This fixes incoherent output in Llama-4-Maverick-17B-128E-PAB-Q8_0, which
has a mul_mat_id with an A matrix that's Q8_0 8192 x 5120 x 128.
This should work when the number of blocks in the A matrix is less than 2^32
(for mul_mat_vec or mul_mm_cm2), or for mul_mm I think the limit is like
2^32*LOAD_VEC_A elements.
- Divide batch_stride by QUANT_K earlier, so the block index calculation works in 32b.
- Each vk_pipeline_struct has a linked list of pipelines that will allow it to handle
variants. So far this change just adds a single use case for this, compiling with the
e64BitIndexingEXT flag.
- Use the 64b indexing variant when the A matrix is larger than maxStorageBufferRange.
64-bit indexing has some cost - around 3-5% in MoE models, so it's worth the effort
to avoid enabling it unconditionally.
* vulkan: Enable and optimize large matmul parameter combination for AMD
* limit tuning to AMD GPUs with coopmat support
* use tx_m values instead of _l
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32
* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx
* cann: forward declaration of device context struct
* cann: move offload op check after device context declaration
* cuda: fix whitespace
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* modify warptile tuning for xe3
* intel vendor check w/ coopmat support
* fix back formatting
* fix formatting change 2
* move intel check to chip specific tuning part
* Change to support both windows and linux
* modify m_warptile to l_warptile for intel
* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)
* Code style changes
* Code style changes (2)
* Code style changes (3)
* vulkan: support buffer_from_host_ptr
* hacky use of buffer_from_host_ptr for directio
* disable buffer_from_host_ptr cap
* use external memory for ggml_vk_host_malloc, revert model loader changes
* disable external_memory_host for MoltenVK
* take buffer memory types into account
* don't use external_memory_host for ggml_vk_host_malloc
* vulkan: Optimize GGML_OP_CUMSUM
There are two paths: The preexisting one that does a whole row per workgroup
in a single shader, and one that splits each row into multiple blocks and does
two passes. The first pass computes partials within a block, the second adds
the block partials to compute the final result. The multipass shader is used
when there are a small number of large rows.
In the whole-row shader, handle multiple elements per invocation.
* use 2 ELEM_PER_THREAD for AMD/Intel
* address feedback
* vulkan: extend topk_moe to handle sigmoid w/exp_probs_b for nemotron
Also handle GGML_OP_SCALE at the end (nemotron, deepseek2).
Fewer pipeline variants and spec constants, just use push constants.
In test_topk_moe, change exp_probs_b to be 1D, matching real networks.
Update test-backend-ops and ggml-backend to allow verifying multiple outputs
in a fusion test (topk_moe has two outputs). Previously only the final node
was verified.
* change test_topk_moe to allow results in arbitrary order
* disable sigmoid fusion for moltenvk
* vulkan: Use BK=32 for coopmat2 mul_mat_id
* vulkan: optimize decodeFuncB in coopmat2 mul_mat_id shader
Disable robustness, remove the OOB check in decodeFuncB, and initialize the
row_ids to zero to avoid OOB access.
Don't slice/offset the B matrix to ic * BN, only to adjust the coord back down
to the range [0, BN) in decodeFuncB. Instead just slice with a row offset of
zero and remove the '& (BN - 1)'. This allows the compiler to common some of
the shared memory loads.
The goal is to enable the async loading code paths in
llama_model_loader::load_all_data, originally from #7896. This works and the
loads themselves are faster, but with host visible vidmem I think the cost of
allocating/mapping vidmem moves and becomes more expensive, and I don't see a
benefit by default. But with GGML_VK_DISABLE_HOST_VISIBLE_VIDMEM=1 I do see a
significant improvement in model loading time.
I updated test_topk_moe to more closely match llm_graph_context::build_moe_ffn
and added coverage for exp_probs_b and some other missing combinations. This
exposed a bug in both CUDA and Vulkan backends where they were assuming the
input to argsort and the input to get_rows are the same. I'd like to optimize
this graph in another change, but for now just get it functional.
CUDA also had a bug where it got n_experts from the wrong place, leading to
GGML_ASSERT failures in some of the new tests.
* Some improvement on mul_mat_iq2_xs
Refactor calculations for db values and grid data to optimize performance and reduce redundancy.
* Fix trailing whitespace
This implements a variation of the perf logger where rather than timing each
operation individually with effectively a barrier in between, we put the
timing boundaries where we already synchronize and time the groups of work
that normally overlap. This can be useful to help understand whether
individual operations need to be optimized, or if the group is already running
efficiently.
GGML_VK_PERF_LOGGER_CONCURRENT=1 enables the new mode (when
GGML_VK_PERF_LOGGER is also set).
GGML_VK_SYNC_LOGGER=1 replaces the ENABLE_SYNC_LOGGING compile time switch.
When the number of cols is large, split each row across multiple workgroups.
There are three phases that communicate partial results through temp buffers:
(1) compute max partials
(2) take max of partials, compute sum(exp(x-max)) partials
(3) sum partials, compute scaled result
* Optimize Vulkan shader for matrix-vector multiplication
* Revert changes on compute_outputs and main
Refactor compute_outputs to handle remaining rows correctly.
* Fix trailing whitespace
* vulkan: perf_logger improvements
- Move perf_logger from device to ctx.
- Add an env var to control the frequency we dump the stats. If you set a very
large value, it just dumps when the ctx is destroyed.
- Add a fusion info string to the tracking, only log one item per fused op.
- Fix MUL_MAT_ID flops calculation.
* fix vector sizes
* Feat: Added vulkan circular tiling support
* Feat: Added cpu circular
* Feat: Added cuda kernels
* Added tests
* Added tests
* Removed non-pad operations
* Removed unneded changes
* removed backend non pad tests
* Update test-backend-ops.cpp
* Fixed comment on pad test
* removed trailing whitespace
* Removed unneded test in test-backend-ops
* Removed removed test from calls
* Update ggml/src/ggml-vulkan/vulkan-shaders/pad.comp
Co-authored-by: Ruben Ortlam <picard12@live.de>
* Fixed alignment
* Formatting
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* Format pad
* Format
* Clang format
* format
* format
* don't change so much stuff
* clang format and update to bool
* fix duplicates
* don't need to fix the padding
* make circular bool
* duplicate again
* rename vulkan to wrap around
* Don't need indent
* moved to const expr
* removed unneded extra line break
* More readable method calls
* Minor wording changes
* Added final newline
* Update ggml/include/ggml.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/include/ggml.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Added circular pad ext tests
* Gate non circular pad devices
* Cleaned gating of non-circular pad devices
---------
Co-authored-by: Phylliida <phylliidadev@gmail.com>
Co-authored-by: Ruben Ortlam <picard12@live.de>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
* Fix shader to support 2D workgroup mapping to a single subgroup
* Set required_subgroup_size
topk_moe shader requires static WARP_SIZE and actual subgroup size to match
* vulkan: Reduce temporary memory usage for TOP_K
- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"
For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.
* vulkan: fix top_k bug when there are ties in the input
I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).
I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.
* Update tests/test-backend-ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>