Commit Graph

67 Commits

Author SHA1 Message Date
Daniel Bevenius d3dce4e0a5
sampling : add support for backend sampling (#17004)
* sampling : add support for backend sampling

This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.

The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.

For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.

It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.

Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.

* llama-cli : add backend sampler configuration

* server : add backend sampling options/configuration

* webui : add backend sampling options

* ggml : add initial cumsum implementation for CUDA

* sampling : enable all backend sampler tests

This commit enables all exisiting backend sampler tests in the
test-backend-sampler. Previously, some tests were disabled because
there were missing ggml operation implementations.

* graph : do not include llama-model.h

* sampling : always expose sampled_ids

This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.

The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.

Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.

* sampling : ensure at most one output token per seq

This commit adds a check in the batch allocator to ensure that when
backend sampling is enabled, at most one output token is specified per
sequence.

* CUDA: Optimize argsort for gpu-based token sampling

Argsort is used for top-k currently. WE optimize argsort by 2 things:

1. Use `DeviceRadixSort` for single-row/sequence to parallelize it
   across our SMs
2. Use `DeviceSegmentedSort` for multi-row/sequence as this is the
   correct entrypoint (the function chooses different execution paths,
   it contains `DeviceSegmentedRadixSort` as one of the paths and will
   choose the best one according to heuristics.
   https://nvidia.github.io/cccl/cub/api/structcub_1_1DeviceSegmentedSort.html#overview

Some perf numbers for a RTX PRO 6000:

On the kernel level, tested with
`GGML_CUDA_DISABLE_GRAPHS=1 ./test-backend-ops -o ARGSORT perf`
Before:
```
  ARGSORT(type=f32,ne=[65000,16,1,1],order=0):                  4130 runs -   359.24 us/run
  ARGSORT(type=f32,ne=[200000,1,1,1],order=0):                  8192 runs -   861.34 us/run
  ARGSORT(type=f32,ne=[200000,16,1,1],order=0):                 1343 runs -  1020.01 us/run
```

After:
```
  ARGSORT(type=f32,ne=[65000,16,1,1],order=0):                  4130 runs -   312.41 us/run
  ARGSORT(type=f32,ne=[200000,1,1,1],order=0):                 16384 runs -    63.48 us/run
  ARGSORT(type=f32,ne=[200000,16,1,1],order=0):                 1343 runs -   874.36 us/run
```

---
On the model level, tested with
`llama-cli -m gpt-oss-20b-mxfp4.gguf -n 200 -p "What is
the Capital of Sweden?" -no-cnv -fa 1 --backend-sampling`

Before:
```
llama_perf_sampler_print:    sampling time =       0.25 ms /   207 runs   (    0.00 ms per token, 824701.20 tokens per second)
llama_perf_context_print:        load time =   18215.58 ms
llama_perf_context_print: prompt eval time =      28.20 ms /     7 tokens (    4.03 ms per token,   248.19 tokens per second)
llama_perf_context_print:        eval time =     714.79 ms /   199 runs   (    3.59 ms per token,   278.40 tokens per second)
llama_perf_context_print:       total time =     857.62 ms /   206 tokens
```

After
```
llama_perf_sampler_print:    sampling time =       0.25 ms /   207 runs   (    0.00 ms per token, 828000.00 tokens per second)
llama_perf_context_print:        load time =   18366.92 ms
llama_perf_context_print: prompt eval time =      35.92 ms /     7 tokens (    5.13 ms per token,   194.87 tokens per second)
llama_perf_context_print:        eval time =     532.79 ms /   199 runs   (    2.68 ms per token,   373.50 tokens per second)
llama_perf_context_print:       total time =     683.65 ms /   206 tokens
```

* sampling : remove version from sampler chain

This commit removes the version field from the sampler chain and instead
used the sampler pointer itself for change detection.

* sampling : always populate logits for sampled probs

This commit updates common/sampler.cpp set_logits and
src/llama-sampling.cpp llama_sampler_sample to always populate the
logits field when backend sampled probabilities are available.

The motivation for this is that this ensure that CPU sampler always have
access to the logits values even when probabilites have been produced by
backend samplers.

* sampling : simplify backend sampling logic decode

This commit tries to simplify the backend sampling logic in
llama_context::decode.

* squash! sampling : simplify backend sampling logic decode

Fix condition to check if backend actually sampled tokens, not just that
backend samplers are available.

* common : fix regression caused by extra memory allocations during sampling

* squash! sampling : simplify backend sampling logic decode

The commit fixes a variable shadowing issue in the
`llama_context::decode` function which was introduced in a previous
refactoring.

* squash! common : fix regression caused by extra memory allocations during sampling

Apply the same changes to llama-sampling.cpp, llama_sampler_sample as
were applied in commit 38f408c25.

* sampling : introduce sampling_info struct

This commit introduces a sampling_info struct to encapsulate all
backend sampling related data within the llama_context class.

It also updates to use more descriptive names for sampled tokens and
candidates in the backend sampler ggml data structure.

* sampling : return early if backend sampling is disabled

* sampling : use pinned memory for backend sampling buffers

* common, tools : refactor model loading to support backend samplers

This commit refactors the model loading process in common/common.cpp
to enable backend sampler to be configure prior to the llama_context
creation.

The motivation for this change is that just being able to set/reset the
backend samplers after the llama_context has been created will cause a
resize to occur in llama_context::output_reserve which we want to avoid.

* sampling : add stride variable for clarity

* sampling: clarify candidate ids usage in comments

* sampling : fix copying both sampled tokens and logits/probs from backend

This commit fixes the issue where both sampled tokens and logits/probs
were not being copied correctly from the backend to the host when
multiple backend samplers were used.

A test for this scenario has also been added to ensure that both types
of data are copied correctly when different backend samplers are
employed.

* tests : cleanup test-backend-sampler.cpp

* common : remove build-info.cpp from commit [no ci]

This file was generated during the build process and should not be
included in previous commits.

* sampling : cleanup and clarify output_reserve

* sampling : remove redundant checks for stride and size [no ci]

* sampling : add debug log when backend sampler selects token

This commit adds a debug log statement in the llama_sampler_sample
to indicate when a backend sampler has selected a token for a given
index.

The modification helps in tracing the sampling process and understanding
the flow of control when backend samplers are used.

* examples : update batched to use backend sampling

This commit updates the batched example to demonstrate how to use
backend samplers.

* llama-cli : fix dangling reference to sampler config

* common : initialize backend samplers

* samplers : add missing cont

* sampling : add assertions for contiguous tensors in async copy functions

* examples : add info about hybrid sampling in batched [no ci]

* sampling : remove backend-dist option (wip)

This commit removes the `--backend-dist` option and instead uses the
configured --samplers chain to determine which samplers run on the
backend.

Backend sampling is still enabled using With `--backend_sampling`, and
the sampler chain, either explictly specified using `--samplers` or the
default, is automatically analyzed to determine which samplers can run
on the backend. The system finds the longest contiguous chain of
backend supported samplers from the start of the sampler sequence.
For example:

* If the chain is `top-k -> temperature -> top-p`, and both `top-k` and
  `temperature` are backend-supported but `top-p` is not, then `top-k`
  and `temperature` will run on the backend, while `top-p` and
  subsequent samplers run on the CPU.

* If all configured samplers are supported, the final distribution
  sampling will also happen on the backend, transferring only the
  sampled token IDs back to the host.

* If the sampler chain starts with an unsupported sampler (e.g.,
  `penalties`), all sampling runs on the CPU. Note that this is
  currently the case with the default sampler so to use backend sampling
  it is required to specify a sampler chain. See below for an example.

