Commit Graph

695 Commits

Author SHA1 Message Date
Aleksander Grygier 58ab834b18 refactor: MCP state management + stores/clients relationship 2026-01-12 14:17:06 +01:00
Xuan-Son Nguyen ce3bf9b1a4
server: update docs for sleeping [no ci] (#18777) 2026-01-12 13:01:24 +01:00
Aleksander Grygier 9c53bd4486 chore: update webui build output 2026-01-12 11:16:18 +01:00
Aleksander Grygier 528a560a25 fix: Distinguish streaming vs incomplete tool calls in UI 2026-01-12 11:15:58 +01:00
Aleksander Grygier aa9054367a chore: update webui build output 2026-01-12 11:10:24 +01:00
Aleksander Grygier cead02ee58 fix: Restore live reactive UI progress for tool calls 2026-01-12 11:07:56 +01:00
Aleksander Grygier c6843d0054 chore: update webui build output 2026-01-12 11:02:42 +01:00
Aleksander Grygier b5226ebd86 Merge origin/allozaur/mcp-mvp: enable streaming of tool call arguments
Resolves conflicts by:
- Keeping clean store architecture (agentic.svelte.ts delegates to client)
- Updating agentic.client.ts to use TOOL_ARGS_START/END format
- Accepting remote AgenticContent.svelte with direct JSON parsing
- Updating ChatMessageAssistant to match new AgenticContent props
2026-01-12 10:55:34 +01:00
Aleksander Grygier 01dfe0ee4c chore: update webui build output 2026-01-12 10:37:12 +01:00
Aleksander Grygier 144148125b refactor: Cleanup 2026-01-12 10:28:59 +01:00
Pascal a02acca38d fix: reset tool call state between turns 2026-01-10 19:14:13 +01:00
Pascal b7288a4dd7 webui: enable streaming of tool call arguments 2026-01-10 18:59:57 +01:00
Georgi Gerganov f307926482
server : adjust unified KV cache tests (#18716) 2026-01-10 17:51:56 +02:00
Xuan-Son Nguyen 9ac2693a30
server: fix n_cmpl not skipping processing prompt (#18663)
* server: fix n_cmpl not skipping processing

* fix infinite loop on empty batch

* cont : init child samplers + modify child logic

* cont : cleanup

* cont : improve n_cmpl logic

- launch the parent task first so it finds the slot with best cache
- parent task waits for child tasks to be launched
- when a child task finishes - remove its cache

* cont : remove redundant function

* cont : reduce parent checks

* fix : nullptr task dereference

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-10 00:00:41 +01:00
Simranjeet Singh a61c8bc3bf
mtmd: Add Gemma3n multimodal support with MobileNetV5 vision encoder (#18256)
* Add Gemma3nVisionModel - MobileNetV5 vision encoder convertor to convert_hf_to_gguf.py. Add gemma3n to vision projectors in gguf-py/gguf/constants.py.

* Add mobilenetv5 impl

* Fix comments, remove unused vars

* Fix permute and remove transpose of projection weights

* Fix comments, remove debugging prints from hf_to_gguf

* 1. Hard-code image_mean = 0 and image_std = 1
2. Use available tensor mapping logic
3. Remove redundant chat template replacement of soft tokens placeholder with media placeholder

* 1. Move mobilenetv5 helpers declarations to `clip_graph_mobilenetv5` struct and definitions to mobilenetv5.cpp
2.Remove unused `clip_is_gemma3n` func declarations and definitions
3. Remove redundant `rescale_image_u8_to_f32` func and use `normalize_image_u8_to_f32` with zero mean and unit std
4. Calculate n_patches using image_size / patch_size

* Remove obsolete comments

* - convert_hf_to_gguf.py & constants.py & tensor_mapping.py: Use explicit mapping: Custom map for double indexed blocks and tensor_mapping.py for rest
- convert_hf_to_gguf.py: Unsqueeze Stem Bias and Layer scale tensors to correct shape while converting to gguf
- mobilenetv5.cpp: Remove explicit reshaping of Stem Bias and Layer scale which are now handled while converting to gguf, replace fprintf with LOG_*
- clip.cpp: Remove unused embedding and hard_emb_norm tensor loading

* - Rename tensors to v.conv..., v.blk..., v.msfa... to better align with already existing terminology

* Fix stem conv bias name

* Remove explicit handling of bias term for stem conv

* - Change order of addition in "project_per_layer_inputs" to support broadcasting of vision inp_per_layer
- Simplify the vision embeddings path of "get_per_layer_inputs" to output [n_embd_altup, n_layer, 1], broadcastable

* clean up conversion script

* fix code style

* also preserve audio tensors

* trailing space

* split arch A and V

* rm unused gemma3 func

* fix alignment

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2026-01-09 23:42:38 +01:00
Pascal ec8fd7876b
Webui/file upload (#18694)
* webui: fix restrictive file type validation

* webui: simplify file processing logic

* chore: update webui build output

* webui: remove file picker extension whitelist (1/2)

* webui: remove file picker extension whitelist (2/2)

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* fix: update ChatForm storybook test after removing accept attribute

* chore: update webui build output

* refactor: more cleanup

* chore: update webui build output
2026-01-09 16:45:32 +01:00
Asbjørn Olling a180ba78c7
cmake: only build cli when server is enabled (#18670) 2026-01-09 16:43:26 +01:00
Georgi Gerganov 53eb9435da
server : fix timing of prompt/generation (#18713) 2026-01-09 12:59:50 +02:00
Georgi Gerganov f5f8812f7c
server : use different seeds for child completions (#18700)
* server : use different seeds for child completions

* cont : handle default seed

* cont : note
2026-01-09 09:33:50 +02:00
Pascal 74b119e81e webui: prevent mobile dropdown immediate close on synthetic click 2026-01-08 22:48:56 +01:00
Pascal d000d84201 webui: fix redirect to root ignoring base path 2026-01-08 15:33:23 +01:00
Aleksander Grygier 2c0add6a90 Merge remote-tracking branch 'origin/allozaur/mcp-mvp' into allozaur/mcp-mvp 2026-01-08 15:02:05 +01:00
Aleksander Grygier e3ca595651 chore: update webui build output 2026-01-08 14:54:45 +01:00
Aleksander Grygier 6f7750489e refactor: Types 2026-01-08 14:45:47 +01:00
Aleksander Grygier dfd3031b17 refactor: Componentize McpServerCard 2026-01-08 14:18:30 +01:00
Aleksander Grygier 835c06e0d1 refactor: Cleanup 2026-01-08 14:18:12 +01:00
Aleksander Grygier ddbb7dc2e5 fix: Remove redundant CSS class 2026-01-08 14:11:52 +01:00
Adrien Gallouët 55abc39355
vendor : update cpp-httplib to 0.30.0 (#18660)
* vendor : update cpp-httplib to 0.30.0
* common : allow custom headers when downloading
2026-01-08 13:53:54 +01:00
Aleksander Grygier bf2a793f42
refactor: Cleanup 2026-01-08 13:49:55 +01:00
Aleksander Grygier 089f38230c feat: Add TruncatedText component 2026-01-08 13:02:46 +01:00
Aleksander Grygier 06febe08b7 fix: Collapsible box trigger 2026-01-08 12:48:15 +01:00
Aleksander Grygier 223c6333e9 refactor: Cleanup 2026-01-08 12:46:10 +01:00
Aleksander Grygier b0ba550928 refactor: Cleanup 2026-01-08 12:03:36 +01:00
Johannes Gäßler 64848deb18
llama-fit-params: free memory target per device (#18679) 2026-01-08 10:07:58 +01:00
Aleksander Grygier 56b34bf63b refactor: Collapsible Content Block & small fixes 2026-01-08 09:17:24 +01:00
Adrien Gallouët 56d2fed2b3
tools : remove llama-run (#18661)
* tools : remove llama-run
* Remove licenses/LICENSE-linenoise

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-07 16:18:26 +01:00
Aleksander Grygier d89ada8cee chore: update webui build output 2026-01-07 15:46:32 +01:00
Aleksander Grygier 98bce85b1f refactor: Cleanup 2026-01-07 15:44:23 +01:00
Aleksander Grygier b9adc00d3f chore: update webui build output 2026-01-07 14:27:48 +01:00
Aleksander Grygier 10e5ad1396 feat: UI improvements 2026-01-07 14:01:27 +01:00
Aleksander Grygier bc07e0723d feat: Always show Mcp Selector 2026-01-07 14:01:27 +01:00
Pascal 4c095df509 fix: remove double scrollbar in model selector by using Bits UI content available height 2026-01-07 12:23:03 +01:00
Tarek Dakhran ccbc84a537
mtmd: mtmd_audio_streaming_istft (#18645)
Change is decoupled from https://github.com/ggml-org/llama.cpp/pull/18641.

[LFM2.5-Audio-1.5B](https://huggingface.co/LiquidAI/LFM2.5-Audio-1.5B)
needs streaming istft for generating output audio.

* add streaming ISTFT class (`mtmd_audio_streaming_istft`) with overlap-add for audio reconstruction
* replace global audio cache with per-instance cache, the model requires
  two independent caches, for preprocessing (audio input) and for istft
  (audio output).
* unified templated FFT/IFFT implementation supporting both forward and inverse transforms
2026-01-06 21:00:29 +01:00
R 3d26a09dc7
server : add thinking content blocks to Anthropic Messages API (#18551)
* server : add thinking content blocks to Anthropic Messages API

Add support for returning reasoning/thinking content in Anthropic API
responses when using models with --reasoning-format deepseek and the
thinking parameter enabled.

- Non-streaming: adds thinking block before text in content array
- Streaming: emits thinking_delta events with correct block indices
- Partial streaming: tracks reasoning state across chunks via
  anthropic_has_reasoning member variable

Tested with bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF model.

* server : fix Anthropic API streaming for thinking content blocks

Add signature field and fix duplicate content_block_start events in
Anthropic Messages API streaming responses for reasoning models.

* server: refactor Anthropic streaming state to avoid raw pointer

Replace raw pointer to task_result_state with direct field copies:
- Copy state fields in update() before processing chunk
- Use local copies in to_json_anthropic() instead of dereferencing
- Pre-compute state updates for next chunk in update()

This makes the data flow clearer and avoids unsafe pointer patterns.
2026-01-06 16:17:13 +01:00
Tarek Dakhran 73d284a250
model : add LFM2-ColBert-350M (#18607)
* model : add LFM2-ColBert-350M

* llama_model_n_embd_out() - returns `hparams.n_embd_out` if set and fallbacks to `hparams.n_embd`
2026-01-05 19:52:56 +01:00
Aleksander Grygier 2d6020b574 feat: Enable adding System Prompt per-chat 2026-01-05 14:30:11 +01:00
Vladislav Sayapin da143b9940
server : fix router child env in containerized environments (#18562) 2026-01-05 14:12:05 +01:00
Aleksander Grygier 469263668f fix: UI 2026-01-05 11:59:31 +01:00
Aleksander Grygier cf37390434 chore: update webui build output 2026-01-05 11:57:23 +01:00
Aleksander Grygier f3734b5b7c feat: UI improvements 2026-01-05 11:53:53 +01:00
Pascal 653f85fedd webui: raw tool result display, strip only leading/trailing newlines to preserve indentation 2026-01-05 09:01:31 +01:00
Pascal fc7218ae11 webui: split raw output into backend parsing and frontend display options 2026-01-05 09:01:31 +01:00
Pascal 4f9d9d41b9 webui: remove legacy wrapper and restore WebSocket transport 2026-01-05 09:01:31 +01:00
Pascal 183d9eebff webui: remove unused imports 2026-01-05 09:01:31 +01:00
Aleksander Grygier f7ea69fa18 chore: update webui build output 2026-01-05 09:01:31 +01:00
Aleksander Grygier c5d01fbb8f feat: Improve agentic tool call streaming display with 'in progress' state 2026-01-05 09:01:31 +01:00
Aleksander Grygier f755673c6f feat: Enhance MCP server dropdown with search, popularity sorting, and per-chat overrides 2026-01-05 09:01:31 +01:00
Aleksander Grygier 81ad2d5569 feat: Add per-chat MCP server overrides 2026-01-05 09:01:31 +01:00
Aleksander Grygier 865c28a96d chore: update webui build output 2026-01-05 09:01:31 +01:00
Aleksander Grygier 2592471d11 feat: Add image load error fallback in MarkdownContent 2026-01-05 09:01:31 +01:00
Aleksander Grygier 069be7b517 feat: Implement lazy MCP client shutdown 2026-01-05 09:01:31 +01:00
Aleksander Grygier 9571e07687 feat: Enhance tool call streaming UI and output format 2026-01-05 09:01:31 +01:00
Aleksander Grygier 260375819d feat: Display and manage servers in ChatForm actions 2026-01-05 09:01:31 +01:00
Aleksander Grygier 74345d8785 feat: Integrate server management dialog into chat settings 2026-01-05 09:01:31 +01:00
Aleksander Grygier dde5e1582c feat: Implement dedicated server management UI components 2026-01-05 09:01:31 +01:00
Aleksander Grygier c24d5e36f0 refactor: Centralize health check logic in store 2026-01-05 09:01:31 +01:00
Aleksander Grygier f87b10ee66 feat: Enhance server config with headers and schema normalization 2026-01-05 09:01:31 +01:00
Aleksander Grygier 778ad550b1 feat: Add McpLogo Svelte component 2026-01-05 09:01:31 +01:00
Aleksander Grygier c1c2234a62 refactor: Consolidate UI CSS classes into shared module 2026-01-05 09:01:31 +01:00
Aleksander Grygier 883d2a4f15 chore: update webui build output 2026-01-05 09:01:31 +01:00
Aleksander Grygier 7d5fd37324 feat: Raw LLM output switch per message 2026-01-05 09:01:31 +01:00
Aleksander Grygier 03464a0780 refactor: Tool call handling 2026-01-05 09:01:31 +01:00
Aleksander Grygier 3e7318f09d docs: Update high-level architecture diagrams for MCP integration 2026-01-05 09:01:15 +01:00
Aleksander Grygier 219be7807e feat: Add AgenticContent component for enhanced tool call rendering 2026-01-05 09:01:15 +01:00
Aleksander Grygier 52b1a1bffa refactor: Update ChatStore to leverage mcpStore for agentic flow 2026-01-05 09:01:15 +01:00
Aleksander Grygier 60475dca3c feat: Implement agentic orchestration within ChatService 2026-01-05 09:01:15 +01:00
Aleksander Grygier 5f5d5ab45f feat: Introduce reactive mcpStore for client lifecycle management 2026-01-05 09:01:15 +01:00
Aleksander Grygier 9ab2326e79 feat: Refactor MCP client to use official SDK 2026-01-05 09:01:15 +01:00
Aleksander Grygier 4dbcb5cdfd feat: Add @modelcontextprotocol/sdk and zod dependencies 2026-01-05 09:01:15 +01:00
Aleksander Grygier 8024ae540f refactor: Update Agentic and MCP config parsing to use new utils and constants 2026-01-05 09:01:15 +01:00
Aleksander Grygier abc3764c9f feat: Centralize MCP and Agentic type definitions and constants 2026-01-05 09:01:15 +01:00
Aleksander Grygier 94fef3508a feat: Introduce common utility functions 2026-01-05 09:01:15 +01:00
Pascal 18ee0acb3e webui: use normalizedMessages after upstream refactor 2026-01-05 09:00:59 +01:00
Pascal d4207ddd8a webui: MCP client with low coupling to current codebase 2026-01-05 09:00:59 +01:00
Daniel Bevenius d3dce4e0a5
sampling : add support for backend sampling (#17004)
* sampling : add support for backend sampling

