the warning only appears when users explicitly specify
a pooling type that differs from the model's default (e.g., using
--pooling-type mean on a model that expects CLS pooling).
2025-10-20 10:44:21 +03:00
Saba Fallah e08db42595
model: EmbeddingGemma Adding Support for SentenceTransformers Dense Modules (#16367)
* model: EmbeddingGemma sentence-transformers dense linear projections support

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.

See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

- converting model with dense-layers is optional
- introduced dense config params

* Update convert_hf_to_gguf.py

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* fixed formatting issues

* Update src/llama-graph.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims

* fix python lint

* fix ubuntu gcc build warning

* - fixed thread-safety test
- moved asserts to load_hparams

* - tidying up code
- simplifying graph-context expecting both dense weights

* minor : add TODO

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-09 09:39:18 +03:00
Johannes Gäßler e789095502
llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Sigbjørn Skjæret b8e09f08b9
model : add grok-2 support (#15539)
* add grok-2 support

* type fix

* type fix

* type fix

* "fix" vocab for invalid sequences

* fix expert tensor mapping and spaces in vocab

* add chat template

* fix norm tensor mapping

* rename layer_out_norm to ffn_post_norm

* ensure ffn_post_norm is mapped

* fix experts merging

* remove erroneous FFN_GATE entry

* concatenate split tensors and add more metadata

* process all expert layers and try cat instead of hstack

* add support for community BPE vocab

* fix expert feed forward length and ffn_down concat

* commit this too

* add ffn_up/gate/down, unsure if sequence is right

* add ffn_gate/down/up to tensor names

* correct residual moe (still not working)

* mess--

* fix embedding scale being applied twice

* add built in chat template

* change beta fast for grok if default value

* remove spm vocab in favor of community bpe vocab

* change attention temp length metadata type to integer

* update attention temp length metadata

* remove comment

* replace M_SQRT2 with std::sqrt(2)

* add yarn metadata, move defaults to hparams
2025-09-14 23:00:59 +02:00
Haiyue Wang f4e664f838
context : remove redundant explicit casting to the same type (#15948)
The function 'output_reserve' return type is 'uint32_t', so need to add
explicit casting.
2025-09-12 18:16:32 +03:00
Daniel Bevenius 86587da03b
llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00
Georgi Gerganov 663027fd54
context : fix n_outputs during reserve (#15858)
ggml-ci
2025-09-08 10:26:36 +03:00
Daniel Bevenius d1e2adba65
llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-04 15:40:44 +02:00
Diego Devesa 274966226f
llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa 9777032dcc
llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Johannes Gäßler e81b8e4b7f
llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Georgi Gerganov 85cc1ae998
context : print graph stats for memory-less contexts (#15586)
ggml-ci
2025-08-26 12:47:00 +03:00
Georgi Gerganov 9ebebef62f
llama : remove KV cache defragmentation logic (#15473)
ggml-ci
2025-08-22 12:22:13 +03:00
Georgi Gerganov cd36b5e5c7
llama : remove deprecated llama_kv_self API (#15472)
ggml-ci
2025-08-21 19:13:45 +03:00
Georgi Gerganov 715a6db02c
kv-cache : drop the "unified" prefix (#15467)
* kv-cache : drop the "unified" prefix

ggml-ci

* cont : fix comment [no ci]
2025-08-21 17:00:33 +03:00
Georgi Gerganov 9d262f4bad
server : remove swa_full warning (#15399) 2025-08-19 08:45:26 +03:00
Georgi Gerganov d32e03f449
server : add SWA checkpoints (#15293)
* server : add SWA checkpoints

ggml-ci

* cont : server clean-up

* server : handle state restore fails

* llama : add extended llama_state_seq_ API

* server : do not make checkpoints if --swa-full

ggml-ci

* llama : remove flags value for NONE

* server : configure number of SWA checkpoints with CLI arg

ggml-ci

* args : fix scope of new argument
2025-08-14 14:59:50 +03:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
compilade ee3a9fcf88
context : fix index overflow on huge outputs (#15080)
* context : fix overflow when re-ordering huge outputs

* context : fix logits size overflow for huge batches
2025-08-05 11:27:45 +02:00
Georgi Gerganov a4569c41fd
llama : enable LLAMA_SET_ROWS=1 by default (#14959)
ggml-ci
2025-08-02 17:14:21 +03:00
Georgi Gerganov ba42794c9e
graph : fix equal_seq() check (#14986)
ggml-ci
2025-08-01 06:38:12 +03:00
Daniel Bevenius ca0ef2dddb
llama : clarify comment about pp and tg graphs [no ci] (#14895)
* llama : clarify comment about pp and tg graphs [no ci]

This commit clarifies the comment in `llama-context.cpp` regarding the
prefill prompt (pp), and token generation (tg) graphs.

