* CANN: Use smart pointers to manage ACL objects
Previously, ACL objects were managed via manual destruction, which
led to multiple memory-leak issues during runtime. This patch replaces
manual memory management with smart pointers so that ACL objects
are properly released and ownership is clearly defined.
Note that the ownership of an ACL object belongs to the function
that creates it. Other internal functions should operate on these ACL
objects using raw pointers to avoid unintended ownership transfers.
Additionally, since aclTensorList automatically frees its contained
aclTensor objects, any aclTensor added to a tensor list must release
ownership to avoid double free operations.
This PR also removes the asynchronous task submission mechanism.
Due to changes in recent CANN versions, tiling time has significantly
decreased. Even with a dual-thread submission model, the dispatch
overhead still falls on the critical path, making async submission
less beneficial. Moreover, aclGraph support provides a much better
path to reducing operator dispatch latency.
* CANN: resolve review comments
This commit applies .clang-format rules to all source files under the
ggml-cann directory to ensure consistent coding style and readability.
The .clang-format option `SortIncludes: false` has been set to disable
automatic reordering of include directives.
No functional changes are introduced.
Co-authored-by: hipudding <huafengchun@gmail.com>
* cann: add the basic FA support
* cann: update the readme
* cann: update the FlashAttention with PSEShift
* cann: update the input parameters in FA
* cann: update the alibi with max_bias
* cann: add the constrints of softcap
* cann: update the docs CANN.md
* cann: update the docs CANN.md
* cann: fix typo of CANN.md
* cann: add some comments and update the CANN.md
* cann: update the CANN.md
* cann: update the inner precise for fusedInferAttention
* cann: update the constraints of flash_attn_ext on ggml-cann.cpp
* cann: clean the whitespace
* cann: clean the whitespace
* cann: add a new endline
* [CANN] Add Ascend NPU backend
Ascend is a full-stack AI computing infrastructure for industry
applications and services based on Huawei Ascend processors and
software.
CANN (Compute Architecture of Neural Networks), developped by
Huawei, is a heterogeneous computing architecture for AI.
Co-authored-by: wangshuai09 <391746016@qq.com>
* delete trailing whitespaces
* Modify the code based on review comment
* Rename LLAMA_CANN to GGML_CANN
* Make ggml-common.h private
* add ggml_cann prefix for acl funcs
* Add logging for CANN backend
* Delete Trailing whitespace
---------
Co-authored-by: wangshuai09 <391746016@qq.com>