This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.

The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.

For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.

It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.

Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.

* llama-cli : add backend sampler configuration

* server : add backend sampling options/configuration

* webui : add backend sampling options

* ggml : add initial cumsum implementation for CUDA

* sampling : enable all backend sampler tests

This commit enables all exisiting backend sampler tests in the
test-backend-sampler. Previously, some tests were disabled because
there were missing ggml operation implementations.

* graph : do not include llama-model.h

* sampling : always expose sampled_ids

This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.

The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.

Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.

* sampling : ensure at most one output token per seq

This commit adds a check in the batch allocator to ensure that when
backend sampling is enabled, at most one output token is specified per
sequence.

* CUDA: Optimize argsort for gpu-based token sampling

Argsort is used for top-k currently. WE optimize argsort by 2 things:

1. Use `DeviceRadixSort` for single-row/sequence to parallelize it
   across our SMs
2. Use `DeviceSegmentedSort` for multi-row/sequence as this is the
   correct entrypoint (the function chooses different execution paths,
   it contains `DeviceSegmentedRadixSort` as one of the paths and will
   choose the best one according to heuristics.
   https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html#overview

Some perf numbers for a RTX PRO 6000:

On the kernel level, tested with
`GGML_CUDA_DISABLE_GRAPHS=1 ./test-backend-ops -o ARGSORT perf`
Before:
```
  ARGSORT(type=f32,ne=[65000,16,1,1],order=0):                  4130 runs -   359.24 us/run
  ARGSORT(type=f32,ne=[200000,1,1,1],order=0):                  8192 runs -   861.34 us/run
  ARGSORT(type=f32,ne=[200000,16,1,1],order=0):                 1343 runs -  1020.01 us/run
```

After:
```
  ARGSORT(type=f32,ne=[65000,16,1,1],order=0):                  4130 runs -   312.41 us/run
  ARGSORT(type=f32,ne=[200000,1,1,1],order=0):                 16384 runs -    63.48 us/run
  ARGSORT(type=f32,ne=[200000,16,1,1],order=0):                 1343 runs -   874.36 us/run
```

---
On the model level, tested with
`llama-cli -m gpt-oss-20b-mxfp4.gguf -n 200 -p "What is
the Capital of Sweden?" -no-cnv -fa 1 --backend-sampling`

Before:
```
llama_perf_sampler_print:    sampling time =       0.25 ms /   207 runs   (    0.00 ms per token, 824701.20 tokens per second)
llama_perf_context_print:        load time =   18215.58 ms
llama_perf_context_print: prompt eval time =      28.20 ms /     7 tokens (    4.03 ms per token,   248.19 tokens per second)
llama_perf_context_print:        eval time =     714.79 ms /   199 runs   (    3.59 ms per token,   278.40 tokens per second)
llama_perf_context_print:       total time =     857.62 ms /   206 tokens
```

After
```
llama_perf_sampler_print:    sampling time =       0.25 ms /   207 runs   (    0.00 ms per token, 828000.00 tokens per second)
llama_perf_context_print:        load time =   18366.92 ms
llama_perf_context_print: prompt eval time =      35.92 ms /     7 tokens (    5.13 ms per token,   194.87 tokens per second)
llama_perf_context_print:        eval time =     532.79 ms /   199 runs   (    2.68 ms per token,   373.50 tokens per second)
llama_perf_context_print:       total time =     683.65 ms /   206 tokens
```

* sampling : remove version from sampler chain

This commit removes the version field from the sampler chain and instead
used the sampler pointer itself for change detection.

* sampling : always populate logits for sampled probs

This commit updates common/sampler.cpp set_logits and
src/llama-sampling.cpp llama_sampler_sample to always populate the
logits field when backend sampled probabilities are available.

The motivation for this is that this ensure that CPU sampler always have
access to the logits values even when probabilites have been produced by
backend samplers.

* sampling : simplify backend sampling logic decode

This commit tries to simplify the backend sampling logic in
llama_context::decode.

* squash! sampling : simplify backend sampling logic decode

Fix condition to check if backend actually sampled tokens, not just that
backend samplers are available.

* common : fix regression caused by extra memory allocations during sampling

* squash! sampling : simplify backend sampling logic decode

The commit fixes a variable shadowing issue in the
`llama_context::decode` function which was introduced in a previous
refactoring.

* squash! common : fix regression caused by extra memory allocations during sampling

Apply the same changes to llama-sampling.cpp, llama_sampler_sample as
were applied in commit 38f408c25.

* sampling : introduce sampling_info struct

This commit introduces a sampling_info struct to encapsulate all
backend sampling related data within the llama_context class.

It also updates to use more descriptive names for sampled tokens and
candidates in the backend sampler ggml data structure.

* sampling : return early if backend sampling is disabled

* sampling : use pinned memory for backend sampling buffers

* common, tools : refactor model loading to support backend samplers

This commit refactors the model loading process in common/common.cpp
to enable backend sampler to be configure prior to the llama_context
creation.

The motivation for this change is that just being able to set/reset the
backend samplers after the llama_context has been created will cause a
resize to occur in llama_context::output_reserve which we want to avoid.

* sampling : add stride variable for clarity

* sampling: clarify candidate ids usage in comments

* sampling : fix copying both sampled tokens and logits/probs from backend

This commit fixes the issue where both sampled tokens and logits/probs
were not being copied correctly from the backend to the host when
multiple backend samplers were used.

A test for this scenario has also been added to ensure that both types
of data are copied correctly when different backend samplers are
employed.

* tests : cleanup test-backend-sampler.cpp

* common : remove build-info.cpp from commit [no ci]

This file was generated during the build process and should not be
included in previous commits.

* sampling : cleanup and clarify output_reserve

* sampling : remove redundant checks for stride and size [no ci]

* sampling : add debug log when backend sampler selects token

This commit adds a debug log statement in the llama_sampler_sample
to indicate when a backend sampler has selected a token for a given
index.

The modification helps in tracing the sampling process and understanding
the flow of control when backend samplers are used.

* examples : update batched to use backend sampling

This commit updates the batched example to demonstrate how to use
backend samplers.

* llama-cli : fix dangling reference to sampler config

* common : initialize backend samplers

* samplers : add missing cont

* sampling : add assertions for contiguous tensors in async copy functions

* examples : add info about hybrid sampling in batched [no ci]

* sampling : remove backend-dist option (wip)

This commit removes the `--backend-dist` option and instead uses the
configured --samplers chain to determine which samplers run on the
backend.

Backend sampling is still enabled using With `--backend_sampling`, and
the sampler chain, either explictly specified using `--samplers` or the
default, is automatically analyzed to determine which samplers can run
on the backend. The system finds the longest contiguous chain of
backend supported samplers from the start of the sampler sequence.
For example:

* If the chain is `top-k -> temperature -> top-p`, and both `top-k` and
  `temperature` are backend-supported but `top-p` is not, then `top-k`
  and `temperature` will run on the backend, while `top-p` and
  subsequent samplers run on the CPU.

* If all configured samplers are supported, the final distribution
  sampling will also happen on the backend, transferring only the
  sampled token IDs back to the host.

* If the sampler chain starts with an unsupported sampler (e.g.,
  `penalties`), all sampling runs on the CPU. Note that this is
  currently the case with the default sampler so to use backend sampling
  it is required to specify a sampler chain. See below for an example.

The following shows how llama-cli can be run with backend sampling:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
    --prompt 'What is the capital of Sweden?' \
    -n 20 \
    -no-cnv \
    --verbose-prompt \
    -ngl 40 \
    --backend-sampling \
    --samplers 'top_k;temperature'
```
In this case the all sampling will happen on the backend since both
`top_k` and `temperature` are supported backend samplers.

To enable a partial backend sampling (hybrid sampling), for example
running `top_k` and `temperature` on the backend and `typ_p` on the CPU
the following sampler chain could be specified:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
    --prompt 'What is the capital of Sweden?' \
    -n 20 \
    -no-cnv \
    --verbose-prompt \
    -ngl 40 \
    --backend-sampling \
    --samplers 'top_k;temperature;top_p'
```

If this looks good then I'll follow up with updates the llama-cli and
llama-server documentation to reflect these changes.

* CUDA: Add top-k implementation

* sampling : add min-p backend sampler

* Use `FetchContent` over CPM as it's bundled with CMake

Thanks @ggerganov for the suggestion

* common : add get_active_samplers function to check enabled samplers

This commit adds a function to check if a sampler is actually enabled,
meaning that it does not have values that disables its effect. This is
then used by the backend samplers initialization to avoid considering
samplers that are not enabled when determining the split point between
them.

The motivation for this is that this allows the default sampler chain
for `--samplers` to be used and any sampler that is not enabled will not
cause the backend samplers to be skipped.
For example, before this change if the penalties sampler was included in
the samplers list but had default values that disable it, it would cause
the backend samplers to be skipped entirely.

This commit also contains some refactoring to remove some code
duplication.

* cuda : fix editorconfig-checker warning

* sampling : use argmax for min-p sampling

* sampling : fix temperature check to allow zero temperature

This commit modifies the temperature sampling check to allow a
temperature value of zero. Previously, the check only allowed
positive temperature values, which excluded the valid case of
zero temperature.

The motivation for this is to enable a zero temperature setting which is
also currently causing the following test to fail:
```console
(venv) $ cd tools/server/tests
(venv) $ ./tests.sh unit/test_basic.py::test_load_split_model
```

* cuda : fix top-k compilation when CUB is unavailable

This commit adds a macro guard around argsort_f32_i32_cuda_cub usage
in the top-k fallback path, falling back to bitonic sort when
GGML_CUDA_USE_CUB is not defined.

The motivation for this is that some environments like AMD HIP
do not have CUB available, causing compilation failure.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/19728226426/job/56523606840#step:6:208

* sampling : add comments about backend sampler [no ci]

This commit adds a comment to llama_context's constructor explaining why
backend samplers are initialized early in the process.

* sampling : remove backend sampling chain from common_sampler

This commit removes the backend sampling chain from the common_sampler
structure and related functions.

The motivation for this change is that the backend samplers are not
currently set on the context, and if they are they would cause the
a graph reallocation to occur. Instead, the intialization is handled
like it currently is by llama_context's constructor.

* Fix top-k comp & behavior for non-CUB path

Some changes were made in 5ea3be265b
which were incomplete. In the case of non-CUB, bitonic sort and its
limitations of ncols < 1024 have to apply, similar to argsort.cu

* sampling : support intermixed backend/cpu samplers

This commit updates the backend sampling implementation to support
intermixed usage of backend and CPU samplers within the same batch.

The initial implementation was developed as an all-or-nothing solution:
either perform backend sampling for the entire batch, or perform CPU
sampling for the entire batch.

The motivation for this change is to support batches with mixed
sequences. For example, we may have a backend sampler configured for
sequence 0, while sequence 1 in the same batch uses CPU sampling. This
was not supported in the initial implementation.

This issue manifested in llama-server with the webui: decoding with
backend samplers would work initially, but after changing to CPU
sampling, a slot (sequence) could still be using a backend sampler.
This meant that logits in output_reserve would not be allocated,
resulting in an error.

The solution in this commit inspects the batch to determine which
sampling modes are needed and allocates buffers accordingly. However,
there is a known inefficiency: when we have intermixed backend/CPU
samplers in the same batch, we currently copy all logits to the host,
even for sequences using backend samplers.

