Commit Graph

1243 Commits

Author SHA1 Message Date
leejet d30e07dbb3 fix cuda get_rows 2025-08-30 03:13:57 +08:00
leejet d8377a0a37 gguf: support loading tensors which n_dims > GGML_MAX_DIMS 2025-08-30 03:11:09 +08:00
leejet dd745ba31f make im2col_3d faster 2025-08-30 03:11:09 +08:00
leejet ae47caca70 fix cuda pad/scale/im2col3d 2025-08-30 03:11:08 +08:00
leejet 85c8e1e519 cuda: make im2col a little faster 2025-08-30 03:11:08 +08:00
leejet f7a12f9e69 cuda/cpu: add im2col_3d support 2025-08-30 03:11:08 +08:00
leejet 93c7e775b8 add ggml_pad_ext for cpu & cuda backend 2025-08-30 02:56:56 +08:00
leejet c92f9b4a68 add conv3d support 2025-08-30 02:56:56 +08:00
Aman Gupta 81017865ee
CUDA: fix bug in rms_norm fusion (#15660)
* CUDA: fix bug in rms_norm fusion

* Fix bug for OP_REPEAT

* Fix index for add
2025-08-29 21:30:06 +08:00
Aman Gupta 009b709d6e
CUDA: fuse adds, fuse add with rms norm (#15631)
* CUDA: fused add with rms_norm_mul

* Non-broadcast fuse works

* Add fused adds

* format

* Remove n_fuse from template params

* Address review comments

* Move template inside binbcast
2025-08-29 11:35:58 +08:00
mnehete32 c97dc09391
CUDA: add conv2d (#15635)
* CUDA: add conv2d

* CUDA: conv2d - correct formatting and added const
2025-08-28 20:33:03 +02:00
Aaron Teo 6c442f42ff
ggml-cpu: fix invalid hsum build in debug s390x (#15634)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-28 22:39:27 +08:00
compilade 73804145ab
ggml : fix SSM_SCAN for n_groups > 1 (#15625) 2025-08-28 10:11:36 -04:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
matiaslin 5a0e3ef6f0
cuda: Add cublasLt_static linking when GGML_STATIC is enabled (#15622)
Prior to this change, we faced undefined cublasLt references when
attempting to compile 'llama-cli' with GGML_STATIC=ON on Linux.

We add linking with CUDA::cublasLt_static when CUDA version is greater
than 10.1.
2025-08-28 02:32:36 +02:00
uvos 47373271f9
HIP: Enable support for ggml_backend_cuda_register_host_buffer (#15615) 2025-08-27 13:58:54 +02:00
Chenguang Li 1e7489745a
CANN: refactor mask handling and improve performance in FA (#15561)
* CANN(flash-attn): refactor mask handling and improve performance

1. Refactored the mask computation in Flash Attention, unified the logic without separating prefill and decode.
2. Optimized performance in non-alibi scenarios by reducing one repeat operation.
3. Updated operator management to explicitly mark unsupported cases on 310P devices and when dim is not divisible by 16.

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: fix review

Signed-off-by: noemotiovon <757486878@qq.com>

* [CANN]: Optimization FA BNSD to BSND

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-27 17:21:41 +08:00
xctan 1cf123a343
ggml-cpu : add basic RVV support for vector f32 ops (#15057)
* ggml-cpu : add basic RVV support for vector f32 ops

* ggml-cpu : add RVV support for f32 softmax
2025-08-27 16:44:22 +08:00
rmatif 86076f92de
OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Akarshan Biswas 8b69686136
SYCL: fix rms_norm_mul_add for tensor dim not a multiple of sg_size (#15592)
The original implementation unconditionally returned true for this operation, leading to a failure when the tensor's first dimension (ne[0]) was not a multiple of WARP_SIZE. This caused an GGML_ASSERT(ncols % WARP_SIZE == 0) failure in ggml-sycl/norm.cpp.

This change updates the ggml_backend_sycl_device_supports_op check to correctly return true for GGML_OP_RMS_NORM only when the first dimension of the tensor is a multiple of WARP_SIZE, ensuring the operation can be performed without error.
2025-08-27 00:27:49 +05:30
shalinib-ibm a6a58d6478
llamafile: PowerPC Sgemm Optimization (#15558)
This patch improves GEMM for FP32 Data Type on PowerPC

Implements GEMM on large blocks with configurable block size mc, nc, kc
(default: 256, 256, 256).
Packing Function optimized to access blocks as per memory layout.
GEMM Optimized to work on larger blocks.
Isolated Packing from GEMM Operations for better MMA utilization.