The following shows how llama-cli can be run with backend sampling:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
    --prompt 'What is the capital of Sweden?' \
    -n 20 \
    -no-cnv \
    --verbose-prompt \
    -ngl 40 \
    --backend-sampling \
    --samplers 'top_k;temperature'
```
In this case the all sampling will happen on the backend since both
`top_k` and `temperature` are supported backend samplers.

To enable a partial backend sampling (hybrid sampling), for example
running `top_k` and `temperature` on the backend and `typ_p` on the CPU
the following sampler chain could be specified:
```console
$ llama-cli -m models/Qwen2.5-VL-3B-Instruct-Q8_0.gguf \
    --prompt 'What is the capital of Sweden?' \
    -n 20 \
    -no-cnv \
    --verbose-prompt \
    -ngl 40 \
    --backend-sampling \
    --samplers 'top_k;temperature;top_p'
```

If this looks good then I'll follow up with updates the llama-cli and
llama-server documentation to reflect these changes.

* CUDA: Add top-k implementation

* sampling : add min-p backend sampler

* Use `FetchContent` over CPM as it's bundled with CMake

Thanks @ggerganov for the suggestion

* common : add get_active_samplers function to check enabled samplers

This commit adds a function to check if a sampler is actually enabled,
meaning that it does not have values that disables its effect. This is
then used by the backend samplers initialization to avoid considering
samplers that are not enabled when determining the split point between
them.

The motivation for this is that this allows the default sampler chain
for `--samplers` to be used and any sampler that is not enabled will not
cause the backend samplers to be skipped.
For example, before this change if the penalties sampler was included in
the samplers list but had default values that disable it, it would cause
the backend samplers to be skipped entirely.

This commit also contains some refactoring to remove some code
duplication.

* cuda : fix editorconfig-checker warning

* sampling : use argmax for min-p sampling

* sampling : fix temperature check to allow zero temperature

This commit modifies the temperature sampling check to allow a
temperature value of zero. Previously, the check only allowed
positive temperature values, which excluded the valid case of
zero temperature.

The motivation for this is to enable a zero temperature setting which is
also currently causing the following test to fail:
```console
(venv) $ cd tools/server/tests
(venv) $ ./tests.sh unit/test_basic.py::test_load_split_model
```

* cuda : fix top-k compilation when CUB is unavailable

This commit adds a macro guard around argsort_f32_i32_cuda_cub usage
in the top-k fallback path, falling back to bitonic sort when
GGML_CUDA_USE_CUB is not defined.

The motivation for this is that some environments like AMD HIP
do not have CUB available, causing compilation failure.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/19728226426/job/56523606840#step:6:208

* sampling : add comments about backend sampler [no ci]

This commit adds a comment to llama_context's constructor explaining why
backend samplers are initialized early in the process.

* sampling : remove backend sampling chain from common_sampler

This commit removes the backend sampling chain from the common_sampler
structure and related functions.

The motivation for this change is that the backend samplers are not
currently set on the context, and if they are they would cause the
a graph reallocation to occur. Instead, the intialization is handled
like it currently is by llama_context's constructor.

* Fix top-k comp & behavior for non-CUB path

Some changes were made in 5ea3be265b
which were incomplete. In the case of non-CUB, bitonic sort and its
limitations of ncols < 1024 have to apply, similar to argsort.cu

* sampling : support intermixed backend/cpu samplers

This commit updates the backend sampling implementation to support
intermixed usage of backend and CPU samplers within the same batch.

The initial implementation was developed as an all-or-nothing solution:
either perform backend sampling for the entire batch, or perform CPU
sampling for the entire batch.

The motivation for this change is to support batches with mixed
sequences. For example, we may have a backend sampler configured for
sequence 0, while sequence 1 in the same batch uses CPU sampling. This
was not supported in the initial implementation.

This issue manifested in llama-server with the webui: decoding with
backend samplers would work initially, but after changing to CPU
sampling, a slot (sequence) could still be using a backend sampler.
This meant that logits in output_reserve would not be allocated,
resulting in an error.

The solution in this commit inspects the batch to determine which
sampling modes are needed and allocates buffers accordingly. However,
there is a known inefficiency: when we have intermixed backend/CPU
samplers in the same batch, we currently copy all logits to the host,
even for sequences using backend samplers.

Added test_backend_cpu_mixed_batch to verify correct behavior with
mixed backend/CPU samplers in a single batch, including dynamic
sampler switching between decode calls.

* squash! sampling : support intermixed backend/cpu samplers

Add check that logits is not null which is can happen for embeddings.

* squash! sampling : support intermixed backend/cpu samplers

Fix llama-save-load-state which currently fails by handling the case
when batch.logits is nullptr (like when loading state) by allocating
space for all outputs as CPU logits.

* refactor : simplify and improve memory management

* Add initial version for top-p sampling

As we only support static graphs for the time and we don't know the size
of the output of top-p, we have to do value-scaling same as for min-p
operator.

Further improvements can be applied to the unit-test (i.e. check for
equivalence of top_p happening on backend with top_p happening on cpu)
and also by constructing candidates and sorting those as opposed to
reversing the sort of the logits (this would be arange +
get_rows instead of argsort + get_rows)

* sampling : use logits directly for min-p filtering

* sampling : simplify

* llama : simplify

* llama : cleanup + naming

* llama : call backend_init once

* llama : reserve graphs with samplers

* llama : naming

* cont : naming

* sampling : lower log level for output buffer reallocations [no ci]

This commit changes the logging level for output buffer reallocations
in the llama_context::output_reserve function from INFO to DEBUG.

The motivation for this is that it currently logs to info and when
enabling verbose logging for llama-cli this will get mixed with the
output, for example:

```console
What is the capital of Sweden?output_reserve: reallocating output buffer from size 0.58 MiB to 1.74 MiB
 1. Stockholm
2\. Helsinki
Based are the options
1. Stockholm
Explanation: Stockholm is the capital of
...
```

* Fix backend_top_p_sampler

softmax(softmax) will return uniform distribution, so we should not
return the softmax but the logits instead.

* Factor out `ggml_sort` into its own function

* Make backend's top_p sampler inclusive

In addition to match the algorithm proposed in the original
[paper](https://arxiv.org/abs/1904.09751), this resolves the edge-case
where `max_p is > top_p` for a single logit, where the mask would
otherwise be empty (and we thus sample from the whole vocabulary with
equal likelihood)

* common : simplify sampler chain initialization

* sampling : do not create empty samplers

* sampling : fix top_p empty condition

* examples : remove outdated backend sampling section

This commit removes the outdated section about using backend samplers
from the README.md file in the examples/batched.

* sampling : fix backend temp sampler for zero temperature

This commit fixes the implementation of the temperature-based sampler
for the case when the temperature is set to zero. This now correctly
selects the most probable token by masking out all other tokens in the
logits.

* CUDA: Move cccl fetch to after cuda has been enabled in CMakeLists.txt

This will allow cccl to set build flags for the CUDA compiler, required
e.g. for MSVC compat, see also
https://github.com/NVIDIA/cccl/pull/6791

* CUDA: Use standard-compliant preprocessor for MSVC builds

Workarounds of https://github.com/NVIDIA/cccl/pull/6791 will not be
backported to CCCL 3.2, only the diagnostics/error messages will:
https://github.com/NVIDIA/cccl/pull/6827

* CUDA: Update CCCL's rc candidate

* squash! sampling : fix backend temp sampler for zero temperature

This modifies the parent commit to simply return the most probably token
instead of masking the logits.

* sampling : implement temp_ext_backend sampling

This commit implements the apply function for the extended temperature
sampling.

* sampling : minor cleanup

* sampling : stop short if backend sampler sampled a token

This commit modifies the graph building logic to immediately continue
when a token has already been sampled by the backend sampler.

It also updates the test for backend temporary sampling to include
top-k and distribution samplers in the chain to verify that they are not
producing any logits (they are not run).

* Revert "sampling : stop short if backend sampler sampled a token"

This reverts commit 87b2719eca.

* sampling : fix backend temp sampling to use logits masking

* sampling : simplify temp sampling

* sampling : remove redundant calls to ggml_build_forward_expand

* sampling : check backend support during init

* cont : keep backend sampling disabled for now

* sampling : fix outputs and device checks

* sampling : fix candidates logic

* Add perf-tests for CUMSUM

* Readd `cub::DeviceScan::InclusiveSum`-based CumSum

For single rows and large columns doing a for-loop over the function
`cub::DeviceScan::InclusiveSum` offered by CUB outperforms the
`cumsum_cub_kernel` where `cub::BlockScan` is used.

Numbers before this change

  Backend 1/3: CUDA0
  Device description: NVIDIA RTX 6000 Ada Generation
  Device memory: 48510 MB (48039 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  311258 runs -     3.26 us/run -     2048 kB/run -  599.76 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  229390 runs -     4.40 us/run -     5120 kB/run - 1110.23 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  37583 runs -    29.63 us/run -     6250 kB/run -  201.18 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    892819 runs -     1.12 us/run -        1 kB/run -    0.85 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   450505 runs -     2.25 us/run -        8 kB/run -    3.39 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   155629 runs -     6.61 us/run -       32 kB/run -    4.62 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                    81910 runs -    12.60 us/run -       64 kB/run -    4.85 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                   49146 runs -    23.99 us/run -      128 kB/run -    5.09 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                   24573 runs -    47.10 us/run -      256 kB/run -    5.18 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                   16382 runs -    93.57 us/run -      512 kB/run -    5.22 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                   8191 runs -   184.79 us/run -     1024 kB/run -    5.29 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                   8191 runs -   280.43 us/run -     1562 kB/run -    5.31 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                  2148 runs -  2771.23 us/run -    15625 kB/run -    5.38 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    458696 runs -     2.21 us/run -        4 kB/run -    1.73 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   360404 runs -     2.82 us/run -       32 kB/run -   10.83 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   147438 runs -     7.12 us/run -      128 kB/run -   17.15 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    81910 runs -    12.90 us/run -      256 kB/run -   18.92 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   49146 runs -    24.32 us/run -      512 kB/run -   20.08 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   24573 runs -    47.28 us/run -     1024 kB/run -   20.66 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   16382 runs -    93.21 us/run -     2048 kB/run -   20.96 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                   8191 runs -   185.04 us/run -     4096 kB/run -   21.11 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                   5369 runs -   282.08 us/run -     6250 kB/run -   21.13 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                   537 runs -  2806.46 us/run -    62500 kB/run -   21.26 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    458696 runs -     2.20 us/run -        8 kB/run -    3.47 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   360404 runs -     2.82 us/run -       64 kB/run -   21.66 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   147438 runs -     7.12 us/run -      256 kB/run -   34.28 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    81910 runs -    12.90 us/run -      512 kB/run -   37.84 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   49146 runs -    24.32 us/run -     1024 kB/run -   40.15 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    47.28 us/run -     2048 kB/run -   41.31 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    93.20 us/run -     4096 kB/run -   41.92 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                   8194 runs -   185.05 us/run -     8192 kB/run -   42.22 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                   5370 runs -   282.15 us/run -    12500 kB/run -   42.26 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                   269 runs -  4067.61 us/run -   125000 kB/run -   29.36 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   303067 runs -     3.32 us/run -       16 kB/run -    4.60 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  303067 runs -     3.32 us/run -      128 kB/run -   36.76 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  147438 runs -     7.17 us/run -      512 kB/run -   68.13 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   81910 runs -    12.90 us/run -     1024 kB/run -   75.68 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  49146 runs -    24.33 us/run -     2048 kB/run -   80.28 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    47.30 us/run -     4096 kB/run -   82.59 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -    93.24 us/run -     8192 kB/run -   83.80 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                  6147 runs -   185.07 us/run -    16384 kB/run -   84.45 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                  4029 runs -   282.40 us/run -    25000 kB/run -   84.46 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                  270 runs -  4118.40 us/run -   250000 kB/run -   58.11 GB/s
  Backend CUDA0: OK
Backend 2/3: CUDA1
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96677 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  368595 runs -     2.73 us/run -     2048 kB/run -  715.83 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  216282 runs -     4.72 us/run -     5120 kB/run - 1035.32 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  32214 runs -    34.33 us/run -     6250 kB/run -  173.64 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    810909 runs -     1.24 us/run -        1 kB/run -    0.77 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   401359 runs -     2.52 us/run -        8 kB/run -    3.03 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   139247 runs -     7.44 us/run -       32 kB/run -    4.10 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                    73719 runs -    14.27 us/run -       64 kB/run -    4.28 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                   40955 runs -    27.24 us/run -      128 kB/run -    4.48 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                   24573 runs -    53.46 us/run -      256 kB/run -    4.57 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                   16382 runs -   105.29 us/run -      512 kB/run -    4.64 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                   8191 runs -   210.15 us/run -     1024 kB/run -    4.65 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                   8191 runs -   318.22 us/run -     1562 kB/run -    4.68 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                  2148 runs -  3142.23 us/run -    15625 kB/run -    4.74 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    303067 runs -     3.34 us/run -        4 kB/run -    1.14 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   253921 runs -     4.03 us/run -       32 kB/run -    7.58 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    73719 runs -    14.96 us/run -      256 kB/run -   16.32 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   40955 runs -    28.66 us/run -      512 kB/run -   17.04 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   24573 runs -    54.21 us/run -     1024 kB/run -   18.01 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   16382 runs -   106.49 us/run -     2048 kB/run -   18.34 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                   8191 runs -   210.88 us/run -     4096 kB/run -   18.52 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                   5369 runs -   321.77 us/run -     6250 kB/run -   18.53 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                   537 runs -  3191.79 us/run -    62500 kB/run -   18.69 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    376786 runs -     2.67 us/run -        8 kB/run -    2.86 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   245730 runs -     4.10 us/run -       64 kB/run -   14.90 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   122865 runs -     8.20 us/run -      256 kB/run -   29.79 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    65528 runs -    16.38 us/run -      512 kB/run -   29.82 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   40955 runs -    28.69 us/run -     1024 kB/run -   34.04 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    55.28 us/run -     2048 kB/run -   35.33 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -   108.50 us/run -     4096 kB/run -   36.00 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                   8194 runs -   213.75 us/run -     8192 kB/run -   36.55 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                   5370 runs -   326.31 us/run -    12500 kB/run -   36.54 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                   538 runs -  3252.68 us/run -   125000 kB/run -   36.72 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   303067 runs -     3.32 us/run -       16 kB/run -    4.60 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  253921 runs -     4.06 us/run -      128 kB/run -   30.09 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  122865 runs -     8.20 us/run -      512 kB/run -   59.57 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   65528 runs -    16.38 us/run -     1024 kB/run -   59.63 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    28.69 us/run -     2048 kB/run -   68.09 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    55.28 us/run -     4096 kB/run -   70.67 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -   108.50 us/run -     8192 kB/run -   72.02 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                  6147 runs -   213.60 us/run -    16384 kB/run -   73.17 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                  4029 runs -   326.04 us/run -    25000 kB/run -   73.15 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                  270 runs -  5458.69 us/run -   250000 kB/run -   43.84 GB/s