Added test_backend_cpu_mixed_batch to verify correct behavior with
mixed backend/CPU samplers in a single batch, including dynamic
sampler switching between decode calls.

* squash! sampling : support intermixed backend/cpu samplers

Add check that logits is not null which is can happen for embeddings.

* squash! sampling : support intermixed backend/cpu samplers

Fix llama-save-load-state which currently fails by handling the case
when batch.logits is nullptr (like when loading state) by allocating
space for all outputs as CPU logits.

* refactor : simplify and improve memory management

* Add initial version for top-p sampling

As we only support static graphs for the time and we don't know the size
of the output of top-p, we have to do value-scaling same as for min-p
operator.

Further improvements can be applied to the unit-test (i.e. check for
equivalence of top_p happening on backend with top_p happening on cpu)
and also by constructing candidates and sorting those as opposed to
reversing the sort of the logits (this would be arange +
get_rows instead of argsort + get_rows)

* sampling : use logits directly for min-p filtering

* sampling : simplify

* llama : simplify

* llama : cleanup + naming

* llama : call backend_init once

* llama : reserve graphs with samplers

* llama : naming

* cont : naming

* sampling : lower log level for output buffer reallocations [no ci]

This commit changes the logging level for output buffer reallocations
in the llama_context::output_reserve function from INFO to DEBUG.

The motivation for this is that it currently logs to info and when
enabling verbose logging for llama-cli this will get mixed with the
output, for example:

```console
What is the capital of Sweden?output_reserve: reallocating output buffer from size 0.58 MiB to 1.74 MiB
 1. Stockholm
2\. Helsinki
Based are the options
1. Stockholm
Explanation: Stockholm is the capital of
...
```

* Fix backend_top_p_sampler

softmax(softmax) will return uniform distribution, so we should not
return the softmax but the logits instead.

* Factor out `ggml_sort` into its own function

* Make backend's top_p sampler inclusive

In addition to match the algorithm proposed in the original
[paper](https://arxiv.org/abs/1904.09751), this resolves the edge-case
where `max_p is > top_p` for a single logit, where the mask would
otherwise be empty (and we thus sample from the whole vocabulary with
equal likelihood)

* common : simplify sampler chain initialization

* sampling : do not create empty samplers

* sampling : fix top_p empty condition

* examples : remove outdated backend sampling section

This commit removes the outdated section about using backend samplers
from the README.md file in the examples/batched.

* sampling : fix backend temp sampler for zero temperature

This commit fixes the implementation of the temperature-based sampler
for the case when the temperature is set to zero. This now correctly
selects the most probable token by masking out all other tokens in the
logits.

* CUDA: Move cccl fetch to after cuda has been enabled in CMakeLists.txt

This will allow cccl to set build flags for the CUDA compiler, required
e.g. for MSVC compat, see also
https://github.com/NVIDIA/cccl/pull/6791

* CUDA: Use standard-compliant preprocessor for MSVC builds

Workarounds of https://github.com/NVIDIA/cccl/pull/6791 will not be
backported to CCCL 3.2, only the diagnostics/error messages will:
https://github.com/NVIDIA/cccl/pull/6827

* CUDA: Update CCCL's rc candidate

* squash! sampling : fix backend temp sampler for zero temperature

This modifies the parent commit to simply return the most probably token
instead of masking the logits.

* sampling : implement temp_ext_backend sampling

This commit implements the apply function for the extended temperature
sampling.

* sampling : minor cleanup

* sampling : stop short if backend sampler sampled a token

This commit modifies the graph building logic to immediately continue
when a token has already been sampled by the backend sampler.

It also updates the test for backend temporary sampling to include
top-k and distribution samplers in the chain to verify that they are not
producing any logits (they are not run).

* Revert "sampling : stop short if backend sampler sampled a token"

This reverts commit 87b2719eca.

* sampling : fix backend temp sampling to use logits masking

* sampling : simplify temp sampling

* sampling : remove redundant calls to ggml_build_forward_expand

* sampling : check backend support during init

* cont : keep backend sampling disabled for now

* sampling : fix outputs and device checks

* sampling : fix candidates logic

* Add perf-tests for CUMSUM

* Readd `cub::DeviceScan::InclusiveSum`-based CumSum

For single rows and large columns doing a for-loop over the function
`cub::DeviceScan::InclusiveSum` offered by CUB outperforms the
`cumsum_cub_kernel` where `cub::BlockScan` is used.

Numbers before this change

  Backend 1/3: CUDA0
  Device description: NVIDIA RTX 6000 Ada Generation
  Device memory: 48510 MB (48039 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  311258 runs -     3.26 us/run -     2048 kB/run -  599.76 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  229390 runs -     4.40 us/run -     5120 kB/run - 1110.23 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  37583 runs -    29.63 us/run -     6250 kB/run -  201.18 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    892819 runs -     1.12 us/run -        1 kB/run -    0.85 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   450505 runs -     2.25 us/run -        8 kB/run -    3.39 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   155629 runs -     6.61 us/run -       32 kB/run -    4.62 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                    81910 runs -    12.60 us/run -       64 kB/run -    4.85 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                   49146 runs -    23.99 us/run -      128 kB/run -    5.09 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                   24573 runs -    47.10 us/run -      256 kB/run -    5.18 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                   16382 runs -    93.57 us/run -      512 kB/run -    5.22 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                   8191 runs -   184.79 us/run -     1024 kB/run -    5.29 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                   8191 runs -   280.43 us/run -     1562 kB/run -    5.31 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                  2148 runs -  2771.23 us/run -    15625 kB/run -    5.38 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    458696 runs -     2.21 us/run -        4 kB/run -    1.73 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   360404 runs -     2.82 us/run -       32 kB/run -   10.83 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   147438 runs -     7.12 us/run -      128 kB/run -   17.15 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    81910 runs -    12.90 us/run -      256 kB/run -   18.92 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   49146 runs -    24.32 us/run -      512 kB/run -   20.08 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   24573 runs -    47.28 us/run -     1024 kB/run -   20.66 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   16382 runs -    93.21 us/run -     2048 kB/run -   20.96 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                   8191 runs -   185.04 us/run -     4096 kB/run -   21.11 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                   5369 runs -   282.08 us/run -     6250 kB/run -   21.13 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                   537 runs -  2806.46 us/run -    62500 kB/run -   21.26 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    458696 runs -     2.20 us/run -        8 kB/run -    3.47 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   360404 runs -     2.82 us/run -       64 kB/run -   21.66 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   147438 runs -     7.12 us/run -      256 kB/run -   34.28 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    81910 runs -    12.90 us/run -      512 kB/run -   37.84 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   49146 runs -    24.32 us/run -     1024 kB/run -   40.15 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    47.28 us/run -     2048 kB/run -   41.31 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    93.20 us/run -     4096 kB/run -   41.92 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                   8194 runs -   185.05 us/run -     8192 kB/run -   42.22 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                   5370 runs -   282.15 us/run -    12500 kB/run -   42.26 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                   269 runs -  4067.61 us/run -   125000 kB/run -   29.36 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   303067 runs -     3.32 us/run -       16 kB/run -    4.60 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  303067 runs -     3.32 us/run -      128 kB/run -   36.76 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  147438 runs -     7.17 us/run -      512 kB/run -   68.13 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   81910 runs -    12.90 us/run -     1024 kB/run -   75.68 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  49146 runs -    24.33 us/run -     2048 kB/run -   80.28 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    47.30 us/run -     4096 kB/run -   82.59 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -    93.24 us/run -     8192 kB/run -   83.80 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                  6147 runs -   185.07 us/run -    16384 kB/run -   84.45 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                  4029 runs -   282.40 us/run -    25000 kB/run -   84.46 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                  270 runs -  4118.40 us/run -   250000 kB/run -   58.11 GB/s
  Backend CUDA0: OK
Backend 2/3: CUDA1
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96677 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  368595 runs -     2.73 us/run -     2048 kB/run -  715.83 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  216282 runs -     4.72 us/run -     5120 kB/run - 1035.32 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  32214 runs -    34.33 us/run -     6250 kB/run -  173.64 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    810909 runs -     1.24 us/run -        1 kB/run -    0.77 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   401359 runs -     2.52 us/run -        8 kB/run -    3.03 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   139247 runs -     7.44 us/run -       32 kB/run -    4.10 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                    73719 runs -    14.27 us/run -       64 kB/run -    4.28 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                   40955 runs -    27.24 us/run -      128 kB/run -    4.48 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                   24573 runs -    53.46 us/run -      256 kB/run -    4.57 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                   16382 runs -   105.29 us/run -      512 kB/run -    4.64 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                   8191 runs -   210.15 us/run -     1024 kB/run -    4.65 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                   8191 runs -   318.22 us/run -     1562 kB/run -    4.68 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                  2148 runs -  3142.23 us/run -    15625 kB/run -    4.74 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    303067 runs -     3.34 us/run -        4 kB/run -    1.14 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   253921 runs -     4.03 us/run -       32 kB/run -    7.58 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    73719 runs -    14.96 us/run -      256 kB/run -   16.32 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   40955 runs -    28.66 us/run -      512 kB/run -   17.04 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   24573 runs -    54.21 us/run -     1024 kB/run -   18.01 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   16382 runs -   106.49 us/run -     2048 kB/run -   18.34 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                   8191 runs -   210.88 us/run -     4096 kB/run -   18.52 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                   5369 runs -   321.77 us/run -     6250 kB/run -   18.53 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                   537 runs -  3191.79 us/run -    62500 kB/run -   18.69 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    376786 runs -     2.67 us/run -        8 kB/run -    2.86 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   245730 runs -     4.10 us/run -       64 kB/run -   14.90 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   122865 runs -     8.20 us/run -      256 kB/run -   29.79 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    65528 runs -    16.38 us/run -      512 kB/run -   29.82 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   40955 runs -    28.69 us/run -     1024 kB/run -   34.04 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    55.28 us/run -     2048 kB/run -   35.33 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -   108.50 us/run -     4096 kB/run -   36.00 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                   8194 runs -   213.75 us/run -     8192 kB/run -   36.55 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                   5370 runs -   326.31 us/run -    12500 kB/run -   36.54 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                   538 runs -  3252.68 us/run -   125000 kB/run -   36.72 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   303067 runs -     3.32 us/run -       16 kB/run -    4.60 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  253921 runs -     4.06 us/run -      128 kB/run -   30.09 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  122865 runs -     8.20 us/run -      512 kB/run -   59.57 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   65528 runs -    16.38 us/run -     1024 kB/run -   59.63 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    28.69 us/run -     2048 kB/run -   68.09 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    55.28 us/run -     4096 kB/run -   70.67 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -   108.50 us/run -     8192 kB/run -   72.02 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                  6147 runs -   213.60 us/run -    16384 kB/run -   73.17 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                  4029 runs -   326.04 us/run -    25000 kB/run -   73.15 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                  270 runs -  5458.69 us/run -   250000 kB/run -   43.84 GB/s

----
Numbers after:

Backend 1/3: CUDA0
  Device description: NVIDIA RTX 6000 Ada Generation
  Device memory: 48510 MB (48039 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  311258 runs -     3.25 us/run -     2048 kB/run -  601.62 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  229390 runs -     4.40 us/run -     5120 kB/run - 1110.14 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  37583 runs -    29.67 us/run -     6250 kB/run -  200.89 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    892819 runs -     1.12 us/run -        1 kB/run -    0.85 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   458696 runs -     2.21 us/run -        8 kB/run -    3.45 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   376786 runs -     2.66 us/run -       32 kB/run -   11.46 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                   393168 runs -     2.59 us/run -       64 kB/run -   23.57 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                  393168 runs -     2.59 us/run -      128 kB/run -   47.15 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                  376786 runs -     2.69 us/run -      256 kB/run -   90.69 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                  327640 runs -     3.06 us/run -      512 kB/run -  159.65 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                 311258 runs -     3.28 us/run -     1024 kB/run -  297.77 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                 270303 runs -     3.74 us/run -     1562 kB/run -  398.14 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                137472 runs -     7.35 us/run -    15625 kB/run - 2026.94 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    876437 runs -     1.14 us/run -        4 kB/run -    3.33 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   442314 runs -     2.28 us/run -       32 kB/run -   13.39 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   155629 runs -     6.69 us/run -      128 kB/run -   18.24 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    81910 runs -    12.53 us/run -      256 kB/run -   19.49 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   49146 runs -    24.18 us/run -      512 kB/run -   20.20 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   65528 runs -    15.34 us/run -     1024 kB/run -   63.66 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   73719 runs -    14.76 us/run -     2048 kB/run -  132.35 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                  65528 runs -    16.01 us/run -     4096 kB/run -  244.07 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                  64428 runs -    16.51 us/run -     6250 kB/run -  360.97 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                 33831 runs -    29.59 us/run -    62500 kB/run - 2016.08 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    868246 runs -     1.16 us/run -        8 kB/run -    6.59 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   442314 runs -     2.28 us/run -       64 kB/run -   26.76 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   155629 runs -     6.69 us/run -      256 kB/run -   36.48 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    81910 runs -    12.53 us/run -      512 kB/run -   38.97 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   49146 runs -    24.17 us/run -     1024 kB/run -   40.41 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    47.53 us/run -     2048 kB/run -   41.10 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    61.25 us/run -     4096 kB/run -   63.77 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                  32776 runs -    31.79 us/run -     8192 kB/run -  245.82 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                  32220 runs -    32.90 us/run -    12500 kB/run -  362.35 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                  6725 runs -   151.99 us/run -   125000 kB/run -  785.77 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   851864 runs -     1.18 us/run -       16 kB/run -   12.97 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  442314 runs -     2.30 us/run -      128 kB/run -   53.13 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  155629 runs -     6.68 us/run -      512 kB/run -   73.13 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   81910 runs -    12.68 us/run -     1024 kB/run -   77.00 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    24.56 us/run -     2048 kB/run -   79.53 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    47.52 us/run -     4096 kB/run -   82.21 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -    93.44 us/run -     8192 kB/run -   83.62 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                 16392 runs -    63.36 us/run -    16384 kB/run -  246.68 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                 16116 runs -    65.25 us/run -    25000 kB/run -  365.53 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                 3375 runs -   304.46 us/run -   250000 kB/run -  785.98 GB/s
  Backend CUDA0: OK
Backend 2/3: CUDA1
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96677 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  376786 runs -     2.69 us/run -     2048 kB/run -  727.04 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  216282 runs -     4.64 us/run -     5120 kB/run - 1053.30 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  32214 runs -    34.21 us/run -     6250 kB/run -  174.27 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    819100 runs -     1.22 us/run -        1 kB/run -    0.78 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   409550 runs -     2.47 us/run -        8 kB/run -    3.09 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   303067 runs -     3.31 us/run -       32 kB/run -    9.21 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                   237539 runs -     4.33 us/run -       64 kB/run -   14.08 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                  237539 runs -     4.33 us/run -      128 kB/run -   28.17 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                  188393 runs -     5.37 us/run -      256 kB/run -   45.47 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                  188393 runs -     5.41 us/run -      512 kB/run -   90.20 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                 188393 runs -     5.41 us/run -     1024 kB/run -  180.41 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                 188393 runs -     5.41 us/run -     1562 kB/run -  275.27 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                128880 runs -     7.76 us/run -    15625 kB/run - 1920.33 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    802718 runs -     1.26 us/run -        4 kB/run -    3.03 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   401359 runs -     2.51 us/run -       32 kB/run -   12.18 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   139247 runs -     7.51 us/run -      128 kB/run -   16.26 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    73719 runs -    14.17 us/run -      256 kB/run -   17.23 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   40955 runs -    27.37 us/run -      512 kB/run -   17.84 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   40955 runs -    26.33 us/run -     1024 kB/run -   37.10 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   40955 runs -    26.19 us/run -     2048 kB/run -   74.59 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                  40955 runs -    26.35 us/run -     4096 kB/run -  148.26 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                  42952 runs -    24.18 us/run -     6250 kB/run -  246.51 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                 32757 runs -    31.01 us/run -    62500 kB/run - 1923.68 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    786336 runs -     1.28 us/run -        8 kB/run -    5.95 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   393168 runs -     2.57 us/run -       64 kB/run -   23.73 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   131056 runs -     7.67 us/run -      256 kB/run -   31.82 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    73719 runs -    14.43 us/run -      512 kB/run -   33.84 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   40955 runs -    27.90 us/run -     1024 kB/run -   35.01 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    54.63 us/run -     2048 kB/run -   35.75 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    72.24 us/run -     4096 kB/run -   54.08 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                  20485 runs -    52.66 us/run -     8192 kB/run -  148.37 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                  21480 runs -    48.00 us/run -    12500 kB/run -  248.42 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                 16140 runs -    61.99 us/run -   125000 kB/run - 1926.51 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   786336 runs -     1.28 us/run -       16 kB/run -   11.90 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  393168 runs -     2.57 us/run -      128 kB/run -   47.57 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  131056 runs -     7.65 us/run -      512 kB/run -   63.83 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   73719 runs -    14.42 us/run -     1024 kB/run -   67.74 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    27.87 us/run -     2048 kB/run -   70.09 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    54.54 us/run -     4096 kB/run -   71.63 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -   107.53 us/run -     8192 kB/run -   72.66 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                 10245 runs -   105.10 us/run -    16384 kB/run -  148.70 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                 10744 runs -    95.36 us/run -    25000 kB/run -  250.11 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                 5400 runs -   186.97 us/run -   250000 kB/run - 1279.90 GB/s

* sampling : expand support (wip)

* tests : fix memory leaks

* cont : fixes

* tests : check temp back to 0.0

* sampling : fix top-p

* sampling : handle n_probs case

* server : handle unsupported cases

* metal : print node names for debugging

* ggml : remove redundant src in ggml_cast

* ggml-alloc : fix reuse-parent logic for misaligned sizes

* Revert "ggml : remove redundant src in ggml_cast"

This reverts commit 62d1b0082d.

* CUDA: Add Cooperative-Groups-based parallelization of ncols in softmax

Old implementation parallelizes rows across SMs, which does not fit the
needs of backend-sampling (where we have ncols >> nrows and thus want to
parallelize ncols across SMs)

* Add TODOs to and adjust heuristics of row-wise soft_max in CUDA

Heuristics were selected based on the following numbers:

```
-- Before
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.34 us/run -   655360 kB/run - 1401.20 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.80 us/run -   128880 kB/run - 2168.19 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.57 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.45 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.20 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.99 us/run -      640 kB/run -  101.84 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.97 us/run -      770 kB/run -  123.02 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.00 us/run -       64 kB/run -   10.16 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.91 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.88 us/run -     1024 kB/run -  141.92 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.87 us/run -      512 kB/run -   55.06 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    21.37 us/run -      256 kB/run -   11.43 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.92 us/run -     4096 kB/run -  163.32 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 32764 runs -    38.94 us/run -      512 kB/run -   12.54 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 24573 runs -    41.94 us/run -     2048 kB/run -   46.57 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.09 us/run -     8192 kB/run -  181.32 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    74.56 us/run -     1024 kB/run -   13.10 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    79.85 us/run -     4096 kB/run -   48.92 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.41 us/run -    16384 kB/run -  189.64 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   145.16 us/run -     2048 kB/run -   13.46 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8194 runs -   155.46 us/run -     8192 kB/run -   50.26 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                7175 runs -   160.70 us/run -    32768 kB/run -  194.56 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   285.81 us/run -     4096 kB/run -   13.67 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 4098 runs -   306.91 us/run -    16384 kB/run -   50.92 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                3591 runs -   317.06 us/run -    65536 kB/run -  197.32 GB/s

-- After
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.67 us/run -   655360 kB/run - 1400.15 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.97 us/run -   128880 kB/run - 2161.50 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.36 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.42 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.21 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     7.00 us/run -      640 kB/run -   87.26 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     6.99 us/run -      770 kB/run -  105.05 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.02 us/run -       64 kB/run -   10.13 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.87 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.91 us/run -     1024 kB/run -  141.40 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.79 us/run -      512 kB/run -   55.54 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                131056 runs -     8.11 us/run -      256 kB/run -   30.12 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.32 us/run -     4096 kB/run -  167.50 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.19 us/run -      512 kB/run -   59.63 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 40955 runs -    24.59 us/run -     2048 kB/run -   79.43 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.21 us/run -     8192 kB/run -  180.84 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.19 us/run -     1024 kB/run -  119.25 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                40955 runs -    24.59 us/run -     4096 kB/run -  158.87 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.37 us/run -    16384 kB/run -  189.74 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.20 us/run -     2048 kB/run -  238.28 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                36873 runs -    28.66 us/run -     8192 kB/run -  272.61 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                9225 runs -   108.51 us/run -    32768 kB/run -  288.13 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     4096 kB/run -  381.65 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                32784 runs -    31.74 us/run -    16384 kB/run -  492.43 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                8721 runs -   121.20 us/run -    65536 kB/run -  516.19 GB/s
```

* Fix compiler warnings by casting `const` away

* llama : require backend samplers to be of type llama_sampler_chain

* sampling : use host buffer type for inputs

* Try fixing HIP build errors by adding corresponding #defines

Will likely have to disable for MUSA as I didn't find any docs online

* Fix launch logic when supports_cooperative_launch=false

* Disable cooperative groups for musa

Didn't find any doc online, so I don't even know if they support this

* server : reconnect the backend_sampling setting in the WebUI

* graph : make the compute graph constant with respect to active samplers

* batch : fix sequence id ownage

* graph : respect sampler order for graph reuse

* HIP/MUSA: fix build for backend sampling

* sampling : optimize logit_bias sampler

* cont : fix build

* sampling : generic ggml op support detection

* sampling : fix greedy

* tests : run backend sampler tests always on the CPU

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* webui : fix lint

* Fix data-race in `soft_max_f32_parallelize_cols_single_row`

By using `tmp_vals` to store both max values and exponential
accumulator there was a potential data-race, where the exponential accumulator
for a given CTA may have written to `tmp_vals` before all others CTAs have
read the max value from it.

To avoid a third g.sync(), an additional temporary data-storage was
added. Given that there are syncs in place after writing to gmem, it is
guaranteed that the previous values for sums/max were read by all CTAs now.

* Apply automated code-formating to softmax.cu

* llama : clarify backend_accept/backend_set_input comments [no ci]

* llama : fix typo in comment [no ci]

* tests : use smart pointers for backend samplers

* tests : use smart pointers for model and context

* tests : remove vocab member from test_model_context

Also includes some minor cleanups related to nullptr checks.

* tests : extract batch info update to separate method

* tests : fix batch token position tracking in test_backend_sampler.cpp

* tests : add --device option support to backend sampler tests

This commit adds support for specifying a device to run the test on.

* common : disable backend sampling when grammar is involved

* Fix different RNG-states between backend-sampling and llama-sampling

By default, we perform a warm-up step where the ggml_cgraph is computed
once. For backend-sampling, this graph contains the sampler, and thus
the RNG state of the backend's dist sampler is advanced once.

Solution to this is to reset the samplers after the warmup has finished

* Make backend dist sampler use same rnd's as dist sampler

We sample in double precision and cast to float to match rnd numbers of
llama_dampler_dist which uses double precision (sampling from
std::uniform_real_distribution<double> and
std::uniform_real_distribution<float> with same rng will produce
different sequences).

* Update CCCL version to v3.2.0-rc2

* Build with CCCL 3.2 for CUDA backends

Gives best perf for backend-sampling on CUDA. Flag can be removed once
CCCL 3.2 is bundled within CTK and that CTK version is used in llama.cpp

* tests : revert server test changes (no longer needed)

* ggml : include cub/cub.cuh instead of block_scan.cuh

This commit updates the include directive in cumsum.cu to use
cub/cub.cuh instead of cub/block/block_scan.cuh.

The motivation of this change is that without it compilation fails
with the following error:
```console
/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(196): error: name followed by "::" must be a class or namespace name
      cub::DeviceScan::InclusiveSum(nullptr,
           ^

/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(207): error: name followed by "::" must be a class or namespace name
      cub::DeviceScan::InclusiveSum((void *) tmp_alloc.get(), tmp_size, src, dst, ne, stream);
           ^

2 errors detected in the compilation of "/llama.cpp/ggml/src/ggml-cuda/cumsum.cu".
gmake[2]: *** [ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/build.make:317: ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/cumsum.cu.o] Error 2
```
Commit 83b3b1c271 ("cuda: optimize
cumsum cub path (#18362)") updated the include directive replacing
device_scan.cuh which is causing this issue.

This commit uses cub/cub.cuh umbrella header which is consistent with
other files in the ggml-cuda directory like mean.cu, sum.cu, etc.

* arg : add shorthand for --backend-sampling

* ci : add server workflow with backend sampling

* sampling : fix reshapes

* server : remove printfs

* sampling : zero-initialize input buffers

* minor : add comments + some cleanup

* llama : assert at most one output token per sequence

* tests : add more top_k tests

* CUDA: Fix non-determinism of CUB-based Top-K

DeviceTopK::MaxPairs is an iterative algorithm, where `d_keys_out` is
written after every iteration. As a consequence, it must not overlap
with `d_keys_in`, or otherwise undefined behavior occurs (keys are no
longer unique in d_keys_in and may map to different values between
iterations)

* CUDA: Optimize index of top_k_cub

By using the fancy
[`counting_iterator`](https://nvidia.github.io/cccl/thrust/api/classthrust_1_1counting__iterator.html#classthrust_1_1counting__iterator)
exposed by CCCL, we can avoid materializing the index to GPU memory,
saving VRAM + 1 kernel invocation

* Apply code-formatting to top-k.cu

* CUDA: Remove obsolete temp_keys from CUB

Since we use cuda::discard_iterator to avoid writing out the keys, we
can directly pass in src instead of copying it to `temp_keys`

* minor : cleanup, TODOs, etc.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Oliver Simons <osimons@nvidia.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-04 22:22:16 +02:00
Tarek Dakhran 4974bf53cf
model : mtmd : make input norm optional in LFM2-VL (#18594)
Upcoming LFM2-VL releases will have configurable input norm.
See https://github.com/huggingface/transformers/pull/43087 for details.
2026-01-04 18:50:02 +01:00
tt ced765be44
model: support youtu-vl model (#18479)
* Support Youtu-VL Model

* merge code

* fix bug

* revert qwen2 code & support rsplit in minja.hpp

* update warm info

* fix annotation

* u

* revert minja.hpp

* fix

* Do not write routed_scaling_factor to gguf when routed_scaling_factor is None

* fix expert_weights_scale

* LGTM after whitespace fixes

* fix

* fix

* fix

* layers to layer_index

* enum fix

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-01 19:25:54 +01:00
Anri Lombard d5574c919c
webui: fix code copy stripping XML/HTML tags (#18518)
* webui: fix code copy stripping XML/HTML tags

* webui: update static build
2026-01-01 13:44:11 +01:00
Anri Lombard 33ded988ba
quantize: prevent input/output file collision (#18451)
Check if input and output files are the same before quantizing to prevent
file corruption when mmap reads from a file being written to.

