Commit Graph

635 Commits

Author SHA1 Message Date
Haiyue Wang f4e664f838
context : remove redundant explicit casting to the same type (#15948)
The function 'output_reserve' return type is 'uint32_t', so need to add
explicit casting.
2025-09-12 18:16:32 +03:00
Diego Devesa 360d6533db
ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type (#15797)
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type

ggml-backend : add device id to device props

llama : only use iGPU devices if there are no GPU devices

llama : do not use multiple devices from different backends with the same device id
2025-09-11 22:47:38 +02:00
ddh0 df082f5630
nitpick : correct MB to MiB (#15934)
MB was incorrectly used for 1024 x 1024 bytes instead of MiB
2025-09-11 19:12:34 +02:00
Jie Fu (傅杰) 4f658855fa
llama : support T5 models with unequal number of encoder-decoder layers (#15909)
* Extend the support of T5 models with different encoder-decoder layers

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-hparams.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Rename n_dec_layer --> dec_n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Adapt to cases when dec_n_layer > n_layer

Signed-off-by: Jie Fu <jiefu@tencent.com>

---------

Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-10 20:51:51 +02:00
Sigbjørn Skjæret 6ab397e12b
graph : support non-contiguous Q in build_attn_mha (#15908)
* support non-contiguous Q in build_attn_mha

* Update src/llama-graph.cpp

ggml-ci

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-10 19:08:59 +02:00
Daniel Bevenius 86587da03b
llama : check returned fn ptrs from ggml_backend_reg_get_proc_address (#15893)
This commit adds check for two function pointers returned from
ggml_backend_reg_get_proc_address.

The motivation for this is that the function pointer could be nullptr if
the get proc address function changes in the future. This is also
consistent with all the other calls to ggml_backend_reg_get_proc_address
in the code base.
2025-09-10 05:33:58 +02:00
Georgi Gerganov 663027fd54
context : fix n_outputs during reserve (#15858)
ggml-ci
2025-09-08 10:26:36 +03:00
Georgi Gerganov cf0e3ba150
model : avoid ggml_cont_3d for fused QKV weights (#15662)
* model : avoid ggml_cont_3d for fused QKV weights

ggml-ci

* kv-cache : make cpy_k and cpy_v implementation more readable

ggml-ci

* cont : add comments

ggml-ci

* cont : minor fix [no ci]

* cont : one more fix

* cont : clarity

ggml-ci

* kv-cache : require contiguous heads of k_cur and v_cur

ggml-ci
2025-09-08 10:25:33 +03:00
Gabe Goodhart fd621880f3
aLoRA Support (#15327)
* feat: Add python-side constants and conversion for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for adapter.lora.invocation_string

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse invocation string for adapters from GGUF

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(python): Update conversion to alora_invocation_tokens

This is the preferred method in PEFT which is the source of ground truth

https://github.com/huggingface/peft/pull/2609/files#diff-13380145401d203d5935c5189dd09879f990b81aa63e8e3aaff8ce9110333f0e

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(cpp): Update to alora_invocation_tokens on c++ side

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add C APIs to get alora invocation token array from lora

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Initial implementation of alora cache logic in server

This does not yet do the part to identify the invocation tokens and only
apply the lora adapter afterwards, but it does seem to produce correct
results if the invocation tokens are the beginning of the uncached input.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Identify alora invocation sequences

This currently limits to a single enabled alora per slot. Multiple aloras
with different invocation sequences would be possible, but it would require
a more complex integration of the adapter toggling and is not really a well
studied case for alora since it's unclear if one alora can reuse cache from
previous prefill computed with a different alora.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Only reuse cache for tokens before the alora invocation start

This is a bit of an edge case, but theoretically a user could try the same
query with the alora disabled (just using the base model), then retry with
the alora. The cached tokens from the first pass should be invalid.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Handle un-cached tokens that come before the alora activation

The solution is to only fill up to the token before the invocation start in
the batch if there are any tokens to be prefilled between those pulled from
cache and the invocation start. When this is detected, the alora is
temporarily disabled with a scale of 0.0, then immediately re-enabled after
it has been initialized for the internal graph. Since the batch does not
complete the prompt tokens, the remaining prompt tokens are handled in the
next task, pulling all of the non-alora tokens from cache and proceeding
with prefill for the alora tokens.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use || instead of 'or'

Too much python 🤦

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix off-by-one for limiting cached tokens to before alora start

This was the cause of the inconsistent results from the dummy test script
with and without the turn that runs the prompt without the adapter before
running it with the adapter.