Verified functionality and correctness uing llama-cli and stand alone
test case (performs matmul and compares final mattrix C result with base).

Minor code refactoring changes:
Replace macro with inline function
Code Indent made consistent with 4 spaces

Performance Testing:

Observed 50% ~ 70% improvement in Prompt Processing Speed mesured using
llama-bench with Meta-Llama3-8B FP32 Model.  Similar gains observed with
Mistral-7b-Instruct-v0.3 Model.

model                   Size                Params     Backend       Threads   Test    Patch   Base
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp512   98.58   60.3
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp1024  95.88   57.36
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp2048  85.46   53.26
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp4096  68.66   45.78
llama 8B all F32        29.92 GiB           8.03 B      CPU           20       pp6144  57.35   40.44

25 ~ 30% improvement in llama-batched-bench with Metla-Llama3-8B in
Prompt Processing Speed for large prompts (256, 512, 1024, 2048, 4096)tokens with various batch
sizes ( 1, 2, 4, 8, 16)

Signed-off-by: Shalini Salomi Bodapati <Shalini.Salomi.Bodapati@ibm.com>
2025-08-26 23:35:25 +08:00
Johannes Gäßler 8f5afa94c4
CUDA: return -1 for nonexistent compiled arch (#15587) 2025-08-26 16:01:20 +02:00
Georgi Gerganov b3964c1e89
metal : optimize FA vec for large sequences and BS <= 8 (#15566)
* metal : optmize FA vec for large heads and sequences

* metal : adjust small-batch mul mv kernels

ggml-ci

* batched-bench : fix total speed computation

ggml-ci

* cont : add comments

ggml-ci
2025-08-26 14:22:14 +03:00
Georgi Gerganov 1d8d83deaa
metal : improve `MUL_MAT_ID` (#15541)
* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
2025-08-26 12:46:15 +03:00
Sigbjørn Skjæret 0fd90db585
metal : remove contiguous assertion for src0 in IM2COL (#15577)
* remove contiguous assertion for src0 in IM2COL

* add contiguous check in supports_op
2025-08-26 09:51:43 +03:00
Yoshi_likes_e4 4c37636b3e
Add a warning for special devices (#15563)
* Add warning

* Print the devices names

* Add newlines

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Fix vector names

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-26 08:15:33 +02:00
Jeff Bolz 34bdbbd7c2
vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Qeeweew 74f52f77f2
CUDA: Accelerate MXFP4 table lookup using `__byte_perm` (#15451)
* CUDA: optimize get_int_from_table_16

* CUDA: use v_perm_b32 to replace byte_perm on AMD GPUs

* revise documentation

---------

Co-authored-by: xix <xiapc@outlook.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-25 23:21:22 +02:00
lhez f7207b0415
opencl: fix support ops condition for `rms_norm` (#15560) 2025-08-25 14:18:09 -07:00
Ruben Ortlam 4d917cd4f6
vulkan: fix min subgroup 16 condition for mmid subgroup optimization (#15565) 2025-08-25 17:56:59 +02:00
Ihar Hrachyshka 111f8d06f0
metal: fix regression when no metal devices are present (#15531) 2025-08-25 18:27:34 +03:00
Johannes Gäßler 5eff6ec9b1
CUDA: MoE helper in device code, better tile sizes (#15525)
* CUDA: MoE helper in device code, better tile sizes

* reduce superfluous CUDA blocks
2025-08-25 17:23:40 +02:00
Georgi Gerganov b0ba31f525
metal : add FA kernels for HS=40 (#15559)
ggml-ci
2025-08-25 10:14:48 +03:00
Chenguang Li c247d06f38
CANN: ROPE cache sin/cos repeat (#15501)
Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-25 10:32:21 +08:00
Ruben Ortlam 043fb27d38
vulkan: apply MUL_MAT_ID subgroup optimization to non-coopmat devices (#15524)
* vulkan: use subgroup function for mul_mat_id shader even without coopmat