Fixes #12753
2025-12-31 23:29:03 +08:00
Henry147147 9b8329de7a
mtmd : Adding support for Nvidia Music Flamingo Model (#18470)
* Inital commit, debugging q5_k_s quant

* Made hf_to_gguf extend whisper to reduce code duplication

* addressed convert_hf_to_gguf pull request issue

---------

Co-authored-by: Henry D <henrydorsey147@gmail.com>
2025-12-31 12:13:23 +01:00
Jeff Bolz f14f4e421b
server: fix files built redundantly (#18474) 2025-12-30 13:11:13 +01:00
Xuan-Son Nguyen 51a48720b8
webui: fix prompt progress ETA calculation (#18468)
* webui: fix prompt progress ETA calculation

* handle case done === 0
2025-12-29 21:42:11 +01:00
Pascal c9a3b40d65
Webui/prompt processing progress (#18300)
* webui: display prompt preprocessing progress

* webui: add percentage/ETA and exclude cached tokens from progress

Address review feedback from ngxson

* webui: add minutes and first chunk (0%) case

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: address review feedback from allozaur

* chore: update webui build output

* webui: address review feedback from allozaur

* nit

* chore: update webui build output

* feat: Enhance chat processing state

* feat: Improve chat processing statistics UI

* chore: update webui build output

* feat: Add live generation statistics to processing state hook

* feat: Persist prompt processing stats in hook for better UX

* refactor: Enhance ChatMessageStatistics for live stream display

* feat: Implement enhanced live chat statistics into assistant message

* chore: update webui build output

* fix: Proper tab for each stage of prompt processing/generation

* chore: update webui build output

* fix: Improved ETA calculation & display logic

* chore: update webui build output

* feat: Simplify logic & remove ETA from prompt progress

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-29 19:32:21 +01:00
wbtek 5b1248c9af
server : Cmdline arg -to changes http read timeout from current 600sec default (#18279)
* Prevent crash if TTFT >300sec, boosted to 90 days

* server : allow configurable HTTP timeouts for child models

* server : pass needed timeouts from params only

---------

Co-authored-by: Greg Slocum <fromgit@wbtek.slocum.net>
2025-12-29 17:12:48 +01:00
Georgi Gerganov 2a85f720b8
server : handle closed connection for tasks (#18459) 2025-12-29 15:34:41 +02:00
o7si daa242dfc8
common: fix return value check for setpriority (#18412)
* common: fix return value check for setpriority

* tools: add logging for process priority setting
2025-12-29 11:07:49 +02:00
Xuan-Son Nguyen cffa5c46ea
mtmd: clarify that we no longer accept AI-generated PRs (#18406) 2025-12-28 09:57:04 +01:00
Johannes Gäßler a52dc60ba3
llama_fit_params: return enum for fail vs. error (#18374) 2025-12-27 09:59:19 +01:00
o7si 4893cc07bb
server : fix crash when seq_rm fails for hybrid/recurrent models (#18391)
* server : fix crash when seq_rm fails for hybrid/recurrent models

* server : add allow_processing param to clear_slot
2025-12-26 16:35:29 +01:00
Xuan-Son Nguyen f5acfb2ffa
server: (router) add stop-timeout option (#18350)
* server: (router) add stop-timeout option

* also allow stop while loading

* add docs

* unload_lru: also wait for unload to complete
2025-12-24 23:47:49 +01:00
Aadeshveer Singh c184284230
fit-params : fix race condition in fit-params output (#18276) 2025-12-24 15:57:38 +01:00
Xuan-Son Nguyen 5ee4e43f26
server: return_progress to also report 0% processing state (#18305) 2025-12-23 21:49:05 +01:00
Pascal 5b6c9bc0f3
webui: apply webui_settings on first load (#18223)
* webui: apply webui_settings on first load

The webui_settings from /props were not applied on initial load
when default_generation_settings.params was null

Now syncs whenever serverProps is available, regardless of params,
works for both single-model and router modes

* chore: update webui build output
2025-12-23 15:48:03 +01:00
Xuan-Son Nguyen 849d021104
server: fix crash with model not having BOS/EOS (#18321) 2025-12-23 14:39:36 +01:00
Xuan-Son Nguyen 179fd82a72
gen-docs: automatically update markdown file (#18294)
* gen-docs: automatically update markdown file

* also strip whitespace

* do not add extra newline

* update TOC
2025-12-22 19:30:19 +01:00
Xuan-Son Nguyen 6ce863c803
server: prevent data race from HTTP threads (#18263)
* server: prevent data race from HTTP threads

* fix params

* fix default_generation_settings

* nits: make handle_completions_impl looks less strange

* stricter const

* fix GGML_ASSERT(idx < states.size())

* move index to be managed by server_response_reader

* http: make sure req & res lifecycle are tied together

* fix compile

* fix index handling buggy

* fix data race for lora endpoint

* nits: fix shadow variable

* nits: revert redundant changes

* nits: correct naming for json_webui_settings
2025-12-22 14:23:34 +01:00
Xuan-Son Nguyen 3997c78e33
server: fix data race in to_json_anthropic (#18283) 2025-12-22 13:21:43 +01:00
Xuan-Son Nguyen 86af848153
server: (docs) remove mention about extra_args (#18262) 2025-12-22 12:22:01 +01:00
Johannes Gäßler 147a521636
tool/ex/tests: consistently free ctx, then model (#18168) 2025-12-22 11:00:37 +01:00
Xuan-Son Nguyen ddcb75dd8a
server: add auto-sleep after N seconds of idle (#18228)
* implement sleeping at queue level

* implement server-context suspend

* add test

* add docs

* optimization: add fast path

* make sure to free llama_init

* nits

* fix use-after-free

* allow /models to be accessed during sleeping, fix use-after-free

* don't allow accessing /models during sleep, it is not thread-safe

* fix data race on accessing props and model_meta

* small clean up

* trailing whitespace

* rm outdated comments
2025-12-21 02:24:42 +01:00
Oleksandr Kuvshynov 408616adbd
server : [easy] fix per round speculative decode logging (#18211)
Currently we always log 0, as we clear slot.drafted before.

To reproduce:
Run llama-server with devstral-2 as main model and devstral-2-small as
md, and verbose logging:

```
% ./build/bin/llama-server -v  \
  -m ~/llms/Devstral-2-123B-Instruct-2512-UD-Q6_K_XL-00001-of-00003.gguf \
  -md ~/llms/Devstral-Small-2-24B-Instruct-2512-UD-Q2_K_XL.gguf \
  -c 8192 2> /tmp/llama.cpp.debug

Check the log:

slot update_slots: id  3 | task 0 | accepted 11/0 draft tokens, new
n_tokens = 741
slot update_slots: id  3 | task 0 | accepted 4/0 draft tokens, new
n_tokens = 746
slot update_slots: id  3 | task 0 | accepted 16/0 draft tokens, new
n_tokens = 763
slot update_slots: id  3 | task 0 | accepted 11/0 draft tokens, new
n_tokens = 775
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 778
slot update_slots: id  3 | task 0 | accepted 4/0 draft tokens, new
n_tokens = 783
slot update_slots: id  3 | task 0 | accepted 8/0 draft tokens, new
n_tokens = 792
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 795
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 797
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 799
slot update_slots: id  3 | task 0 | accepted 0/0 draft tokens, new
n_tokens = 800
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 803
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 805
slot update_slots: id  3 | task 0 | accepted 6/0 draft tokens, new
n_tokens = 812
slot update_slots: id  3 | task 0 | accepted 3/0 draft tokens, new
n_tokens = 816
```

After the fix, get correct per round logging:

```
slot update_slots: id  3 | task 0 | accepted 7/8 draft tokens, new
n_tokens = 654
slot update_slots: id  3 | task 0 | accepted 1/2 draft tokens, new
n_tokens = 656
slot update_slots: id  3 | task 0 | accepted 2/16 draft tokens, new
n_tokens = 659
slot update_slots: id  3 | task 0 | accepted 1/16 draft tokens, new
n_tokens = 661
slot update_slots: id  3 | task 0 | accepted 2/16 draft tokens, new
n_tokens = 664
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 681
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 698
slot update_slots: id  3 | task 0 | accepted 3/4 draft tokens, new
n_tokens = 702
slot update_slots: id  3 | task 0 | accepted 5/12 draft tokens, new
n_tokens = 708
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 725
slot update_slots: id  3 | task 0 | accepted 1/1 draft tokens, new
n_tokens = 727
slot update_slots: id  3 | task 0 | accepted 8/16 draft tokens, new
n_tokens = 736
```
2025-12-20 10:57:40 +01:00
Xuan-Son Nguyen 9e39a1e6a9
server: support load model on startup, support preset-only options (#18206)
* server: support autoload model, support preset-only options

* add docs

* load-on-startup

* fix

* Update common/arg.cpp

Co-authored-by: Pascal <admin@serveurperso.com>

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-12-20 09:25:27 +01:00
Pascal 14931a826e
arg: fix order to use short form before long form (#18196)
* arg: fix order to use short form before long form

* arg: update doc

* arg: update test-arg-parser

* arg: address review feedback from ngxson

simplified to check first.length() <= last.length() only
fixed: --sampler-seq, --rerank, --draft ordering
note: middle positions in 3+ arg sets are not verified

* arg: update doc
2025-12-19 18:01:56 +01:00
Aman Gupta cc0a04343e
server: friendlier error msg when ctx < input (#18174)
* llama-server: friendlier error msg when ctx < input

This PR adds formatted strings to the server's send_error function

* llama-server: use string_format inline

* fix test
2025-12-19 12:10:00 +01:00
Xuan-Son Nguyen 98c1c7a7bf
presets: refactor, allow cascade presets from different sources, add global section (#18169)
* presets: refactor, allow cascade presets from different sources

* update docs

* fix neg arg handling

* fix empty mmproj

* also filter out server-controlled args before to_ini()

* skip loading custom_models if not specified

* fix unset_reserved_args

* fix crash on windows
2025-12-19 12:08:20 +01:00
Aleksander Grygier acb73d8340
webui: Add editing attachments in user messages (#18147)
* feat: Enable editing attachments in user messages

* feat: Improvements for data handling & UI

* docs: Update Architecture diagrams

* chore: update webui build output

* refactor: Exports

* chore: update webui build output

* feat: Add handling paste for Chat Message Edit Form

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output
2025-12-19 11:14:07 +01:00
Xuan-Son Nguyen 8ea958d4d9
model : add ASR support for LFM2-Audio-1.5B (conformer) (#18106)
* ASR with LFM2-Audio-1.5B

* Set rope_theta

* Fix comment

* Remove rope_theta setting

* Address PR feedback

* rename functions to conformer

* remove some redundant ggml_cont

* fix missing tensor

* add prefix "a." for conv tensors

* remove redundant reshape

* clean up

* add test model

---------

Co-authored-by: Tarek Dakhran <tarek@liquid.ai>
2025-12-19 00:18:01 +01:00
Pascal f9ec8858ed
webui: display prompt processing stats (#18146)
* webui: display prompt processing stats

* feat: Improve UI of Chat Message Statistics

* chore: update webui build output

* refactor: Post-review improvements

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-18 17:55:03 +01:00
Aleksander Grygier 9ce64aed7d
webui: Fix selecting generated output issues during active streaming (#18091)
* draft: incremental markdown rendering with stable blocks

* refactor: Logic improvements

* refactor: DRY Markdown post-processing logic

* refactor: ID generation improvements

* fix: Remove runes

* refactor: Clean up & add JSDocs

* chore: update webui static output

* fix: Add tick to prevent race conditions for rendering Markdown blocks

Suggestion from @ServeurpersoCom

Co-authored-by: Pascal <admin@serveurperso.com>

* chore: Run `npm audit fix`

* chore: update webui static output

* feat: Improve performance using global counter & id instead of UUID

* refactor: Enhance Markdown rendering with link and code features

* chore: update webui static output

* fix: Code block content extraction

* chore: update webui static output

* chore: update webui static output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-12-18 11:13:52 +01:00
Kim S. 900316da4e
webui: fix chat screen shadow width (#18010)
* webui: fix chat screen shadow width

* chore: add index.html.gz
2025-12-18 11:08:42 +01:00
Pascal 6ce3d85796
server: (webui) add --webui-config (#18028)
* server/webui: add server-side WebUI config support

Add CLI arguments --webui-config (inline JSON) and --webui-config-file
(file path) to configure WebUI default settings from server side.

Backend changes:
- Parse JSON once in server_context::load_model() for performance
- Cache parsed config in webui_settings member (zero overhead on /props)
- Add proper error handling in router mode with try/catch
- Expose webui_settings in /props endpoint for both router and child modes

Frontend changes:
- Add 14 configurable WebUI settings via parameter sync
- Add tests for webui settings extraction
- Fix subpath support with base path in API calls

Addresses feedback from @ngxson and @ggerganov

* server: address review feedback from ngxson

* server: regenerate README with llama-gen-docs
2025-12-17 21:45:45 +01:00
Xuan-Son Nguyen e85e9d7637
server: (router) disable SSL on child process (#18141) 2025-12-17 21:39:08 +01:00
Kim S. d37fc93505
webui: fix chat header width when sidebar is closed (#17981)
* webui: fix chat header width when sidebar is closed

* chore: add index.html.gz
2025-12-17 20:05:45 +01:00
HonestQiao 15dd67d869
model: fix GLM-ASR-Nano-2512 load error (#18130) (#18142) 2025-12-17 16:34:35 +01:00
Xuan-Son Nguyen bde461de8c
server: (router) allow child process to report status via stdout (#18110)
* server: (router) allow child process to report status via stdout

* apply suggestions
2025-12-17 14:54:11 +01:00
Johannes Gäßler 4164596c76
llama-fit-params: QoL impr. for prints/errors (#18089) 2025-12-17 00:03:19 +01:00
yifant-code 59977eba7b
server: fix crash when batch > ubatch with embeddings (#17912)
* server: fix crash when batch > ubatch with embeddings (#12836)

Fixes #12836 where the server crashes with GGML_ASSERT failure when
running with embeddings enabled and n_batch > n_ubatch.