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Support backwards-compatibility for "invocation_string" in adapter_config.json

While this has been replaced in the PEFT PR in favor of
alora_invocation_tokens, the existing adapters in the ibm-granite org on HF
use "invocation_string," so this will enable backwards compatibility and
enable testing now (before PEFT PR changes have percolated everywhere).

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove duplicate logging

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Report alora_invocation_string and alora_invocation_tokens from /lora-adapters

Branch: gabe-l-hart/alora-support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-05 17:32:39 -06:00
Georgi Gerganov c610b6c11b
kv-cache : fix SWA checks + disable cacheless iSWA (#15811)
ggml-ci
2025-09-05 10:39:22 +03:00
Daniel Bevenius fb15d649ed
llama : add support for EmbeddingGemma 300m (#15798)
This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.

This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.

With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.

Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
2025-09-04 18:10:29 +02:00
Daniel Bevenius d1e2adba65
llama : set n_outputs to 1 to avoid 0 outputs mean-pooling (#15791)
* llama : set n_outputs to 1 to avoid 0 outputs mean-pooling

This commit modifies the llama_context constructor to set n_outputs to
1.

The motivation for this is that when using pooling, and specifically
mean pooling, for embeddings having n_outputs set to 0 can lead to the
following error:
```console
$ build/bin/llama-embedding -m models/nomic-embed-text-1.5-Q4_K_M.gguf \
   --pooling mean -p "Hello, how are you?"
...
llama_context:        CPU  output buffer size =     0.12 MiB
/home/danbev/work/ai/llama.cpp/ggml/src/ggml.c:3023: GGML_ASSERT(ggml_can_mul_mat(a, b)) failed
0x0000743c96d107e3 in __GI___wait4 (pid=292978, stat_loc=0x0, options=0, usage=0x0) at ../sysdeps/unix/sysv/linux/wait4.c:30
warning: 30	../sysdeps/unix/sysv/linux/wait4.c: No such file or directory
30	in ../sysdeps/unix/sysv/linux/wait4.c
196	        waitpid(child_pid, NULL, 0);
230	        ggml_print_backtrace();
3023	    GGML_ASSERT(ggml_can_mul_mat(a, b));
1823	                cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
18983	    llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
1399	    auto * gf = model.build_graph(gparams);
292	            auto * gf = graph_reserve(1, n_seqs, n_outputs, mctx.get(), true);
2329	        auto * ctx = new llama_context(*model, params);
913	    llama_context * lctx = llama_init_from_model(model, cparams);
105	    common_init_result llama_init = common_init_from_params(params);
[Inferior 1 (process 292976) detached]
Aborted (core dumped)
```

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add comment about not reserving graphs with zero outputs

* add assert in graph_reserve to ensure n_outputs >= 1

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-04 15:40:44 +02:00
Georgi Gerganov cdedb70a99
sampling : optimize dist sampler (#15704)
ggml-ci
2025-09-03 18:16:26 +03:00
Daniel Bevenius 2c8dac72eb
llama : fix incorrect model type for Gemma 270M (#15764)
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.