----
Numbers after:

Backend 1/3: CUDA0
  Device description: NVIDIA RTX 6000 Ada Generation
  Device memory: 48510 MB (48039 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  311258 runs -     3.25 us/run -     2048 kB/run -  601.62 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  229390 runs -     4.40 us/run -     5120 kB/run - 1110.14 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  37583 runs -    29.67 us/run -     6250 kB/run -  200.89 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    892819 runs -     1.12 us/run -        1 kB/run -    0.85 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   458696 runs -     2.21 us/run -        8 kB/run -    3.45 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   376786 runs -     2.66 us/run -       32 kB/run -   11.46 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                   393168 runs -     2.59 us/run -       64 kB/run -   23.57 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                  393168 runs -     2.59 us/run -      128 kB/run -   47.15 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                  376786 runs -     2.69 us/run -      256 kB/run -   90.69 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                  327640 runs -     3.06 us/run -      512 kB/run -  159.65 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                 311258 runs -     3.28 us/run -     1024 kB/run -  297.77 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                 270303 runs -     3.74 us/run -     1562 kB/run -  398.14 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                137472 runs -     7.35 us/run -    15625 kB/run - 2026.94 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    876437 runs -     1.14 us/run -        4 kB/run -    3.33 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   442314 runs -     2.28 us/run -       32 kB/run -   13.39 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   155629 runs -     6.69 us/run -      128 kB/run -   18.24 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    81910 runs -    12.53 us/run -      256 kB/run -   19.49 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   49146 runs -    24.18 us/run -      512 kB/run -   20.20 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   65528 runs -    15.34 us/run -     1024 kB/run -   63.66 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   73719 runs -    14.76 us/run -     2048 kB/run -  132.35 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                  65528 runs -    16.01 us/run -     4096 kB/run -  244.07 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                  64428 runs -    16.51 us/run -     6250 kB/run -  360.97 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                 33831 runs -    29.59 us/run -    62500 kB/run - 2016.08 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    868246 runs -     1.16 us/run -        8 kB/run -    6.59 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   442314 runs -     2.28 us/run -       64 kB/run -   26.76 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   155629 runs -     6.69 us/run -      256 kB/run -   36.48 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    81910 runs -    12.53 us/run -      512 kB/run -   38.97 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   49146 runs -    24.17 us/run -     1024 kB/run -   40.41 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    47.53 us/run -     2048 kB/run -   41.10 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    61.25 us/run -     4096 kB/run -   63.77 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                  32776 runs -    31.79 us/run -     8192 kB/run -  245.82 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                  32220 runs -    32.90 us/run -    12500 kB/run -  362.35 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                  6725 runs -   151.99 us/run -   125000 kB/run -  785.77 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   851864 runs -     1.18 us/run -       16 kB/run -   12.97 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  442314 runs -     2.30 us/run -      128 kB/run -   53.13 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  155629 runs -     6.68 us/run -      512 kB/run -   73.13 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   81910 runs -    12.68 us/run -     1024 kB/run -   77.00 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    24.56 us/run -     2048 kB/run -   79.53 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    47.52 us/run -     4096 kB/run -   82.21 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -    93.44 us/run -     8192 kB/run -   83.62 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                 16392 runs -    63.36 us/run -    16384 kB/run -  246.68 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                 16116 runs -    65.25 us/run -    25000 kB/run -  365.53 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                 3375 runs -   304.46 us/run -   250000 kB/run -  785.98 GB/s
  Backend CUDA0: OK
Backend 2/3: CUDA1
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96677 MB free)

  CUMSUM(type=f32,ne=[128,128,4,4]):                  376786 runs -     2.69 us/run -     2048 kB/run -  727.04 GB/s
  CUMSUM(type=f32,ne=[2048,16,5,4]):                  216282 runs -     4.64 us/run -     5120 kB/run - 1053.30 GB/s
  CUMSUM(type=f32,ne=[20000,10,4,1]):                  32214 runs -    34.21 us/run -     6250 kB/run -  174.27 GB/s
  CUMSUM(type=f32,ne=[128,1,1,1]):                    819100 runs -     1.22 us/run -        1 kB/run -    0.78 GB/s
  CUMSUM(type=f32,ne=[1024,1,1,1]):                   409550 runs -     2.47 us/run -        8 kB/run -    3.09 GB/s
  CUMSUM(type=f32,ne=[4096,1,1,1]):                   303067 runs -     3.31 us/run -       32 kB/run -    9.21 GB/s
  CUMSUM(type=f32,ne=[8192,1,1,1]):                   237539 runs -     4.33 us/run -       64 kB/run -   14.08 GB/s
  CUMSUM(type=f32,ne=[16384,1,1,1]):                  237539 runs -     4.33 us/run -      128 kB/run -   28.17 GB/s
  CUMSUM(type=f32,ne=[32768,1,1,1]):                  188393 runs -     5.37 us/run -      256 kB/run -   45.47 GB/s
  CUMSUM(type=f32,ne=[65536,1,1,1]):                  188393 runs -     5.41 us/run -      512 kB/run -   90.20 GB/s
  CUMSUM(type=f32,ne=[131072,1,1,1]):                 188393 runs -     5.41 us/run -     1024 kB/run -  180.41 GB/s
  CUMSUM(type=f32,ne=[200000,1,1,1]):                 188393 runs -     5.41 us/run -     1562 kB/run -  275.27 GB/s
  CUMSUM(type=f32,ne=[2000000,1,1,1]):                128880 runs -     7.76 us/run -    15625 kB/run - 1920.33 GB/s
  CUMSUM(type=f32,ne=[128,4,1,1]):                    802718 runs -     1.26 us/run -        4 kB/run -    3.03 GB/s
  CUMSUM(type=f32,ne=[1024,4,1,1]):                   401359 runs -     2.51 us/run -       32 kB/run -   12.18 GB/s
  CUMSUM(type=f32,ne=[4096,4,1,1]):                   139247 runs -     7.51 us/run -      128 kB/run -   16.26 GB/s
  CUMSUM(type=f32,ne=[8192,4,1,1]):                    73719 runs -    14.17 us/run -      256 kB/run -   17.23 GB/s
  CUMSUM(type=f32,ne=[16384,4,1,1]):                   40955 runs -    27.37 us/run -      512 kB/run -   17.84 GB/s
  CUMSUM(type=f32,ne=[32768,4,1,1]):                   40955 runs -    26.33 us/run -     1024 kB/run -   37.10 GB/s
  CUMSUM(type=f32,ne=[65536,4,1,1]):                   40955 runs -    26.19 us/run -     2048 kB/run -   74.59 GB/s
  CUMSUM(type=f32,ne=[131072,4,1,1]):                  40955 runs -    26.35 us/run -     4096 kB/run -  148.26 GB/s
  CUMSUM(type=f32,ne=[200000,4,1,1]):                  42952 runs -    24.18 us/run -     6250 kB/run -  246.51 GB/s
  CUMSUM(type=f32,ne=[2000000,4,1,1]):                 32757 runs -    31.01 us/run -    62500 kB/run - 1923.68 GB/s
  CUMSUM(type=f32,ne=[128,8,1,1]):                    786336 runs -     1.28 us/run -        8 kB/run -    5.95 GB/s
  CUMSUM(type=f32,ne=[1024,8,1,1]):                   393168 runs -     2.57 us/run -       64 kB/run -   23.73 GB/s
  CUMSUM(type=f32,ne=[4096,8,1,1]):                   131056 runs -     7.67 us/run -      256 kB/run -   31.82 GB/s
  CUMSUM(type=f32,ne=[8192,8,1,1]):                    73719 runs -    14.43 us/run -      512 kB/run -   33.84 GB/s
  CUMSUM(type=f32,ne=[16384,8,1,1]):                   40955 runs -    27.90 us/run -     1024 kB/run -   35.01 GB/s
  CUMSUM(type=f32,ne=[32768,8,1,1]):                   24573 runs -    54.63 us/run -     2048 kB/run -   35.75 GB/s
  CUMSUM(type=f32,ne=[65536,8,1,1]):                   16382 runs -    72.24 us/run -     4096 kB/run -   54.08 GB/s
  CUMSUM(type=f32,ne=[131072,8,1,1]):                  20485 runs -    52.66 us/run -     8192 kB/run -  148.37 GB/s
  CUMSUM(type=f32,ne=[200000,8,1,1]):                  21480 runs -    48.00 us/run -    12500 kB/run -  248.42 GB/s
  CUMSUM(type=f32,ne=[2000000,8,1,1]):                 16140 runs -    61.99 us/run -   125000 kB/run - 1926.51 GB/s
  CUMSUM(type=f32,ne=[128,16,1,1]):                   786336 runs -     1.28 us/run -       16 kB/run -   11.90 GB/s
  CUMSUM(type=f32,ne=[1024,16,1,1]):                  393168 runs -     2.57 us/run -      128 kB/run -   47.57 GB/s
  CUMSUM(type=f32,ne=[4096,16,1,1]):                  131056 runs -     7.65 us/run -      512 kB/run -   63.83 GB/s
  CUMSUM(type=f32,ne=[8192,16,1,1]):                   73719 runs -    14.42 us/run -     1024 kB/run -   67.74 GB/s
  CUMSUM(type=f32,ne=[16384,16,1,1]):                  40955 runs -    27.87 us/run -     2048 kB/run -   70.09 GB/s
  CUMSUM(type=f32,ne=[32768,16,1,1]):                  24573 runs -    54.54 us/run -     4096 kB/run -   71.63 GB/s
  CUMSUM(type=f32,ne=[65536,16,1,1]):                  12291 runs -   107.53 us/run -     8192 kB/run -   72.66 GB/s
  CUMSUM(type=f32,ne=[131072,16,1,1]):                 10245 runs -   105.10 us/run -    16384 kB/run -  148.70 GB/s
  CUMSUM(type=f32,ne=[200000,16,1,1]):                 10744 runs -    95.36 us/run -    25000 kB/run -  250.11 GB/s
  CUMSUM(type=f32,ne=[2000000,16,1,1]):                 5400 runs -   186.97 us/run -   250000 kB/run - 1279.90 GB/s

* sampling : expand support (wip)

* tests : fix memory leaks

* cont : fixes

* tests : check temp back to 0.0

* sampling : fix top-p

* sampling : handle n_probs case

* server : handle unsupported cases

* metal : print node names for debugging

* ggml : remove redundant src in ggml_cast

* ggml-alloc : fix reuse-parent logic for misaligned sizes

* Revert "ggml : remove redundant src in ggml_cast"

This reverts commit 62d1b0082d.

* CUDA: Add Cooperative-Groups-based parallelization of ncols in softmax

Old implementation parallelizes rows across SMs, which does not fit the
needs of backend-sampling (where we have ncols >> nrows and thus want to
parallelize ncols across SMs)

* Add TODOs to and adjust heuristics of row-wise soft_max in CUDA

Heuristics were selected based on the following numbers:

```
-- Before
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.34 us/run -   655360 kB/run - 1401.20 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.80 us/run -   128880 kB/run - 2168.19 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.57 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.45 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.20 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.99 us/run -      640 kB/run -  101.84 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.97 us/run -      770 kB/run -  123.02 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.00 us/run -       64 kB/run -   10.16 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.91 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.88 us/run -     1024 kB/run -  141.92 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.87 us/run -      512 kB/run -   55.06 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    21.37 us/run -      256 kB/run -   11.43 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.92 us/run -     4096 kB/run -  163.32 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 32764 runs -    38.94 us/run -      512 kB/run -   12.54 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 24573 runs -    41.94 us/run -     2048 kB/run -   46.57 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.09 us/run -     8192 kB/run -  181.32 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    74.56 us/run -     1024 kB/run -   13.10 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    79.85 us/run -     4096 kB/run -   48.92 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.41 us/run -    16384 kB/run -  189.64 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   145.16 us/run -     2048 kB/run -   13.46 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8194 runs -   155.46 us/run -     8192 kB/run -   50.26 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                7175 runs -   160.70 us/run -    32768 kB/run -  194.56 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   285.81 us/run -     4096 kB/run -   13.67 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 4098 runs -   306.91 us/run -    16384 kB/run -   50.92 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                3591 runs -   317.06 us/run -    65536 kB/run -  197.32 GB/s