Root cause: Embeddings use non-causal attention which requires all
tokens to be processed within a single ubatch. When n_batch > n_ubatch,
the server attempts to split processing, causing assertion failure.

Solution:
- Add parameter validation in main() after common_params_parse()
- When embeddings enabled and n_batch > n_ubatch:
  * Log warnings explaining the issue
  * Automatically set n_batch = n_ubatch
  * Prevent server crash

This follows the approach suggested by @ggerganov in issue #12836.

Note: This supersedes stalled PR #12940 which attempted a runtime fix
in the old examples/server/server.cpp location. This implementation
validates at startup in tools/server/server.cpp (current location).

Testing:
- Build: Compiles successfully
- Validation triggers: Warns when -b > -ub with --embedding
- Auto-correction works: Adjusts n_batch = n_ubatch
- No false positives: Valid params don't trigger warnings
- Verified on macOS M3 Pro with embedding model

* Update tools/server/server.cpp

---------

Co-authored-by: ytian218 <ytian218@bloomberg.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-16 14:27:36 +02:00
Xuan-Son Nguyen 7b1db3d3b7
arg: clarify auto kvu/np being set on server (#17997)
* arg: clarify auto kvu/np being set on server

* improve docs

* use invalid_argument
2025-12-16 12:01:27 +01:00
2114L3 5f5f9b4637
server: Update README.md incorrect argument (#18073)
n-gpu-layer is incorrect
argument is n-gpu-layers with the 's'
2025-12-16 11:50:43 +01:00
Xuan-Son Nguyen 3d86c6c2b5
model: support GLM4V vision encoder (#18042)
* convert ok

* no deepstack

* less new tensors

* cgraph ok

* add mrope for text model

* faster patch merger

* add GGML_ROPE_TYPE_MRNORM

* add support for metal

* move glm4v do dedicated graph

* convert: add norm_embd

* clip: add debugging fn

* working correctly

* fix style

* use bicubic

* fix mrope metal

* improve cpu

* convert to neox ordering on conversion

* revert backend changes

* force stop if using old weight

* support moe variant

* fix conversion

* fix convert (2)

* Update tools/mtmd/clip-graph.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* process mrope_section on TextModel base class

* resolve conflict merge

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-16 11:25:26 +01:00
Aleksander Grygier 3034836d36
webui: Improve copy to clipboard with text attachments (#17969)
* feat: Create copy/paste user message including "pasted text" attachments

* chore: update webui build output

* chore: update webui static output

* fix: UI issues

* chore: update webui static output

* fix: Decode HTML entities using `DOMParser`

* chore: update webui build output

* chore: update webui static output
2025-12-16 07:38:46 +01:00
Aleksander Grygier a20979d433
webui: Add setting to always show sidebar on Desktop (#17809)
* feat: Add setting to always show Sidebar on Desktop

* chore: update webui build output

* feat: Add auto-show sidebar setting

* fix: Mobile settings dialog UI

* chore: update webui build output

* feat: UI label update

* chore: update webui build output

* chore: update webui build output

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output
2025-12-16 07:31:37 +01:00
Darius Lukas 40d9c394f4
Webui: Disable attachment button and model selector button when prompt textbox is disabled. (#17925)
* Pass disabled state to the file attachments button and the model
selector button.

* Update index.html.gz

* Fix model info card in non-router mode.

* Update index.html.gz
2025-12-16 07:15:49 +01:00
Pascal 0f4f35e7be
Fix unreadable user markdown colors and truncate long texts in deletion dialogs (#17555)
* webui: limit conversation name length in dialogs

* webui: fix unreadable colors on links and table cell hover in user markdown

* webui: keep table borders visible in user markdown

* webui: updating unified exports

* Update tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentThumbnailFile.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui build output

* chore: update webui build output

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-15 16:34:53 +01:00
Xuan-Son Nguyen 96a181a933
mtmd: refactor audio preprocessing (#17978)
* mtmd: refactor audio preprocessing

* refactor

Co-authored-by: Tarek <tdakhran@users.noreply.github.com>

* wip

* wip (2)

* improve constructor

* fix use_natural_log

* fix padding for short input

* clean up

* remove need_chunking

---------

Co-authored-by: Tarek <tdakhran@users.noreply.github.com>
2025-12-15 14:16:52 +01:00
Andrew Aladjev 4a4f7e6550
cli: fixed dead links to tools/main for cli and completion, fixed code owners (#17993)
Co-authored-by: Andrew Aladjev <andrew.aladjev@gmail.com>
2025-12-15 11:47:04 +01:00
Thomas Jarosch e73d548659
webui: add "delete all conversations" button to import/export tab (#17444)
* webui: add "delete all conversations" button to import/export tab

- Add 'Delete all conversations' functionality with confirmation dialog
- Add Trash icon and destructive styling for clear visual indication
- Redirects to "?new_chat=true#/" by using conversationsStore.deleteAll()

* chore: update webui build output
2025-12-15 11:29:29 +01:00
Johannes Gäßler b1f3a6e5db
llama: automatically set parameters not set by the user in such a way that maximizes GPU utilization (#16653)
* llama: automatically fit args to free memory

llama-fit-params tool

* fix CI

* hints for bug reports, ensure no reallocation

* fix segfault with Vulkan

* add llama-fit-params to CI

* fix CI

* fix CI

* fix CI

* minor adjustments

* fix assignment of 1 dense layer

* fix logger not being reset on model load failure

* remove --n-gpu-layer hint on model load failure

* fix llama-fit-params verbosity

* fix edge case

* fix typo [no ci]
2025-12-15 09:24:59 +01:00
piDack 745fa0e78b
model : add glm-asr support (#17901)
* [model] add glm-asr support

* fix format for ci

* fix convert format for ci

* update glm_asr convert script & use build_ffn for glm_asr clip & use build_stack for padding and review

* check root architecture for convert hf script

* fix conficlt with upstream

* fix convert script for glm asr & format clip-impl

* format

* restore hparams text

* improved conversion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-15 03:18:46 +01:00
Haowei Wu 37f5a1093b
mtmd: enhance image resizing in llava_uhd (#18014) 2025-12-14 15:57:52 +01:00
Georgi Gerganov 254098a279
common : refactor common_sampler + grammar logic changes (#17937)
* common : refactor common_sampler + grammar logic changes

* tests : increase max_tokens to get needed response

* batched : fix uninitialized samplers
2025-12-14 10:11:13 +02:00
Sergey Fedorov 4ed2bae50d
server-models.cpp: add missing <filesystem> (#18000)
Fixes: https://github.com/ggml-org/llama.cpp/issues/17999
2025-12-13 22:02:43 +01:00
Xuan-Son Nguyen 4d5ae24c0a
arg: fix common_params_parse not accepting negated arg (#17991) 2025-12-13 12:53:37 +01:00
Xuan-Son Nguyen 380b4c984e
common: support negated args (#17919)
* args: support negated args

* update docs

* fix typo

* add more neg options

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rm duplicated arg

* fix LLAMA_ARG_NO_HOST

* add test

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-12 23:58:53 +01:00
Xuan-Son Nguyen e39a2ce66d
clip: move model cgraphs into their own files (#17965)
* clip: move model cgraphs into their own files

* more explicit enums

* fix linux build

* fix naming

* missing headers

* nits: add comments for contributors
2025-12-12 21:14:48 +01:00
Xuan-Son Nguyen 17158965ac
mtmd: explicitly forbidden inclusion of private header and libcommon (#17946) 2025-12-12 15:16:06 +01:00
Aleksander Grygier 12280ae905
webui: Fix parsing non-LaTeX occurrencies of `\(` or `\)` (#17810)
* fix: Improve latex protection logic to prevent turning non-latex `\(` into `$`

* chore: update webui build output
2025-12-12 15:13:36 +01:00
Xuan-Son Nguyen 54a0fee4b7
arg: add -mm and -mmu as short form of --mmproj and --mmproj-url (#17958)
* arg: add -mm and -mmu as short form of --mmproj and --mmproj-url

* correct order

* update docs
2025-12-12 14:06:06 +01:00
Pascal a81a569577
Add a search field on model selector / improve mobile display (#17765)
* webui: add search field to model selector and fixes mobile viewport overflow

* webui: simplify model search style and code

* refacor: Search Input component & consistent UI for Models Selector search

* feat: Use Popover component + improve interactions

* fix: Fetching props for only loaded models in ROUTER mode

* webui: prevent models selector popover from overflowing viewport

Use Floating UI's auto-positioning with 50dvh height limit and proper
collision detection instead of forcing top positioning. Fixes overflow
on desktop and mobile keyboard issues

* webui: keep search field near trigger in models selector

Place search at the 'near end' (closest to trigger) by swapping layout
with CSS flexbox order based on popover direction. Prevents input from
moving during typing as list shrinks

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-11 18:21:21 +01:00
Piotr Wilkin (ilintar) 53ecd4fdb9
SOLVE_TRI extension to more dimensions (#17793)
* Extended TRI

* Fix whitespace

* chore: update webui build output

* Just use cuBLAS for everything...

* Merge both versions

* Remove incorrect imports causing failures for CI

* Still failing... remove all direct cublas imports and rely on common imports from "common.cuh"

* Defines for hipBlas

* Aaaand MUSA defines...

* I hate this job...

* Stupid typo...

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-11 17:20:43 +01:00
Xuan-Son Nguyen c6b2c9310c
mtmd: some small clean up (#17909)
* clip: add support for fused qkv in build_vit

* use bulid_ffn whenever possible

* fix internvl

* mtmd-cli: move image to beginning

* test script: support custom args
2025-12-10 22:20:06 +01:00
Xuan-Son Nguyen 34a6d86982
cli: enable jinja by default (#17911)
* cli: enable jinja by default

* Update common/arg.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-10 22:19:42 +01:00
Pascal f32ca51bfe
server: add presets (config) when using multiple models (#17859)
* llama-server: recursive GGUF loading

Replace flat directory scan with recursive traversal using
std::filesystem::recursive_directory_iterator. Support for
nested vendor/model layouts (e.g. vendor/model/*.gguf).
Model name now reflects the relative path within --models-dir
instead of just the filename. Aggregate files by parent
directory via std::map before constructing local_model

* server : router config POC (INI-based per-model settings)

* server: address review feedback from @aldehir and @ngxson

PEG parser usage improvements:
- Simplify parser instantiation (remove arena indirection)
- Optimize grammar usage (ws instead of zero_or_more, remove optional wrapping)
- Fix last line without newline bug (+ operator instead of <<)
- Remove redundant end position check

Feature scope:
- Remove auto-reload feature (will be separate PR per @ngxson)
- Keep config.ini auto-creation and template generation
- Preserve per-model customization logic

Co-authored-by: aldehir <aldehir@users.noreply.github.com>
Co-authored-by: ngxson <ngxson@users.noreply.github.com>

* server: adopt aldehir's line-oriented PEG parser

Complete rewrite of INI parser grammar and visitor:
- Use p.chars(), p.negate(), p.any() instead of p.until()
- Support end-of-line comments (key=value # comment)
- Handle EOF without trailing newline correctly
- Strict identifier validation ([a-zA-Z_][a-zA-Z0-9_.-]*)
- Simplified visitor (no pending state, no trim needed)
- Grammar handles whitespace natively via eol rule

Business validation preserved:
- Reject section names starting with LLAMA_ARG_*
- Accept only keys starting with LLAMA_ARG_*
- Require explicit section before key-value pairs

Co-authored-by: aldehir <aldehir@users.noreply.github.com>

* server: fix CLI/env duplication in child processes

Children now receive minimal CLI args (executable, model, port, alias)
instead of inheriting all router args. Global settings pass through
LLAMA_ARG_* environment variables only, eliminating duplicate config
warnings.

Fixes: Router args like -ngl, -fa were passed both via CLI and env,
causing 'will be overwritten' warnings on every child spawn

* add common/preset.cpp

* fix compile

* cont

* allow custom-path models

* add falsey check

* server: fix router model discovery and child process spawning

- Sanitize model names: replace / and \ with _ for display
- Recursive directory scan with relative path storage
- Convert relative paths to absolute when spawning children
- Filter router control args from child processes
- Refresh args after port assignment for correct port value
- Fallback preset lookup for compatibility
- Fix missing argv[0]: store server binary path before base_args parsing

* Revert "server: fix router model discovery and child process spawning"

This reverts commit e3832b42eeea7fcb108995966c7584479f745857.