The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
| gemma3 ?B Q8_0                 | 271.81 MiB | ...
```

With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model                          |       size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
| gemma3 270M Q8_0               | 271.81 MiB | ...
```
2025-09-03 13:35:49 +02:00
Georgi Gerganov e92d53b29e
sampling : optimize samplers by reusing bucket sort (#15665)
* sampling : optimize sorting using bucket sort in more places

ggml-ci

* sampling : do not sort in dist sampler

ggml-ci

* sampling : avoid heap allocations for sort buffers

ggml-ci

* common : add option to sort sampling candidates by probability

ggml-ci

* sampling : revert the change for preserving sort buffers

* sampling : use std::copy instead of memcpy

* sampling : clarify purpose of partial sort helpers

ggml-ci

* cont : remove wrong comment [no ci]

* common : update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-31 20:41:02 +03:00
Diego Devesa 274966226f
llama : fix fattn reserve call n_seqs parameter (#15699)
ggml-ci
2025-08-31 18:47:05 +03:00
Diego Devesa 9777032dcc
llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Johannes Gäßler e81b8e4b7f
llama: use FA + max. GPU layers by default (#15434)
* llama: use max. GPU layers by default, auto -fa

* ggml-backend: abort instead of segfault
2025-08-30 16:32:10 +02:00
Gabe Goodhart e8d99dd0b6
nvidia nemotron nano v2 (nemotronh) (#15507)
* feat: Add NEMOTRONH to python arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to c++ arch enum

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add NEMOTRONH to llama-arch layer map

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at conversion for nemotronh

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add a verbose log for each tensor loaded

This is really helpful for diagnosing mismatches between the expected and
received tensors

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at nemotronh model architecture

It generates tokens, just not valid ones!

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Explicitly enable add_bos_token during conversion

The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only allocate attention cache for attention layers (not non-recurrent)

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Move residual add to after every block

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the correct norm tensor for the MLP blocks

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)

This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.

* SSM: respect ssm_dt_rank for dt_dim when provided

Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).

* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)

* Rename nemotronh to nemotron_h for consistency

- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)

* feat: Support conversion for older NemotronH models

https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
2025-08-28 18:39:31 -06:00
Georgi Gerganov c8d0d14e77
kv-cache : fix find_slot to not search for continuous slot (#15638)
ggml-ci
2025-08-28 17:09:05 +03:00
Sigbjørn Skjæret 84ab83cc0b
model : jina-embeddings-v3 support (#13693)
* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* initial jina-embeddings-v3 support

* fix vocab parsing with only tokenizer.json

* set mask token lstrip attribute

* additional unk_token_id fallback just in case [no ci]

* revert vocab_size() change [no ci]

* merge tensor loading into general bert

* rope

* add lora embedding and loading (non-functional)

* export separate lora ggufs instead

* add adapter metadata api

* use std::string

* convert_hf_to_lora compatibility

* fix assert

* apply suggestions from review

* apply suggestion from review
2025-08-28 15:49:50 +02:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Georgi Gerganov 1bded5a3b3
kv-cache : better estimate of n_kv for multi-sequence batches (#15610)
ggml-ci
2025-08-27 13:55:12 +03:00
Georgi Gerganov 0373486dbc
graph : fix assert in memory-less build_attn (#15590)
ggml-ci
2025-08-26 17:45:17 +03:00
Georgi Gerganov 85cc1ae998
context : print graph stats for memory-less contexts (#15586)
ggml-ci
2025-08-26 12:47:00 +03:00
Georgi Gerganov b730706a49
kv-cache : support layer reuse (#15504)
* kv-cache : support layer reuse

ggml-ci

* cont : update comments [no ci]
2025-08-24 13:07:07 +03:00
Piotr Wilkin (ilintar) b1afcab804
model : add support for Seed-OSS (#15490)
* First draft

* Fix linter errors

* Added missing sinks nullptr

* Don't forget the llama-arch!

* We're through to the generation stage.

* Fix post-attention norm

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix RoPE type

* Fix tensor name and reorder llm_types

* Update gguf-py/gguf/constants.py

Remove nonexistent FFN_POST_NORM tensor

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add basic chat template

* Add chat template tests

* Remake chat template test

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Reorder llm type descriptions

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-08-23 15:21:52 +02:00
LaffeyNyaa 21dc4ddaf2
chat : fix debug build assertion in trim function (#15520) 2025-08-23 10:38:30 +02:00
Georgi Gerganov 9ebebef62f
llama : remove KV cache defragmentation logic (#15473)
ggml-ci
2025-08-22 12:22:13 +03:00
Tarek Dakhran e288693669
readme : model : mtdm : lfm2 improvements (#15476)
* Support untied embeddings