-- After
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.67 us/run -   655360 kB/run - 1400.15 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.97 us/run -   128880 kB/run - 2161.50 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.36 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.42 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.21 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     7.00 us/run -      640 kB/run -   87.26 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     6.99 us/run -      770 kB/run -  105.05 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.02 us/run -       64 kB/run -   10.13 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.87 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.91 us/run -     1024 kB/run -  141.40 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.79 us/run -      512 kB/run -   55.54 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                131056 runs -     8.11 us/run -      256 kB/run -   30.12 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.32 us/run -     4096 kB/run -  167.50 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.19 us/run -      512 kB/run -   59.63 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 40955 runs -    24.59 us/run -     2048 kB/run -   79.43 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.21 us/run -     8192 kB/run -  180.84 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.19 us/run -     1024 kB/run -  119.25 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                40955 runs -    24.59 us/run -     4096 kB/run -  158.87 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.37 us/run -    16384 kB/run -  189.74 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.20 us/run -     2048 kB/run -  238.28 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                36873 runs -    28.66 us/run -     8192 kB/run -  272.61 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                9225 runs -   108.51 us/run -    32768 kB/run -  288.13 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     4096 kB/run -  381.65 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                32784 runs -    31.74 us/run -    16384 kB/run -  492.43 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                8721 runs -   121.20 us/run -    65536 kB/run -  516.19 GB/s
```

* Fix compiler warnings by casting `const` away

* llama : require backend samplers to be of type llama_sampler_chain

* sampling : use host buffer type for inputs

* Try fixing HIP build errors by adding corresponding #defines

Will likely have to disable for MUSA as I didn't find any docs online

* Fix launch logic when supports_cooperative_launch=false

* Disable cooperative groups for musa

Didn't find any doc online, so I don't even know if they support this

* server : reconnect the backend_sampling setting in the WebUI

* graph : make the compute graph constant with respect to active samplers

* batch : fix sequence id ownage

* graph : respect sampler order for graph reuse

* HIP/MUSA: fix build for backend sampling

* sampling : optimize logit_bias sampler

* cont : fix build

* sampling : generic ggml op support detection

* sampling : fix greedy

* tests : run backend sampler tests always on the CPU

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* webui : fix lint

* Fix data-race in `soft_max_f32_parallelize_cols_single_row`

By using `tmp_vals` to store both max values and exponential
accumulator there was a potential data-race, where the exponential accumulator
for a given CTA may have written to `tmp_vals` before all others CTAs have
read the max value from it.

To avoid a third g.sync(), an additional temporary data-storage was
added. Given that there are syncs in place after writing to gmem, it is
guaranteed that the previous values for sums/max were read by all CTAs now.

* Apply automated code-formating to softmax.cu

* llama : clarify backend_accept/backend_set_input comments [no ci]

* llama : fix typo in comment [no ci]

* tests : use smart pointers for backend samplers

* tests : use smart pointers for model and context

* tests : remove vocab member from test_model_context

Also includes some minor cleanups related to nullptr checks.

* tests : extract batch info update to separate method

* tests : fix batch token position tracking in test_backend_sampler.cpp

* tests : add --device option support to backend sampler tests

This commit adds support for specifying a device to run the test on.

* common : disable backend sampling when grammar is involved

* Fix different RNG-states between backend-sampling and llama-sampling

By default, we perform a warm-up step where the ggml_cgraph is computed
once. For backend-sampling, this graph contains the sampler, and thus
the RNG state of the backend's dist sampler is advanced once.

Solution to this is to reset the samplers after the warmup has finished

* Make backend dist sampler use same rnd's as dist sampler

We sample in double precision and cast to float to match rnd numbers of
llama_dampler_dist which uses double precision (sampling from
std::uniform_real_distribution<double> and
std::uniform_real_distribution<float> with same rng will produce
different sequences).

* Update CCCL version to v3.2.0-rc2

* Build with CCCL 3.2 for CUDA backends

Gives best perf for backend-sampling on CUDA. Flag can be removed once
CCCL 3.2 is bundled within CTK and that CTK version is used in llama.cpp

* tests : revert server test changes (no longer needed)

* ggml : include cub/cub.cuh instead of block_scan.cuh

This commit updates the include directive in cumsum.cu to use
cub/cub.cuh instead of cub/block/block_scan.cuh.

The motivation of this change is that without it compilation fails
with the following error:
```console
/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(196): error: name followed by "::" must be a class or namespace name
      cub::DeviceScan::InclusiveSum(nullptr,
           ^