* clarify about "no-" prefix

* correct render_args() to include binary path

* also remove arg LLAMA_ARG_MODELS_PRESET for child

* add co-author for ini parser code

Co-authored-by: aldehir <hello@alde.dev>

* also set LLAMA_ARG_HOST

* add CHILD_ADDR

* Remove dead code

---------

Co-authored-by: aldehir <aldehir@users.noreply.github.com>
Co-authored-by: ngxson <ngxson@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: aldehir <hello@alde.dev>
2025-12-10 22:18:21 +01:00
Georgi Gerganov 4dff236a52
ggml : remove GGML_KQ_MASK_PAD constant (#17910)
* ggml : remove GGML_KQ_MASK_PAD constant

* cont : remove comment
2025-12-10 20:53:16 +02:00
Xuan-Son Nguyen 6c2131773c
cli: new CLI experience (#17824)
* wip

* wip

* fix logging, add display info

* handle commands

* add args

* wip

* move old cli to llama-completion

* rm deprecation notice

* move server to a shared library

* move ci to llama-completion

* add loading animation

* add --show-timings arg

* add /read command, improve LOG_ERR

* add args for speculative decoding, enable show timings by default

* add arg --image and --audio

* fix windows build

* support reasoning_content

* fix llama2c workflow

* color default is auto

* fix merge conflicts

* properly fix color problem

Co-authored-by: bandoti <bandoti@users.noreply.github.com>

* better loading spinner

* make sure to clean color on force-exit

* also clear input files on "/clear"

* simplify common_log_flush

* add warning in mtmd-cli

* implement console writter

* fix data race

* add attribute

* fix llama-completion and mtmd-cli

* add some notes about console::log

* fix compilation

---------

Co-authored-by: bandoti <bandoti@users.noreply.github.com>
2025-12-10 15:28:59 +01:00
Aldehir Rojas 2fbe3b7bb7
common : add parser for ministral/mistral large 3/devstral 2 (#17713) 2025-12-09 17:31:04 -06:00
Rhys-T 63908b631a
cmake: fix Mach-O current version number (#17877)
PR #17091 set the VERSION of various libraries to 0.0.abcd, where abcd
is the LLAMA_BUILD_NUMBER. That build number is too large to fit in the
Mach-O 'current version' field's 'micro' part, which only goes up to
255. This just sets the Mach-O current version to 0 to get it building
properly again.

Fixes #17258.
2025-12-09 13:17:41 +02:00
Xuan-Son Nguyen 951520ddb0
server: delegate result_state creation to server_task (#17835)
* server: delegate result_state creation to server_task

* remove unued states

* add more docs
2025-12-08 17:04:38 +01:00
Xuan-Son Nguyen f896d2c34f
server: improve speed of speculative decoding (#17808)
* server: improve speed of speculative decoding

* fix small draft case

* add link to the PR

* server : fix generation time measurement

* server : fix draft acceptance logs (add SRV_CNT, SLT_CNT macros)

* server : add comment

* add PR to docs

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-08 14:35:28 +01:00
Xuan-Son Nguyen 37a4f63244
server : add development documentation (#17760)
* first draft

* rewrite

* update & remove duplicated sections
2025-12-08 13:54:58 +01:00
Georgi Gerganov 2bc96931d2
server : make cache_reuse configurable per request (#17858) 2025-12-08 12:43:12 +02:00
Vishal Singh 017761daf5
ggml-zendnn : add ZenDNN backend for AMD CPUs (#17690)
* ggml-zennn: add ZenDNN backend support

* ggml-zendnn : address ZenDNN backend review fixes and suggestions

* docs : apply blockquote syntax to ZenDNN docs

---------

Co-authored-by: Manoj Kumar <mkumar@zettabolt.com>
2025-12-07 00:13:33 +08:00
Xuan-Son Nguyen c42712b056
server: support multiple generations from one prompt (OAI "n" option) (#17775)
* backend support

* server: support multiple generations from one prompt (OAI "n" option)

* fix invalid batch

* format oai

* clean up

* disable ctx shift

* add test

* update comments

* fix style

* add n_cmpl to docs [no ci]

* allowing using both n_cmpl and n
2025-12-06 15:54:38 +01:00
Aleksander Grygier a28e3c7567
webui: Stop generation from chat sidebar (#17806)
* feat: Add stop generation button for Conversation Item

* chore: update webui build output
2025-12-06 13:29:15 +01:00
Aleksander Grygier e31b5c55c3
webui: Fix context available value in Multi-model Router mode (#17804)
* fix: Use context size from `/props?model=...` in ROUTER mode

* chore: update webui build output
2025-12-06 13:23:29 +01:00
Aleksander Grygier 21f24f27a9
webui: Per-conversation system message with UI displaying, edition & branching (#17275)
* feat: Per-conversation system message with optional display in UI, edition and branching (WIP)

* chore: update webui build output
2025-12-06 13:19:05 +01:00
Xuan-Son Nguyen 9d0229967a
server: strip content-length header on proxy (#17734) 2025-12-04 16:32:57 +01:00
Xuan-Son Nguyen c4c10bfb86
server: move msg diffs tracking to HTTP thread (#17740)
* server: move msg diffs tracking to HTTP thread

* wip

* tool call tests ok

* minor : style

* cont : fix

* move states to server_response_reader

* add safe-guard

* fix

* fix 2

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 15:46:08 +01:00
Adrien Gallouët ef75a89fdb
build : move _WIN32_WINNT definition to headers (#17736)
Previously, cmake was forcing `_WIN32_WINNT=0x0A00` for MinGW builds,
This caused "macro redefined" warnings with toolchains that define the version.

This also removes the `GGML_WIN_VER` variable as it is no longer needed.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 07:04:02 +01:00
Piotr Wilkin (ilintar) c6d1a00aa7
Add a couple of file types to the text section (#17670)
* Add a couple of file types to the text section

* Format + regenerate index

* Rebuild after rebase
2025-12-03 21:45:06 +01:00
Aleksander Grygier e9f9483464
Use OpenAI-compatible `/v1/models` endpoint by default (#17689)
* refactor: Data fetching via stores

* chore: update webui build output

* refactor: Use OpenAI compat `/v1/models` endpoint by default to list models

* chore: update webui build output

* chore: update webui build output
2025-12-03 20:49:09 +01:00
Andika Wasisto 41c5e02f42
webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden (#17445)
* webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden

Zero pasteLongTextToFileLen should disable the conversion, but it was
overwritten with 2500.

* Apply suggestions from code review

* Update webui build
2025-12-03 20:45:17 +01:00
Pascal e7c2cf1356
server: add router multi-model tests (#17704) (#17722)
* llama-server: add router multi-model tests (#17704)

Add 4 test cases for model router:
- test_router_unload_model: explicit model unloading
- test_router_models_max_evicts_lru: LRU eviction with --models-max
- test_router_no_models_autoload: --no-models-autoload flag behavior
- test_router_api_key_required: API key authentication

Tests use async model loading with polling and graceful skip when
insufficient models available for eviction testing.

utils.py changes:
- Add models_max, models_dir, no_models_autoload attributes to ServerProcess
- Handle JSONDecodeError for non-JSON error responses (fallback to text)

* llama-server: update test models to new HF repos

* add offline

* llama-server: fix router LRU eviction test and add preloading

Fix eviction test: load 2 models first, verify state, then load
3rd to trigger eviction. Previous logic loaded all 3 at once,
causing first model to be evicted before verification could occur.

Add module fixture to preload models via ServerPreset.load_all()
and mark test presets as offline to use cached models

* llama-server: fix split model download on Windows

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-12-03 15:10:37 +01:00
Adrien Gallouët 1257491047
server : fix bad fmt, size() is a size_type (#17735)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:22 +02:00
Aldehir Rojas 0a8026e768
common : introduce composable PEG parser combinators for chat parsing (#17136)
* common : implement parser combinators to simplify chat parsing

* add virtual destructor to parser_base

* fix memory leak from circular references of rules

* implement gbnf grammar building

* remove unused private variable

* create a base visitor and implement id assignment as a visitor

* fix const ref for grammar builder

* clean up types, friend classes, and class declarations

* remove builder usage from until_parser

* Use a counter class to help assign rule ids

* cache everything

* add short description for each parser

* create a type for the root parser

* implement repetition parser

* Make optional, one_or_more, and zero_or_more subclasses of repetition

* improve context constructor

* improve until parsing and add benchmarks

* remove cached() pattern, cache in parser_base with specialized parsing functions for each parser

* improve json parsing performance to better match legacy parsing

* fix const auto * it for windows

* move id assignment to classes instead of using a visitor

* create named rules in the command r7b example

* use '.' for any in GBNF

* fix parens around choices in gbnf grammar

* add convenience operators to turn strings to literals

* add free-form operators for const char * to simplify defining literals

* simplify test case parser

* implement semantic actions

* remove groups in favor of actions and a scratchpad

* add built in actions for common operations

* add actions to command r7b example

* use std::default_searcher for platforms that don't have bm

* improve parser_type handling and add cast helper

* add partial result type to better control when to run actions

* fix bug in until()

* run actions on partial results by default

* use common_chat_msg for result

* add qwen3 example wip

* trash partial idea and simplify

* move action arguments to a struct

* implement aho-corasick matcher for until_parser and to build exclusion grammars

* use std::string for input, since std::string_view is incompatible with std::regex

* Refactor tests

* improve qwen3 example

* implement sax-style parsing and refactor

* fix json string in test

* rename classes to use common_chat_ prefix

* remove is_ suffix from functions

* rename from id_counter to just counter

* Final refactored tests

* Fix executable name and editorconfig-checker

* Third time's the charm...

* add trigger parser to begin lazy grammar rule generation

* working lazy grammar

* refactor json rules now that we check for reachability

* reduce pointer usage

* print out grammars in example

* rename to chat-peg-parser* and common_chat_peg_parser*

* Revert unrelated changes

* New macros for CMakeLists to enable multi-file compilations

* starting unicode support

* add unicode support to char_parser

* use unparsed args as additional sources

* Refactor tests to new harness

* Fix CMakeLists

* fix rate calculation

* add unicode tests

* fix trailing whitespace and line endings

skip-checks: true

* Helpers + rewrite qwen3 with helpers

* Fix whitespace

* extract unicode functions to separate file

* refactor parse unicode function

* fix compiler error

* improve construction of sequence/choice parsers

* be less clever

* add make_parser helper function

* expand usage of make_parser, alias common_chat_msg_peg_parser_builder to builder in source

* lower bench iterations

* add unicode support to until_parser

* add unicode support to json_string_parser

* clean up unicode tests

* reduce unicode details to match src/unicode.cpp

* simplify even further

* remove unused functions

* fix type

* reformat char class parsing

* clean up json string parser

* clean up + fix diagnostics

* reorder includes

* compact builder functions

* replace action_parser with capture_parser, rename env to semantics

* rename env to semantics

* clean up common_chat_parse_context

* move type() to below constant

* use default constructor for common_chat_peg_parser

* make all operators functions for consistency

* fix compilation errors in test-optional.cpp

* simplify result values

* rename json_string_unquoted to json_string_content

* Move helper to separate class, add separate explicit and helper classes

* Whitespace

* Change + to append()

* Reformat

* Add extra helpers, tests and Minimax example

* Add some extra optional debugging prints + real example of how to use them

* fix bug in repetitions when min_count = 0 reports failures

* dump rule in debug

* fix token accumulation and assert parsing never fails

* indent debug by depth

* use LOG_* in tests so logs sync up with test logs

* - Add selective testing
- Refactor all messaging to use LOG_ERR
- Fix lack of argument / tool name capturing
- Temporary fix for double event capture

* refactor rule() and introduce ref()

* clean up visitor

* clean up indirection in root parser w.r.t rules

* store shared ptr directly in parser classes

* replace aho-corasick automation with a simple trie

* Reset prev for qwen3 helper example variant

* refactor to use value semantics with std::variant/std::visit

* simplify trie_matcher result

* fix linting issues

* add annotations to rules

* revert test workaround

* implement serializing the parser

* remove redundant parsers

* remove tests

* gbnf generation fixes

* remove LOG_* use in tests

* update gbnf tests to test entire grammar

* clean up gbnf generation and fix a few bugs

* fix typo in test output

* remove implicit conversion rules

* improve test output

* rename trie_matcher to trie

* simplify trie to just know if a node is the end of a word

* remove common_chat_ prefix and ensure a common_peg_ prefix to all types

* rename chat-peg-parser -> peg-parser

* promote chat-peg-parser-helper to chat-peg-parser

* checkpoint

* use a static_assert to ensure we handle every branch

* inline trivial peg parser builders

* use json strings for now

* implement basic and native chat peg parser builders/extractors

* resolve refs to their rules

* remove packrat caching (for now)

* update tests

* compare parsers with incremental input

* benchmark both complete and incremental parsing

* add raw string generation from json schema

* add support for string schemas in gbnf generation

* fix qwen example to include \n

* tidy up example

* rename extractor to mapper

* rename ast_arena to ast

* place basic tests into one

* use gbnf_format_literal from json-schema-to-grammar

* integrate parser with common/chat and server

* clean up schema and serialization

* add json-schema raw string tests

* clean up json creation and remove capture parser

* trim spaces from reasoning and content

* clean up redundant rules and comments

* rename input_is_complete to is_partial to match rest of project

* simplify json rules

* remove extraneous file

* remove comment

* implement += and |= operators

* add comments to qwen3 implementation

* reorder arguments to common_chat_peg_parse

* remove commented outdated tests

* add explicit copy constructor

* fix operators and constness

* wip: update test-chat for qwen3-coder

* bring json parser closer to json-schema-to-grammar rules

* trim trailing space for most things

* fix qwen3 coder rules w.r.t. trailing spaces

* group rules

* do not trim trailing space from string args

* tweak spacing of qwen3 grammar

* update qwen3-coder tests

* qwen3-coder small fixes

* place parser in common_chat_syntax to simplify invocation

* use std::set to collect rules to keep order predictable for tests

* initialize parser to make certain platforms happy

* revert back to std::unordered_set, sort rule names at the end instead

* uncomment rest of chat tests

* define explicit default constructor

* improve arena init and server integration

* fix chat test

* add json_member()