* Increase number of image tokens to 1024

* Add LFM2-VL to readme

* Actually use untied embeddings
2025-08-22 09:29:08 +02:00
Georgi Gerganov cd36b5e5c7
llama : remove deprecated llama_kv_self API (#15472)
ggml-ci
2025-08-21 19:13:45 +03:00
Georgi Gerganov 3f196be84b
graph : remove build_attn_with_sinks overload (#15469)
ggml-ci
2025-08-21 18:44:45 +03:00
Georgi Gerganov 715a6db02c
kv-cache : drop the "unified" prefix (#15467)
* kv-cache : drop the "unified" prefix

ggml-ci

* cont : fix comment [no ci]
2025-08-21 17:00:33 +03:00
Georgi Gerganov 9ef6b0b835
model : add gpt-oss type strings (#15424) 2025-08-19 19:58:28 +03:00
Georgi Gerganov 9d262f4bad
server : remove swa_full warning (#15399) 2025-08-19 08:45:26 +03:00
Sigbjørn Skjæret baa9255a45
llama : merge conts and reshapes and remove unnecessary cont (#15380)
* remove unnecessary conts and merge reshapes

* restore necessary conts

* merge more conts and reshapes

* merge even more conts and reshapes
2025-08-18 19:30:17 +02:00
Daniel Bevenius 7a0de96045
llama : add 18-layer model type for Gemma 3-270m (#15319)
This commit adds support for the 18-layer model type in the Gemma3
series, which is the size of the Gemma3-270m model.

The motivation for this commit is was the only change required for
Gemma3-270m to be converted to GGUF format and used with llama.cpp.

Once the model has been converted and uploaded to Huggingface it can be
used like this:
```console
$ ./build/bin/llama-cli -hf ggml-org/gemma-3-270m-GGUF:Q8_0
```
2025-08-14 17:56:26 +02:00
Aldehir Rojas b204a5a234
gpt-oss: implement harmony parsing (#15181)
* model : add harmony parser for gpt-oss

* gpt-oss : fix grammar trigger from causing empty stack

* gpt-oss: tweak the grammar trigger again

* gpt-oss : add support for recipient in role header

* gpt-oss : fix ungrouped tool calls in grammar

* gpt-oss : loosen function name matching during parse

* gpt-oss : clean up workarounds

* gpt-oss : add template tests

* gpt-oss : simulate thinking and tool call tags

* gpt-oss : undo think tags when reasoning_format is none

* gpt-oss : set special tokens back to user defined

* gpt-oss : update openai-gpt-oss template

* server : filter out harmony thought messages

* gpt-oss : simplify parsing
2025-08-14 17:23:11 +03:00
Georgi Gerganov d32e03f449
server : add SWA checkpoints (#15293)
* server : add SWA checkpoints

ggml-ci

* cont : server clean-up

* server : handle state restore fails

* llama : add extended llama_state_seq_ API

* server : do not make checkpoints if --swa-full

ggml-ci

* llama : remove flags value for NONE

* server : configure number of SWA checkpoints with CLI arg

ggml-ci

* args : fix scope of new argument
2025-08-14 14:59:50 +03:00
kallewoof 810b9fc8b9
perplexity : provide a helpful hint for has_cpl case in split_equal error. (#15304)
When attempting to do llama-perplexity on certain tasks which have coupled sequences there is a cryptic error that does not tell you what to do, which is to set the -kvu flag. This adds a hint about that fact.
2025-08-14 14:03:30 +03:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Georgi Gerganov 228f724d9c
kv-cache : fix seq_rm with seq_id == -1 (#15226)
* kv-cache : fix seq_rm with seq_id == -1

ggml-ci

* cont : iterate over streams

ggml-ci
2025-08-11 13:58:24 +03:00
Daniel Bevenius cd3069dfcb
kv-cache : log (debug) all streams in find_slot (#15176)
This commit updates `llama_kv_cache_unified::find_slot` to log
information for all streams when debug is enabled.