/llama.cpp/ggml/src/ggml-cuda/cumsum.cu(207): error: name followed by "::" must be a class or namespace name
      cub::DeviceScan::InclusiveSum((void *) tmp_alloc.get(), tmp_size, src, dst, ne, stream);
           ^

2 errors detected in the compilation of "/llama.cpp/ggml/src/ggml-cuda/cumsum.cu".
gmake[2]: *** [ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/build.make:317: ggml/src/ggml-cuda/CMakeFiles/ggml-cuda.dir/cumsum.cu.o] Error 2
```
Commit 83b3b1c271 ("cuda: optimize
cumsum cub path (#18362)") updated the include directive replacing
device_scan.cuh which is causing this issue.

This commit uses cub/cub.cuh umbrella header which is consistent with
other files in the ggml-cuda directory like mean.cu, sum.cu, etc.

* arg : add shorthand for --backend-sampling

* ci : add server workflow with backend sampling

* sampling : fix reshapes

* server : remove printfs

* sampling : zero-initialize input buffers

* minor : add comments + some cleanup

* llama : assert at most one output token per sequence

* tests : add more top_k tests

* CUDA: Fix non-determinism of CUB-based Top-K

DeviceTopK::MaxPairs is an iterative algorithm, where `d_keys_out` is
written after every iteration. As a consequence, it must not overlap
with `d_keys_in`, or otherwise undefined behavior occurs (keys are no
longer unique in d_keys_in and may map to different values between
iterations)

* CUDA: Optimize index of top_k_cub

By using the fancy
[`counting_iterator`](https://nvidia.github.io/cccl/thrust/api/classthrust_1_1counting__iterator.html#classthrust_1_1counting__iterator)
exposed by CCCL, we can avoid materializing the index to GPU memory,
saving VRAM + 1 kernel invocation

* Apply code-formatting to top-k.cu

* CUDA: Remove obsolete temp_keys from CUB

Since we use cuda::discard_iterator to avoid writing out the keys, we
can directly pass in src instead of copying it to `temp_keys`

* minor : cleanup, TODOs, etc.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Oliver Simons <osimons@nvidia.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2026-01-04 22:22:16 +02:00
Aldehir Rojas cef1d23c5a
common/grammar : replace problematic backtracking regex `[\s\S]*` (#18342)
* grammar : add support for std::regex_search() with trigger patterns

* common : update hermes2 pro trigger to search instead of match

* common : use regex_search with anchoring for partial matching

* common : adjust regex partial tests to use new pattern

* grammar : check pattern directly instead of adding a type

* common : adjust existing patterns to match new semantics
2026-01-03 16:02:43 -06:00
Georgi Gerganov 4301e27319
common : restore grammar-based rejection sampling (#18137)
* common : restart grammar-based rejection sampling

* sampling : allow null samplers
2025-12-17 19:46:00 +02:00
Georgi Gerganov 254098a279
common : refactor common_sampler + grammar logic changes (#17937)
* common : refactor common_sampler + grammar logic changes

* tests : increase max_tokens to get needed response

* batched : fix uninitialized samplers
2025-12-14 10:11:13 +02:00
Georgi Gerganov 196f5083ef
common : more accurate sampling timing (#17382)
* common : more accurate sampling timing

* eval-callback : minor fixes

* cont : add time_meas impl

* cont : fix log msg [no ci]

* cont : fix multiple definitions of time_meas

* llama-cli : exclude chat template init from time measurement

* cont : print percentage of unaccounted time

* cont : do not reset timings
2025-11-20 13:40:10 +02:00
Johannes Gäßler e789095502
llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Georgi Gerganov e92d53b29e
sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Olivier Chafik f5cd27b71d
`server`: streaming of tool calls and thoughts when `--jinja` is on (#12379)
* add common_json w/ support for truncated json healing

* add common_chat_msg_diff

* partial common_chat_parse

* refactor parser w/ optionals

* server: wire chat diffs in stream mode

* fix trigger of thinking models (must happen after thoughts are closed)

* fix functionary v3.2 raw python!

* rename: common_chat_syntax (now contains format)

* rm common_regex.at_start

* don't return empty <think></think>

* accommodate yet another deepseek r1 distill fantasy syntax (`<|tool▁calls|>`)

* fix QwQ 32B tool call parsing after thoughts (hermes2)

* better logs for grammar triggers

* consume spaces after parse_json_tool_calls

* fix required tool calls w/ thinking models that have pre-opened thinking tags

* fix thinking model's initial trigger + test qwq's template

* run most test_tool_call tests in stream + non-stream modes

* make functionary v3.2 parsing more strict (differentiate first match from others)

* send final diff from server, to close off raw python arguments

* support partial content streaming in Generic mode

* tool-call: allow content prelude before hermes2 tool calls (for Qwen2.5)

* Update function-calling.md

* Update tool_bench.py

* chat-parser: remove input from exception (llm output may contain PII)

---------

Co-authored-by: ochafik <ochafik@google.com>
Co-authored-by: Olivier Chafik <ochafik@users.noreply.github.com>
2025-05-25 01:48:08 +01:00
Ycros 39e73ae0d6
common : Add a warning when we can't match samplers from a string or char. (#13330) 2025-05-07 11:23:28 +03:00
oobabooga 233461f812
sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
Johannes Gäßler dd373dd3bf
llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Olivier Chafik 669912d9a5
`tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
mgroeber9110 5bbe6a9fe9
ggml : portability fixes for VS 2017 (#12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-04 18:53:26 +02:00
Olivier Chafik c7f460ab88
`server`: fix tool-call of DeepSeek R1 Qwen, return reasoning_content (Command 7RB & DeepSeek R1) unless `--reasoning-format none` (#11607)
* extract & return thoughts in reasoning_content field (unless --reasoning-format) for DeepSeek R1 & Command R7B

* tool-calls: add deepseek r1 template (models/templates/llama-cpp-deepseek-r1.jinja) + hackommodate broken official template

* tool-calls: accommodate variety of wrong tool call opening tags both R1 Qwen 32B and 7B distills like to spit out

* server/oai: ensure content is null when there are tool calls, and reasoning_content appears before content for readability

* tool-calls: add DeepSeek R1 Qwen distills to server/README.md & server tests

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 10:05:16 +00:00
Vinesh Janarthanan 27e8a23300
sampling: add Top-nσ sampler (#11223)
* initial sampling changes:

* completed top nsigma sampler implementation

* apply parameter to only llama-cli

* updated readme

* added tests and fixed nsigma impl

* cleaned up pr

* format

* format

* format

* removed commented tests

* cleanup pr and remove explicit floats

* added top-k sampler to improve performance

* changed sigma to float

* fixed string format to float

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* added llama_sampler_init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 08:45:57 +02:00
Michał Moskal ff227703d6
sampling : support for llguidance grammars (#10224)
* initial porting of previous LLG patch

* update for new APIs

* build: integrate llguidance as an external project

* use '%llguidance' as marker to enable llg lark syntax

* add some docs

* clarify docs

* code style fixes

* remove llguidance.h from .gitignore

* fix tests when llg is enabled

* pass vocab not model to llama_sampler_init_llg()

* copy test-grammar-integration.cpp to test-llguidance.cpp

* clang fmt

* fix ref-count bug

* build and run test

* gbnf -> lark syntax

* conditionally include llguidance test based on LLAMA_LLGUIDANCE flag

* rename llguidance test file to test-grammar-llguidance.cpp

* add gh action for llg test

* align tests with LLG grammar syntax and JSON Schema spec

* llama_tokenizer() in fact requires valid utf8

* update llg

* format file

* add $LLGUIDANCE_LOG_LEVEL support

* fix whitespace

* fix warning

* include <cmath> for INFINITY

* add final newline

* fail llama_sampler_init_llg() at runtime

* Link gbnf_to_lark.py script; fix links; refer to llg docs for lexemes

* simplify #includes

* improve doc string for LLAMA_LLGUIDANCE

* typo in merge

* bump llguidance to 0.6.12
2025-02-02 09:55:32 +02:00
Olivier Chafik 8b576b6c55
Tool call support (generic + native for Llama, Functionary, Hermes, Mistral, Firefunction, DeepSeek) w/ lazy grammars (#9639)
---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-30 19:13:58 +00:00
Georgi Gerganov afa8a9ec9b
llama : add `llama_vocab`, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110)

* llama : add struct llama_vocab to the API (#11156)

ggml-ci

* hparams : move vocab params to llama_vocab (#11159)

ggml-ci

* vocab : more pimpl (#11165)

ggml-ci

* vocab : minor tokenization optimizations (#11160)

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names (#11167)

ggml-ci

* llama : update API names to use correct prefix (#11174)

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174)

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174)

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
Georgi Gerganov 644fd71b44
sampling : refactor + optimize penalties sampler (#10803)
* sampling : refactor + optimize penalties sampler

ggml-ci

* common : apply ignore_eos as logit bias

ggml-ci

* batched : remove penalties sampler

* params : allow penalty_last_n == -1 to be equal to context size

ggml-ci

* common : by default, move the penalties at the end of the sampling chain

ggml-ci

* common : ignore all EOG tokens

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* common : move back the penalties at the front of the sampling chain

ggml-ci

* readme : restore hint about --ignore-eos flag [no ci]

* llama : minor

ggml-ci

* webui : update

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2024-12-16 12:31:14 +02:00
Georgi Gerganov d9d54e498d
speculative : refactor and add a simpler example (#10362)
* speculative : refactor and add a simpler example

ggml-ci

* speculative : clean-up and add comments and TODOs [no ci]

* speculative : manage context in common_speculative

ggml-ci

* speculative : simplify

ggml-ci

* speculative : simplify (cont)

ggml-ci

* speculative : add --draft-min CLI arg

* speculative : minor fixup

* make : build fixes

* speculative : do not redraft previous drafts

ggml-ci

* speculative : fix the draft sampling

ggml-ci

* speculative : fix compile warning

* common : refactor args

ggml-ci

* common : change defaults [no ci]

* common : final touches

ggml-ci
2024-11-25 09:58:41 +02:00
Georgi Gerganov 8d8ff71536
llama : remove Tail-Free sampling (#10071)
ggml-ci
2024-10-29 10:42:05 +02:00
wwoodsTM ff252ea48e
llama : add DRY sampler (#9702)
* sampling : add DRY sampler (post-refactor)

* DRY: Trying to fix coauthors, removed unneeded line

* DRY: Fixed redundant code

* DRY: Fixed crash issue due to DRY being in chain but uninitialized

---------

Co-authored-by: l3utterfly <gc.pthzfoldr@gmail.com>
Co-authored-by: pi6am <34464159+pi6am@users.noreply.github.com>
2024-10-25 19:07:34 +03:00
Georgi Gerganov 55e47786e3
llama : default sampling changes + greedy update (#9897)
* llama : deprecate softmax sampler + fix dist sampler

ggml-ci

* tests : replace macros with functions

ggml-ci

* sampling : change temperature sampler logic

For t <= 0.0f, keep the max logit intact and set the rest to -inf

* cont : no need for special "greedy" logic

top-k == 1 is the same

* tests : init prob correctly

* llama : handle temp <= 0.0 in the temp_ext sampler too

ggml-ci

* cont : avoid extra loop in temperature sampler for sub-zero temp

ggml-ci
2024-10-21 09:46:40 +03:00
Georgi Gerganov 755a9b2bf0
llama : add infill sampler (#9896)
ggml-ci
2024-10-15 16:35:33 +03:00
MaggotHATE fbc98b748e
sampling : add XTC sampler (#9742)
* Initial XTC commit

Adds XTC sampler, not activated by default, but recommended settings by default.

* Cleanup

* Simplified chances calculation

To be more inline with the original implementation, chance is calculated once at the beginning.

* First fixes by comments

Still need to look into sorting

* Fixed trailing backspaces

* Fixed RNG to be reproduceable 

Thanks to @slaren for directions

* Fixed forgotten header

* Moved `min_keep` 

Moved from conditions to a simple check at the end.

* Fixed broken randomization

Thanks to @slaren for explanation

* Swapped sorting for a custom algorithm

Shifts tokens to remove the penalized ones, then puts the penalized at the back. Should make `min_keep` still viable.

* Algorithm rework

1. Scan token from top till the first non-penalizable
2. Remove the last captured token (the least probable above threshold)
3. Shift all tokens to override the remaining penalizable
4. Penalize and put them at the the bottom.

* Added XTC to `test-sampling`

* Simplified algorithm and more tests

* Updated info in common and args

* Merged back lost commits in common and arg

* Update dump info in common

* Fixed incorrect min_keep check

* Added XTC to README

* Renamed parameters, fixed info and defaults

* probability is at 0 by default, but XTC is included in sampling queue
* threshold higher than 0.5 switches XTC off

* Initial server support

* Added XTC to server UIs

* Fixed labels in old server UI

* Made algorithm safer and more readable

* Removed xtc_threshold_max

* Fixed arg after update

* Quick fixes by comments

* Simplified algorithm since threshold_max is removed

* Renamed random distribution

* Fixed tests and outdated README

* Small fixes
2024-10-15 12:54:55 +02:00
Diego Devesa 7eee341bee
common : use common_ prefix for common library functions (#9805)
* common : use common_ prefix for common library functions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-10-10 22:57:42 +02:00
Georgi Gerganov b0f27361f3
sampling : avoid expensive softmax during greedy sampling (#9605)
* sampling : avoid expensive softmax during greedy sampling

ggml-ci

* speculative : fix default RNG seed + set sparams.n_probs

* Update tests/test-sampling.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* sampling : add clarifying comment [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-09-24 09:03:17 +03:00
Georgi Gerganov 6262d13e0b
common : reimplement logging (#9418)
https://github.com/ggerganov/llama.cpp/pull/9418
2024-09-15 20:46:12 +03:00
Georgi Gerganov 0abc6a2c25
llama : llama_perf + option to disable timings during decode (#9355)
* llama : llama_perf + option to disable timings during decode

ggml-ci

* common : add llama_arg

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* perf : separate functions in the API

ggml-ci

* perf : safer pointer handling + naming update

ggml-ci

* minor : better local var name

* perf : abort on invalid sampler pointer

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-13 09:53:38 +03:00
slaren 49006c67b4
llama : move random seed generation to the samplers (#9398)
* llama_sampler_penalties : clamp penalty_last_n to zero
2024-09-10 18:04:25 +02:00
Xuan Son Nguyen bfe76d4a17
common : move arg parser code to `arg.cpp` (#9388)
* common : move arg parser to arg.cpp

* better categorize args

* add cmake

* missing climits

* missing cstdarg

* common : more explicit includes

* fix build

* refactor gpt_params_parse

* update server readme

* fix test

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-09 23:36:09 +02:00
Georgi Gerganov f12295b8a9
llama : fix empty ring buffer push (#9358) 2024-09-08 00:33:33 +03:00
Georgi Gerganov df270ef745
llama : refactor sampling v2 (#9294)
- Add `struct llama_sampler` and `struct llama_sampler_i`
- Add `llama_sampler_` API
- Add `llama_sampler_chain_` API for chaining multiple samplers
- Remove `LLAMA_API_INTERNAL`
- Add `llama_perf_` API and remove old `llama_print_timings` and `llama_reset_timings`
2024-09-07 15:16:19 +03:00
Georgi Gerganov 938943cdbf
llama : move vocab, grammar and sampling into separate files (#8508)
* llama : move sampling code into llama-sampling

ggml-ci

* llama : move grammar code into llama-grammar

ggml-ci

* cont

ggml-ci

* cont : pre-fetch rules

* cont

ggml-ci

* llama : deprecate llama_sample_grammar

* llama : move tokenizers into llama-vocab

ggml-ci

* make : update llama.cpp deps [no ci]

* llama : redirect external API to internal APIs

ggml-ci

* llama : suffix the internal APIs with "_impl"

ggml-ci

* llama : clean-up
2024-07-23 13:10:17 +03:00
Kevin Wang 470939d483
common : preallocate sampling token data vector (#8363)
`emplace_back` repeatedly-called is slower than preallocating the vector to the vocab size and directly inserting the data. Some rudimentary profiling with `chrono` improves the performance of this block of code from ~500us/op to ~40us/op.

Overall, this slightly improves the sampling performance which has a more substantial impact for the `examples/lookahead` implementation -- I am able to see a ~10% performance boost in lookahead inference.
2024-07-08 10:26:53 +03:00
Kevin Wang ffd00797d8
common : avoid unnecessary logits fetch (#8358) 2024-07-08 09:31:55 +03:00
Daniel Bevenius e6bf007744
llama : return nullptr from llama_grammar_init (#8093)
* llama : return nullptr from llama_grammar_init

This commit updates llama_grammar_init to return nullptr instead of
throwing an exception.

The motivation for this is that this function is declared inside an
extern "C" block and is intended/may be used from C code which will not
be able to handle exceptions thrown, and results in undefined behavior.

On Windows and using MSVC the following warning is currently generated:
```console
C:\llama.cpp\llama.cpp(13998,1): warning C4297: 'llama_grammar_init':
function assumed not to throw an exception but does
C:\llama.cpp\llama.cpp(13998,1): message :
__declspec(nothrow), throw(), noexcept(true), or noexcept was specified
on the function
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! llama : return nullptr from llama_grammar_init