* add a comprehensive native example

* clean up example qwen test and add response_format example to native test

* make build_peg_parser accept std::function instead of template

* change peg parser parameters into const ref

* push tool call on tool open for constructed parser

* add parsing documentation

* clean up some comments

* add json schema support to qwen3-coder

* add id initializer in tests

* remove grammar debug line from qwen3-coder

* refactor qwen3-coder to use sequence over operators

* only call common_chat_peg_parse if appropriate format

* simplify qwen3-coder space handling

* revert qwen3-coder implementation

* revert json-schema-to-grammar changes

* remove unnecessary forward declaration

* small adjustment to until_parser

* rename C/C++ files to use dashes

* codeowners : add aldehir to peg-parser and related files

---------

Co-authored-by: Piotr Wilkin <piotr.wilkin@syndatis.com>
2025-12-03 12:45:32 +02:00
Pascal 5ceed62421
server: fix duplicate HTTP headers in multiple models mode (#17698)
* llama-server: fix duplicate HTTP headers in multiple models mode (#17693)

* llama-server: address review feedback from ngxson

- restrict scope of header after std::move
- simplify header check (remove unordered_set)
2025-12-03 10:28:43 +01:00
Xuan-Son Nguyen 13628d8bdb
server: add --media-path for local media files (#17697)
* server: add --media-path for local media files

* remove unused fn
2025-12-02 22:49:20 +01:00
Xuan-Son Nguyen a96283adc4
mtmd: fix --no-warmup (#17695) 2025-12-02 22:48:08 +01:00
Chad Voegele c4357dcc35
Server: Change Invalid Schema from Server Error (500) to User Error (400) (#17572)
* Make invalid schema a user error (400)

* Move invalid_argument exception handler to ex_wrapper

* Fix test

* Simplify test back to original pattern
2025-12-02 17:33:50 +01:00
Xuan-Son Nguyen 5d6bd842ea
server: remove default "gpt-3.5-turbo" model name (#17668)
* server: remove default "gpt-3.5-turbo" model name

* do not reflect back model name from request

* fix test
2025-12-02 11:38:57 +01:00
senhtry fd3abe849e
server: fixing naming conflict res_error in server-models.cpp (#17679) 2025-12-02 11:18:39 +01:00
Xuan-Son Nguyen 682e6658bb
server: explicitly set exec path when create new instance (#17669)
* Revert "rm unused fn"

This reverts commit f2dbe9c087.

* server: explicitly set exec path when create new instance

* put back TODO

* only call get_server_exec_path() once

* add fallback logic
2025-12-02 10:25:11 +01:00
Aleksander Grygier cee92af553
Add context info to server error (#17663)
* fix: Add context info to server error

* chore: update webui build output
2025-12-02 09:20:57 +01:00
Xuan-Son Nguyen ecf74a8417
mtmd: add mtmd_context_params::warmup option (#17652)
* mtmd: add mtmd_context_params::warmup option

* reuse the common_params::warmup
2025-12-01 21:32:25 +01:00
Xuan-Son Nguyen ec18edfcba
server: introduce API for serving / loading / unloading multiple models (#17470)
* server: add model management and proxy

* fix compile error

* does this fix windows?

* fix windows build

* use subprocess.h, better logging

* add test

* fix windows

* feat: Model/Router server architecture WIP

* more stable

* fix unsafe pointer

* also allow terminate loading model

* add is_active()

* refactor: Architecture improvements

* tmp apply upstream fix

* address most problems

* address thread safety issue

* address review comment

* add docs (first version)

* address review comment

* feat: Improved UX for model information, modality interactions etc

* chore: update webui build output

* refactor: Use only the message data `model` property for displaying model used info

* chore: update webui build output

* add --models-dir param

* feat: New Model Selection UX WIP

* chore: update webui build output

* feat: Add auto-mic setting

* feat: Attachments UX improvements

* implement LRU

* remove default model path

* better --models-dir

* add env for args

* address review comments

* fix compile

* refactor: Chat Form Submit component

* ad endpoint docs

* Merge remote-tracking branch 'webui/allozaur/server_model_management_v1_2' into xsn/server_model_maagement_v1_2

Co-authored-by: Aleksander <aleksander.grygier@gmail.com>

* feat: Add copy to clipboard to model name in model info dialog

* feat: Model unavailable UI state for model selector

* feat: Chat Form Actions UI logic improvements

* feat: Auto-select model from last assistant response

* chore: update webui build output

* expose args and exit_code in API

* add note

* support extra_args on loading model

* allow reusing args if auto_load

* typo docs

* oai-compat /models endpoint

* cleaner

* address review comments

* feat: Use `model` property for displaying the `repo/model-name` naming format

* refactor: Attachments data

* chore: update webui build output

* refactor: Enum imports

* feat: Improve Model Selector responsiveness

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* refactor: Formatters

* chore: update webui build output

* refactor: Copy To Clipboard Icon component

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* refactor: UI badges

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* chore: update webui build output

* add --models-allow-extra-args for security

* nits

* add stdin_file

* fix merge

* fix: Retrieve lost setting after resolving merge conflict

* refactor: DatabaseStore -> DatabaseService

* refactor: Database, Conversations & Chat services + stores architecture improvements (WIP)

* refactor: Remove redundant settings

* refactor: Multi-model business logic WIP

* chore: update webui build output

* feat: Switching models logic for ChatForm or when regenerating messges + modality detection logic

* chore: update webui build output

* fix: Add `untrack` inside chat processing info data logic to prevent infinite effect

* fix: Regenerate

* feat: Remove redundant settigns + rearrange

* fix: Audio attachments

* refactor: Icons

* chore: update webui build output

* feat: Model management and selection features WIP

* chore: update webui build output

* refactor: Improve server properties management

* refactor: Icons

* chore: update webui build output

* feat: Improve model loading/unloading status updates

* chore: update webui build output

* refactor: Improve API header management via utility functions

* remove support for extra args

* set hf_repo/docker_repo as model alias when posible

* refactor: Remove ConversationsService

* refactor: Chat requests abort handling

* refactor: Server store

* tmp webui build

* refactor: Model modality handling

* chore: update webui build output

* refactor: Processing state reactivity

* fix: UI

* refactor: Services/Stores syntax + logic improvements

Refactors components to access stores directly instead of using exported getter functions.

This change centralizes store access and logic, simplifying component code and improving maintainability by reducing the number of exported functions and promoting direct store interaction.

Removes exported getter functions from `chat.svelte.ts`, `conversations.svelte.ts`, `models.svelte.ts` and `settings.svelte.ts`.

* refactor: Architecture cleanup

* feat: Improve statistic badges

* feat: Condition available models based on modality + better model loading strategy & UX

* docs: Architecture documentation

* feat: Update logic for PDF as Image

* add TODO for http client

* refactor: Enhance model info and attachment handling

* chore: update webui build output

* refactor: Components naming

* chore: update webui build output

* refactor: Cleanup

* refactor: DRY `getAttachmentDisplayItems` function + fix UI

* chore: update webui build output

* fix: Modality detection improvement for text-based PDF attachments

* refactor: Cleanup

* docs: Add info comment

* refactor: Cleanup

* re

* refactor: Cleanup

* refactor: Cleanup

* feat: Attachment logic & UI improvements

* refactor: Constants

* feat: Improve UI sidebar background color

* chore: update webui build output

* refactor: Utils imports + move types to `app.d.ts`

* test: Fix Storybook mocks

* chore: update webui build output

* test: Update Chat Form UI tests

* refactor: Tooltip Provider from core layout

* refactor: Tests to separate location

* decouple server_models from server_routes

* test: Move demo test  to tests/server

* refactor: Remove redundant method

* chore: update webui build output

* also route anthropic endpoints

* fix duplicated arg

* fix invalid ptr to shutdown_handler

* server : minor

* rm unused fn

* add ?autoload=true|false query param

* refactor: Remove redundant code

* docs: Update README documentations + architecture & data flow diagrams

* fix: Disable autoload on calling server props for the model

* chore: update webui build output

* fix ubuntu build

* fix: Model status reactivity

* fix: Modality detection for MODEL mode

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-01 19:41:04 +01:00
Xuan-Son Nguyen 7733409734
common: improve verbosity level definitions (#17630)
* common: improve verbosity level definitions

* string_format

* update autogen docs
2025-12-01 14:38:13 +01:00
Tarek Dakhran 2ba719519d
model: LFM2-VL fixes (#17577)
* Adjust to pytorch

* Add antialiasing upscale

* Increase number of patches to 1024

* Handle default marker insertion for LFM2

* Switch to flag

* Reformat

* Cuda implementation of antialias kernel

* Change placement in ops.cpp

* consistent float literals

* Pad only for LFM2

* Address PR feedback

* Rollback default marker placement changes

* Fallback to CPU implementation for antialias implementation of upscale
2025-11-30 21:57:31 +01:00
Xuan-Son Nguyen 7f8ef50cce
clip: fix nb calculation for qwen3-vl (#17594) 2025-11-30 15:33:55 +01:00
Xuan-Son Nguyen 3c136b21a3
cli: add migration warning (#17620) 2025-11-30 15:32:43 +01:00
Xuan-Son Nguyen ab49f094d2
server: move server-context to its own cpp|h (#17595)
* git mv

* add server-context.h

* add server-context.h

* clean up headers

* cont : cleanup

* also expose server_response_reader (to be used by CLI)

* fix windows build

* decouple server_routes and server_http

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-29 22:04:44 +01:00
Haiyue Wang 8c32d9d96d
server: explicitly set the function name in lambda (#17538)
As [1] explained, the real debug message will be like:
	"res    operator(): operator() : queue result stop"

Set the name explicitly, the message is easy for debugging:
	"res    operator(): recv : queue result stop"

The left "operator()" is generated by 'RES_DBG() ... __func__'

[1]: https://clang.llvm.org/extra/clang-tidy/checks/bugprone/lambda-function-name.html

Signed-off-by: Haiyue Wang <haiyuewa@163.com>
2025-11-29 18:43:29 +01:00
Igor Smirnov 0874693b44
common : fix json schema with '\' in literals (#17307)
* Fix json schema with '\' in literals

* Add "literal string with escapes" test
2025-11-29 17:06:32 +01:00
o7si 3ce7a65c2f
server: fix: /metrics endpoint returning JSON-escaped Prometheus format (#17386)
* fix: /metrics endpoint returning JSON-escaped Prometheus format

* mod: remove string overload from ok() method
2025-11-28 19:14:00 +01:00
Fredrik Hultin ddf9f94389
server : add Anthropic Messages API support (#17570)
* server : add Anthropic Messages API support

* remove -@pytest.mark.slow from tool calling/jinja tests

* server : remove unused code and slow/skip on test_anthropic_vision_base64_with_multimodal_model in test_anthropic_api.py

* server : removed redundant n field logic in anthropic_params_from_json

* server : use single error object instead of error_array in streaming response handler for /v1/chat/completions and use unordered_set instead of set in to_json_anthropic_stream()

* server : refactor Anthropic API to use OAI conversion

* make sure basic test always go first

* clean up

* clean up api key check, add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-28 12:57:04 +01:00
Xuan-Son Nguyen e509411cf1
server: enable jinja by default, update docs (#17524)
* server: enable jinja by default, update docs

* fix tests
2025-11-27 01:02:50 +01:00
Han Qingzhe 1d594c295c
clip: (minicpmv) fix resampler kq_scale (#17516)
* debug:"solve minicpmv precision problem"

* “debug minicpmv”

* Apply suggestion from @ngxson

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-26 21:44:07 +01:00
Pascal b1846f1c8e
webui: add rehype plugin to restore HTML in Markdown table cells (#17477)
* webui: add rehype plugin to restore HTML in Markdown table cells

The remark/rehype pipeline neutralizes inline HTML as literal text
(remarkLiteralHtml) so that XML/HTML snippets in LLM responses display
as-is instead of being rendered. This causes <br> and <ul> markup in
table cells to show as plain text.

This plugin traverses the HAST post-conversion, parses whitelisted HTML
patterns (<br>, <ul><li>) from text nodes, and replaces them with actual
HAST element nodes. For lists, adjacent siblings must be combined first
as the AST fragmentation breaks pattern matching.

Strict validation rejects malformed markup, keeping it as raw text.

* chore: update webui build output
2025-11-25 08:01:02 +01:00
Xuan-Son Nguyen b8372eecd9
server: split server.cpp code into server/common/task/queue (#17362)
* add server-task, server-common

* add server-queue

* rm redundant includes

* move enum stop_type to server-task

* server : headers cleanup

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-24 14:41:53 +01:00
Pascal 0c7220db56
webui: minor settings reorganization and add disable autoscroll option (#17452)
* webui: added a dedicated 'Display' settings section that groups visualization options

* webui: added a Display setting to toggle automatic chat scrolling

* chore: update webui build output
2025-11-23 18:42:00 +01:00
Aleksander Grygier 4c91f2633f
Improved file naming & structure for UI components (#17405)
* refactor: Component iles naming & structure

* chore: update webui build output

* refactor: Dialog titles + components namig

* chore: update webui build output

* refactor: Imports

* chore: update webui build output
2025-11-20 14:07:31 +01:00