The motivation for this is that I've struggled to remember these and had
to look them up more than once, so I thought it would be helpful to add
a comment that makes it clear what these stand for.

* squash! llama : clarify comment about pp and tg graphs [no ci]

Change "pp" to "prompt processing".
2025-07-27 12:10:51 +02:00
Georgi Gerganov c1dbea752a
context : restore preemptive sched reset when LLAMA_SET_ROWS=0 (#14870)
ggml-ci
2025-07-25 14:28:06 +03:00
Georgi Gerganov e4868d16d2
context : perform output reorder lazily upon access after sync (#14853)
* context : perform output reorder after lazily upon access after sync

ggml-ci

* cont : add TODO
2025-07-24 16:31:48 +03:00
Georgi Gerganov d498af3d5a
graph : avoid huge warm-up graphs for MoE models (#14753)
* graph : avoid huge warm-up graphs for MoE models

ggml-ci

* cont : bump max nodes to 8x model tensors
2025-07-18 14:31:15 +03:00
Georgi Gerganov 8f974bc1e9
graph : refactor context to not pass gf explicitly (#14629)
ggml-ci
2025-07-18 08:29:28 +03:00
Georgi Gerganov 01612b7409
llama : reuse compute graphs (#14482)
* llama : reuse compute graphs

ggml-ci

* llama-bench : add graph reuse parameter

ggml-ci

* cont : remove the parameter and the sched resets

ggml-ci

* graph : rename update() to can_reuse()

ggml-ci

* params : remove is_same()

ggml-ci

* graph : set res->params in llm_graph_context constructor

ggml-ci

* graph : avoid set_max_nodes in llm_graph_result

ggml-ci

* kv-cache : reuse llama_context's graph result instance

ggml-ci

* context : reset the previous graph result upon memory updates

ggml-ci

* batch : llama_ubatch now carries its data instead of pointing to balloc

ggml-ci

* merge : fix build

ggml-ci

* graph : fix can_reuse() checks when flash-attention is disabled

* graph : move llm_graph_result impl in source file + debug env

ggml-ci
2025-07-17 19:08:33 +03:00
Georgi Gerganov 225e7a1438
llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Aman Gupta 9c9e4fc635
llama-context: add ability to get logits (#14672) 2025-07-14 21:01:41 +08:00
Georgi Gerganov 7b50d589a8
kv-cells : fix tracking of seq_pos (#14339)
* kv-cells : fix tracking of seq_pos during cache reuse

ggml-ci

* cont : improve error message

ggml-ci

* cont : add more comments
2025-06-23 12:27:35 +03:00
Georgi Gerganov 692e3cdd0a
memory : rename interface to llama_memory_context_i (#14296)
* memory : rename interface to llama_memory_context_i

ggml-ci

* cont : fix comments

* cont : use "mctx" for referencing a memory context

ggml-ci
2025-06-21 08:03:46 +03:00
Georgi Gerganov 4c9fdfbe15
ubatch : new splitting logic (#14217)
ggml-ci
2025-06-20 10:14:14 +03:00
Georgi Gerganov d3e64b9f49
llama : rework embeddings logic (#14208)
* llama : rework embeddings logic

ggml-ci

* cont : fix rerank

ggml-ci

* cont : engrish [no ci]

* cont : fix rerank

ggml-ci

* server : support both embeddings and completions with single model

ggml-ci

* cont : avoid embeddings_org

ggml-ci
2025-06-16 14:14:00 +03:00
Georgi Gerganov c311ac664d
cparams : rename LLAMA_MAX_PARALLEL_SEQUENCES to LLAMA_MAX_SEQ (#14188)
ggml-ci
2025-06-15 10:08:58 +03:00
Georgi Gerganov b9912ac570
batch : auto-gen positions + verify multi-sequence input (#14177)
* batch : verify multi-sequence input batches

ggml-ci

* cont : auto-gen positions + verify multi-seq input

ggml-ci

* cont : first print debug info, then perform validation

ggml-ci

* cont : fix position auto-gen + add comments

ggml-ci
2025-06-15 09:18:37 +03:00
Georgi Gerganov 60c666347b
batch : rework llama_batch_allocr (#14153)
* batch : rework llama_batch_allocr

ggml-ci

* cont : move validation inside class

ggml-ci

* cont : move output counting to class

ggml-ci

* cont : minor

ggml-ci

* batch : add TODOs

ggml-ci
2025-06-13 13:47:55 +03:00
Georgi Gerganov f6e1a7aa87
context : simplify output counting logic during decode (#14142)
* batch : remove logits_all flag

ggml-ci

* context : simplify output counting logic during decode

ggml-ci

* cont : fix comments
2025-06-12 11:50:01 +03:00
Georgi Gerganov c3ee46fab4
batch : remove logits_all flag (#14141)
ggml-ci
2025-06-12 11:49:26 +03:00