The motivation for this change is that currently if a non-unified
kv-cache is used, then only one stream will be logged because the
code was currently uses `seq_to_stream[1]`.
2025-08-11 11:21:19 +02:00
Xuan-Son Nguyen 50aa938901
convert : support non-mxfp4 HF model (#15153)
* convert : support non-mxfp4 HF model

* rm redundant check

* disable debug check
2025-08-07 23:26:03 +02:00
Sigbjørn Skjæret 65c797c4fa
chat : fix yandex chat template (#15116) 2025-08-06 13:26:49 +02:00
stevenkuang 25726898e8
chat : fix hunyuan auto-detection (#15114)
Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-08-06 11:48:30 +02:00
Georgi Gerganov fd1234cb46
llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Juk Armstrong c81de6e107
Fix `glm4moe` bug (#15088) 2025-08-05 13:56:44 +01:00
compilade ee3a9fcf88
context : fix index overflow on huge outputs (#15080)
* context : fix overflow when re-ordering huge outputs

* context : fix logits size overflow for huge batches
2025-08-05 11:27:45 +02:00
Sam ef0144c087
model: support GLM 4.5 family of models (#14939)
* model: Add GLM 4.5 (#14921)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Merge in PR suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: Add GLM 4.5 family of models (#14921)

1. Updated tensor_mapping.py with NextN tensor mappings

- Added proper tensor mappings for all NextN/MTP tensors in /Users/samm/git/llama.cpp/gguf-py/gguf/tensor_mapping.py
- Added mappings for: eh_proj, embed_tokens, enorm, hnorm, shared_head.head, shared_head.norm

2. Added num_nextn_predict_layers configuration

- Added LLM_KV_NUM_NEXTN_PREDICT_LAYERS constant to llama-arch.h and llama-arch.cpp
- Added num_nextn_predict_layers field to llama_hparams struct
- Updated GLM4_MOE parameter loading in llama-model.cpp to read this parameter
- Modified tensor loading logic to conditionally load NextN tensors based on num_nextn_predict_layers
- Added GGUF writer support in gguf_writer.py with add_num_nextn_predict_layers() method
- Updated conversion script to extract and write this parameter from HuggingFace config

3. Added FIM tokens for GLM4_MOE

- Added GLM-4.5's FIM tokens to llama-vocab.cpp:
  - <|code_prefix|> for FIM_PRE
  - <|code_suffix|> for FIM_SUF
  - <|code_middle|> for FIM_MID

4. Removed manual NextN tensor handling

- Removed the special-case handling in convert_hf_to_gguf.py that manually mapped NextN tensors
- NextN tensors are now handled automatically through the proper tensor mapping system

* glm 4.5 update tensors names

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model: glm 4.5 apply suggestions from code review

* Apply suggestions from code review

* patch broken chat template

* typings fix

* add TENSOR_SKIP flag


Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update src/llama-model-loader.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-08-04 20:29:25 +02:00
compilade 11a3811164
memory : handle kv_unified for hybrid models (#15050) 2025-08-03 21:43:07 +02:00
Csaba Kecskemeti 97366dc6ab
vocab : JetBrains Mellum pre-tokenizer (#15045) 2025-08-03 21:38:18 +02:00
Daniel Bevenius 4fdea540bd
kv-cache : skip alignment of n_stream in kv-cache log msg [no ci] (#15040)
This commit removes the right alignment the `n_stream` value in the
log message in the `llama_kv_cache_unified` constructor.