Add checks for nullptr when calling llama_grammar_init.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Clint Herron <hanclinto@gmail.com>
2024-06-25 15:07:28 -04:00
Georgi Gerganov 6ff13987ad
common : normalize naming style (#7462)
* common : normalize naming style

ggml-ci

* common : match declaration / definition order

* zig : try to fix build
2024-05-22 20:04:20 +03:00
Olivier Chafik e402de364b
`grammars`: fix resampling logic regression (#7424) 2024-05-21 20:40:00 +01:00
Johannes Gäßler 5ae3426b0b
server: fix reported top tokens for temperature 0 (#7203) 2024-05-11 10:11:28 +02:00
Johannes Gäßler af0a5b6163
server: fix incorrectly reported token probabilities (#7125)
* server: normalize token probabilities

* fix temperature == 0.0f
2024-05-07 23:07:58 +02:00
David Renshaw 3f167476b1
sampling : use std::random_device{}() for default random seed (#6962) 2024-04-29 16:35:45 +03:00
Johannes Gäßler 28103f4832
Server: fix seed for multiple slots (#6835)
* Server: add tests for consistent results

* sampling: separate rng per sampling context
2024-04-24 11:08:36 +02:00
Minsoo Cheong 586e7bc561
sampling : deduplicated code for probability distribution access (#6240)
* sampling: remove duplicated code for probability distribution access

* free original_logits

* fix original_logits allocation

* fixes based on review @cebtenzzre

* change function name to `llama_sampling_prepare`
2024-03-24 10:54:07 +02:00
Clint Herron 463628372d
grammar : handle missing "root" node (#6004) 2024-03-13 20:10:40 +02:00
Minsoo Cheong 6d341ab6c5
speculative : implement stochastic speculative sampling (#5625)
* (WIP) Implement stochastic speculative decoding

* sample from residual distribution on draft accept failure

* fix #5657: force greedy sampling with probs when temp is 0

* remove p_accept parameter

* fix style

* remove unused variables

* add srand() in speculative.cpp

* replace use of rand() with mt19937 sampling

* fixes based on review (@JohannesGaessler)

* fix r random generation

* randomly select next sequence to verify + fix bug in memory freeing

* fix bug in active_seqs sync

* fix uniform int distribution initialization

* remove warnings from comparison between int and size_t

* check grammar in `llama_sample_probability_distribution_impl`

* remove malloc code by utilizing vectors

* add PR link to README
2024-03-04 20:24:00 +02:00
Pierrick Hymbert e3965cf35a
server: tests - slow inference causes timeout on the CI (#5715)
* server: tests - longer inference timeout for CI
2024-02-25 22:48:33 +01:00
Robey Holderith 5ee99c32f5
common, server : surface min_keep as its own parameter (#5567)
* Feature - surface min_keep as its own parameter

* Updated README with min_keep param
2024-02-18 21:11:16 +02:00
Georgi Gerganov 689a091bbe
sampling : do not set min_keep to n_probs (#5564) 2024-02-18 19:38:06 +02:00
Alexey Parfenov 6dcc02d244
server : add "samplers" param to control the samplers order (#5494) 2024-02-16 13:33:25 +02:00