* vulkan: fix compile warnings

* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id

* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
2025-08-24 19:36:36 +02:00
Jeff Bolz c9a24fb932
vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Ruben Ortlam a9c6ffcbfa
vulkan: enable Conv2D for Apple after MoltenVK fixed the bug (#15526) 2025-08-24 10:48:53 +02:00
Jeff Bolz e78cf0d4b1
vulkan: workaround MoltenVK compile failure in multi_add (#15506)
* vulkan: workaround MoltenVK compile failure in multi_add

* Update ggml/src/ggml-vulkan/vulkan-shaders/multi_add.comp

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-24 10:48:21 +02:00
Johannes Gäßler 710dfc465a
CUDA: fix half2 -> half conversion for HIP (#15529) 2025-08-23 21:37:06 +02:00
Jeff Bolz 611f419cff
vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Jeff Bolz 289bf4113e
vulkan: Rewrite synchronization to allow some overlap between nodes (#15489)
Track a list of nodes that need synchronization, and only sync if the new node
depends on them (or overwrites them). This allows some overlap which can
improve performance, and centralizes a big chunk of the synchronization logic.

The remaining synchronization logic involves writes to memory other than the
nodes, e.g. for dequantization or split_k. Each of these allocations has a bool
indicating whether they were in use and need to be synced. This should be
checked before they are written to, and set to true after they are done being
consumed.
2025-08-23 09:33:36 +02:00
Acly 0a9b43e507
vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
Jeff Bolz 330c3d2d21
vulkan: optimize mul_mat_id loading row ids into shared memory (#15427)
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
2025-08-23 08:31:54 +02:00
Reese Levine 45363632cb
ggml WebGPU: add support for quantization types (#15440)
* Begin work on set_rows

* Work on set rows

* Add error buffers for reporting unsupported SET_ROWS indices

* Remove extra comments

* Work on templating for different types in shaders

* Work on shader type generation

* Working q4_0 mul_mat and some templating for different types

* Add q4_0_f16 matmul and fix device init

* Add matmul support for basic quantization types

* Add q2_k and q3_k quantization

* Add rest of k-quants

* Get firt i-quant working

* Closer to supporting all i-quants

* Support rest of i-quants

* Cleanup code

* Fix python formatting

* debug

* Bugfix for memset

* Add padding to end of buffers on creation

* Simplify bit-shifting

* Update usage of StringView
2025-08-22 11:28:03 -07:00
rmatif 92f7f0a53c
ggml: add `conv3d` op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Yavor Ivanov b1ab91821f
cuda : add Pad Reflect 1D support (#14659)
* Add Pad Reflect 1D CUDA support

* Update ggml/src/ggml-cuda/pad_reflect_1d.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-22 13:06:29 +02:00
Aaron Teo ad5c975c2d
ggml-cpu: Support Q5_0 and Q5_1 on s390x (#15486)
* ggml-cpu: initial q5_0 impl for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: updated q5_0 code for better performance

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: use optimised hsum for better performance

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: introduce q5_1 simd + refactor q5_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix incorrect return type vec_hsum

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: q5_0 incomplete refactor + table_b2b_0 activation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: refactor q5_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: q5_1 update loop unroll to 4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update q5_0 unroll to 4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update build-s390x docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: update unused variables q5_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: update the last update date

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-08-22 16:11:04 +08:00
Chenguang Li a0f98dd604
CANN: Optimize RMS_NORM using cache (#15419)
* [CANN] Optimize RMS_NORM using cache

Signed-off-by: noemotiovon <757486878@qq.com>

* fix typo

Signed-off-by: noemotiovon <757486878@qq.com>

* fix review comment

Signed-off-by: noemotiovon <757486878@qq.com>

* codestyle adjustment

Signed-off-by: noemotiovon <757486878@qq.com>

---------

Signed-off-by: noemotiovon <757486878@qq.com>
2025-08-22 14:12:07 +08:00
Diego Devesa 54a241f505
sched : fix possible use of wrong ids tensor when offloading moe prompt processing (#15488) 2025-08-21 23:09:32 +02:00
Acly 97ae5961a4
vulkan : support conv_2d_dw with f16 weights (#15392) 2025-08-21 17:01:51 +02:00