The motivation for this change is to enhance the readability of log
message. Currently the output looks like this:
```console
llama_kv_cache_unified: size = 2048.00 MiB (  4096 cells,  32 layers,  1/ 1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
Notice that the `n_stream` value is right aligned, which makes it a
little harder to read.

With the change in this commit the output will look like
```console
llama_kv_cache_unified: size = 2048.00 MiB (  4096 cells,  32 layers, 1/1 seqs), K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
```
2025-08-02 17:14:57 +03:00
Georgi Gerganov a4569c41fd
llama : enable LLAMA_SET_ROWS=1 by default (#14959)
ggml-ci
2025-08-02 17:14:21 +03:00
Douglas Hanley 339bd0268c
model : support Qwen3-Embedding (#15023) 2025-08-02 10:44:50 +02:00
stevenkuang 0f5ccd6fd1
model : add hunyuan dense (#14878)
* support hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan_moe to hunyuan_v1_moe

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix rope alpha assert and bos token

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* add blank line

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* Revert "update hunyuan_moe to hunyuan_v1_moe"

This reverts commit aa973ca219.

* use hunyuan_dense instead of hunyuan_v1_dense

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan_moe chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* remove leftover code

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* update hunyuan dense chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

* fix hunyuan dense vocab and chat template

Signed-off-by: stevenkuang <stevenkuang@tencent.com>

---------

Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-08-01 15:31:12 +02:00
Georgi Gerganov ba42794c9e
graph : fix equal_seq() check (#14986)
ggml-ci
2025-08-01 06:38:12 +03:00
Ed Addario daf2dd7880
quantize : skip tensor override when in fallback mode (#14995) 2025-07-31 21:32:18 +02:00
Diego Devesa d6818d06a6
llama : allow other bufts when overriding to CPU, add --no-repack option (#14990) 2025-07-31 18:11:34 +02:00
Dongliang Wei c1dacaa99b
llama : merge build_moe_ffn_from_probs function into build_moe_ffn (#14968) 2025-07-31 14:12:20 +02:00
Aman Gupta 8a4a856277
Add LLaDA 8b Diffusion model (#14771)
* Add support for Llada-8b: diffusion model

* Add README

* Fix README and convert_hf_to_gguf

* convert_hf_to_gguf.py: address review comments

* Make everything in a single example

* Remove model-specific sampling

* Remove unused argmax

* Remove braced initializers, improve README.md a bit

* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps

* Remove adding the mask token

* Move add_add_bos_token to set_vocab

* use add_bool in gguf_writer.py
2025-07-31 19:49:09 +08:00
compilade 66625a59a5
graph : reduce splits for recurrent and hybrid models (#14825)
* graph : avoid creating redundant s_copy views

* graph : comment the s_copy views
2025-07-31 08:02:46 +03:00
Georgi Gerganov 00131d6eaf
tests : update for LLAMA_SET_ROWS=1 (#14961)
* test-thread-safety : each context uses a single sequence

* embedding : handle --parallel argument

ggml-ci

* save-load : handle -np 1

ggml-ci

* thread-safety : avoid overriding threads, reduce test case arg

ggml-ci
2025-07-30 15:12:02 +03:00
Georgi Gerganov 1e15bfd42c
graph : fix stack-use-after-return (#14960)
ggml-ci
2025-07-30 13:52:11 +03:00
Douglas Hanley a118d80233
embeddings: fix extraction of CLS pooling results (#14927)
* embeddings: fix extraction of CLS pooling results

* merge RANK pooling into CLS case for inputs
2025-07-30 08:25:05 +03:00
Dongliang Wei 6c6e397aff
model : add support for SmallThinker series (#14898)
* support smallthinker

* support 20b softmax, 4b no sliding window

* new build_moe_ffn_from_probs, and can run 4b

* fix 4b rope bug

* fix python type check

* remove is_moe judge

* remove set_dense_start_swa_pattern function and modify set_swa_pattern function

* trim trailing whitespace

* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* better whitespace

Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use GGML_ASSERT for expert count validation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Improve null pointer check for probs

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use template parameter for SWA attention logic

* better whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* move the creation of inp_out_ids before the layer loop

* remove redundant judge for probs

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-28 13:47:00 +02:00
Daniel Bevenius ca0ef2dddb
llama : clarify comment about pp and tg graphs [no ci] (#14895)
* llama : clarify comment about pp and tg graphs [no ci]

This commit clarifies the comment in `llama-context.cpp` regarding the
prefill prompt (pp), and token generation (tg) graphs.

The motivation for this is that I've struggled to remember these and had
to look them up more than once, so I thought it would be helpful to add
a comment that makes it clear what these stand for.

* squash! llama : clarify comment about pp and tg graphs [no ci]

Change "pp" to "prompt processing".
2025-07-27 12:10:51 +02:00
Gabriel Larson 4762ad7316
model : make rope_yarn_log_mul optional for deepseek2 (#14896)
* make rope_yarn_log_mul optional for deepseek2

* default rope_yarn_log_mul = 0.0f
2025-07-27 11:18:37 +03:00
Shunta Saito 1dc9614e06
llama : fix kq_scale for the attention layers of PLaMo2 (#14892)
* Fix dimensions for expand

* Change dimensions to copy states to cache

* Fix the default value for plamo2 conversion

* Fix scale given to build_attn

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-27 09:38:44 +02:00
Georgi Gerganov c1dbea752a
context : restore preemptive sched reset when LLAMA_SET_ROWS=0 (#14870)
ggml-ci
2025-07-25 14:28:06 +03:00
Georgi Gerganov e4868d16d2
context : perform output reorder lazily upon access after sync (#14853)
* context : perform output reorder after lazily upon access after sync

ggml-ci

* cont : add TODO
2025-07-24 16:31:48 +03:00
Xuan-Son Nguyen 820de57d4f
chat : fix kimi-k2 chat template (#14852) 2025-07-24 13:59:56 +02:00
yummy 86f5623d90
llama : fix MiniCPM inference after Granite Four changes (#14850)
MiniCPM models use the llm_build_granite constructor which was changed
in the Granite Four PR to use hparams.rope_finetuned instead of a
use_rope parameter. MiniCPM models need rope enabled by default.

Fixes inference from gibberish to correct responses.
2025-07-24 11:50:51 +02:00
l3utterfly 7233358d29
memory : handle saving/loading null layers in recurrent memory (#14675)
* Update llama-memory-recurrent.cpp

handle saving/loading null layers in recurrent memory

* fixed styling issues and updated comments

* fix styling issue

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-23 11:16:41 +03:00
Molly Sophia d4d1522b20
llama : add model type detection for rwkv7 7B&14B (#14816)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-07-22 23:01:29 +08:00
Georgi Gerganov bf9087f59a
metal : fuse add, mul + add tests (#14596)
ggml-ci
2025-07-18 20:37:26 +03:00
Georgi Gerganov 9fb1042ce6
graph : fix graph reuse reset of params (#14760)
ggml-ci
2025-07-18 20:08:33 +03:00
Georgi Gerganov d498af3d5a
graph : avoid huge warm-up graphs for MoE models (#14753)
* graph : avoid huge warm-up graphs for MoE models

ggml-ci

* cont : bump max nodes to 8x model tensors
2025-07-18 14:31:15 +03:00
Georgi Gerganov eacdeb5bfc
model : fix build after merge conflict (#14754) 2025-07-18 11:53:55 +03:00
lgai-exaone e0cb5c5cb8
model : add EXAONE 4.0 support (#14630) 2025-07-18 10:45:49 +02:00
Georgi Gerganov 8f974bc1e9
graph : refactor context to not pass gf explicitly (#14629)
ggml-ci
2025-07-18 08:29:28 +03:00
Nexes the Elder 09651d09ff
graph : Pass the graph placeholder message in debug mode (#14748)
Without that condition, this debug log clutters the screen every batch treated in the prompt processing, or every token generated in Kobold.cpp.
2025-07-18 07:25:54 +03:00
Piotr Wilkin (ilintar) cb887f1bc1
model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-17 23:15:32 +02:00
Georgi Gerganov d6fb3f6b49
kv-cache : fix k-shift for multiple streams (#14742)
ggml-ci
2025-07-17 20:52:33 +03:00
Georgi Gerganov 01612b7409
llama : reuse compute graphs (#14482)
* llama : reuse compute graphs

ggml-ci

* llama-bench : add graph reuse parameter

ggml-ci

* cont : remove the parameter and the sched resets

ggml-ci

* graph : rename update() to can_reuse()

ggml-ci

* params : remove is_same()

ggml-ci

* graph : set res->params in llm_graph_context constructor

ggml-ci

* graph : avoid set_max_nodes in llm_graph_result

ggml-ci

* kv-cache : reuse llama_context's graph result instance

ggml-ci

* context : reset the previous graph result upon memory updates

ggml-ci

* batch : llama_ubatch now carries its data instead of pointing to balloc

ggml-ci

* merge : fix build

ggml-ci

* graph : fix can_reuse() checks when flash-attention is disabled

* graph : move llm_graph_result impl in source file + debug env

ggml-ci
2025-07-17 19:08:33 +03:00
Tarek Dakhran 086cf81e88
llama : fix parallel processing for lfm2 (#14705) 2025-07-17 09:22:11 +02:00
Georgi Gerganov d9b691081c
kv-cache : opt mask set input (#14600)
ggml-ci
2025-07-17 09:49:15 +03:00
Georgi Gerganov ad57d3edd2
batch : fix uninitialized has_cpl flag (#14733)
ggml-ci
2025-07-17 09:45:54 +03:00
Diner Burger 496957e1cb
llama : fix parameter order for hybrid memory initialization (#14725) 2025-07-16 21:17:25 +02:00
tempstudio b0f0ecc3dc
model : support output bias for qwen2 (#14711)
Co-authored-by: qwaqrm <qwaqrm@126.com>
2025-07-16 18:02:06 +03:00
Georgi Gerganov 225e7a1438
llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Aman Gupta ab14019821
Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B

* Move diffusion to examples

* Move stuff to examples. Add patch to not use kv-cache

* Address review comments

* Make sampling fast

* llama: remove diffusion functions

* Add basic timings + cleanup

* More cleanup

* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length

* fixup!

* Review: move everything to diffusion-cli for now
2025-07-16 20:03:51 +08:00
Shunta Saito e4841d24d3
llama : fix parallel processing for plamo2 (#14716) 2025-07-16 12:12:22 +02:00
Gabriel Larson 4a4f426944
model : add Kimi-K2 support (#14654)
* Kimi-K2 conversion

* add Kimi_K2  pre type

* Kimi-K2

* Kimi-K2 unicode

* Kimi-K2

* LLAMA_MAX_EXPERTS 384

* fix vocab iteration

* regex space fix

* add kimi-k2 to pre_computed_hashes

* Updated with kimi-k2 get_vocab_base_pre hash

* fix whitespaces

* fix flake errors

* remove more unicode.cpp whitespaces

* change set_vocab() flow

* add moonshotai-Kimi-K2.jinja to /models/templates/

* update moonshotai-Kimi-K2.jinja

* add kimi-k2 chat template

* add kimi-k2

* update NotImplementedError

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* except Exception

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* LLM_CHAT_TEMPLATE_KIMI_K2 if(add_ass){}

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-15 21:54:22 +02:00
Shunta Saito 68e37a61a7
model : add PLaMo-2 support (#14560)
* Add PLaMo-2 model using hybrid memory module

* Fix z shape

* Add cmath to include from llama-vocab.h

* Explicitly dequantize normalization weights before RoPE apply

* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing

* Use ATTN_K/Q_NORM for k,q weights to prevent quantization

* Remove SSM_BCDT that is not used from anywhere

* Do not duplicate embedding weights for output.weight

* Fix tokenizer encoding problem for multibyte strings

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up

* Remove unnecessary part for Grouped Query Attention

* Fix how to load special token id to gguf

* Remove unused tensor mapping

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix plamo2 tokenizer session to prevent multiple calls of build()

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-15 18:11:42 +02:00
Aman Gupta 9c9e4fc635
llama-context: add ability to get logits (#14672) 2025-07-14 21:01:41 +08:00
Molly Sophia 0d9226763c
llama : add jinja template for rwkv-world (#14665)
* llama : add jinja template for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-14 07:43:43 +08:00
Ed Addario 982e347255
quantize : fix minor logic flaw in --tensor-type (#14572) 2025-07-13 18:02:17 +02:00
Tarek Dakhran f5e96b368f
model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Georgi Gerganov 0d5375d54b
llama : move enum llama_vocab_pre_type to implementation (#14631)
ggml-ci
2025-07-11 13:46:07 +03:00