Commit Graph

30 Commits

Author SHA1 Message Date
Daniel Bevenius 7884b0e0ac
sampling : add support for backend sampling
This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.

The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.

For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.

It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.

Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.
2025-11-17 16:15:58 +01:00
Georgi Gerganov cd5e3b5754
server : support unified cache across slots (#16736)
* server : support unified context across slots

* cont : fix speculative decoding initialization

* context : fix n_ctx_per_seq computation

* server : purge slots one by one

* tests : add unified cache server tests

* llama : update per-seq context computation

* test-thread-safety : handle tiny training context of the input model

* server : fix server_tokens clear()

* server : use 4 slots + unified KV by default

* llama : add note about context size queries

* cont : update todos [no ci]

* context : do not cap the size of the context

* tests : adjust parameters to be CI friendlier

* context : add warning
2025-11-02 18:14:04 +02:00
Johannes Gäßler e789095502
llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Diego Devesa 9777032dcc
llama : separate compute buffer reserve from fattn check (#15696)
Exposes ggml_backend_sched_split_graph() to allow splitting the graph without allocating compute buffers and uses it to split the graph for the automatic Flash Attention check.
2025-08-31 15:49:03 +02:00
Georgi Gerganov 8a4280ce43
kv-cache : remove LLAMA_SET_ROWS checks (#15505)
ggml-ci
2025-08-28 12:27:02 +03:00
Georgi Gerganov cd36b5e5c7
llama : remove deprecated llama_kv_self API (#15472)
ggml-ci
2025-08-21 19:13:45 +03:00
Georgi Gerganov d32e03f449
server : add SWA checkpoints (#15293)
* server : add SWA checkpoints

ggml-ci

* cont : server clean-up

* server : handle state restore fails

* llama : add extended llama_state_seq_ API

* server : do not make checkpoints if --swa-full

ggml-ci

* llama : remove flags value for NONE

* server : configure number of SWA checkpoints with CLI arg

ggml-ci

* args : fix scope of new argument
2025-08-14 14:59:50 +03:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Georgi Gerganov a4569c41fd
llama : enable LLAMA_SET_ROWS=1 by default (#14959)
ggml-ci
2025-08-02 17:14:21 +03:00
Georgi Gerganov ba42794c9e
graph : fix equal_seq() check (#14986)
ggml-ci
2025-08-01 06:38:12 +03:00
Georgi Gerganov c1dbea752a
context : restore preemptive sched reset when LLAMA_SET_ROWS=0 (#14870)
ggml-ci
2025-07-25 14:28:06 +03:00
Georgi Gerganov e4868d16d2
context : perform output reorder lazily upon access after sync (#14853)
* context : perform output reorder after lazily upon access after sync

ggml-ci

* cont : add TODO
2025-07-24 16:31:48 +03:00
Georgi Gerganov 8f974bc1e9
graph : refactor context to not pass gf explicitly (#14629)
ggml-ci
2025-07-18 08:29:28 +03:00
Georgi Gerganov 01612b7409
llama : reuse compute graphs (#14482)
* llama : reuse compute graphs

ggml-ci

* llama-bench : add graph reuse parameter

ggml-ci

* cont : remove the parameter and the sched resets

ggml-ci

* graph : rename update() to can_reuse()

ggml-ci

* params : remove is_same()

ggml-ci

* graph : set res->params in llm_graph_context constructor

ggml-ci

* graph : avoid set_max_nodes in llm_graph_result

ggml-ci

* kv-cache : reuse llama_context's graph result instance

ggml-ci

* context : reset the previous graph result upon memory updates

ggml-ci

* batch : llama_ubatch now carries its data instead of pointing to balloc

ggml-ci

* merge : fix build

ggml-ci

* graph : fix can_reuse() checks when flash-attention is disabled

* graph : move llm_graph_result impl in source file + debug env

ggml-ci
2025-07-17 19:08:33 +03:00
Georgi Gerganov 692e3cdd0a
memory : rename interface to llama_memory_context_i (#14296)
* memory : rename interface to llama_memory_context_i

ggml-ci

* cont : fix comments

* cont : use "mctx" for referencing a memory context

ggml-ci
2025-06-21 08:03:46 +03:00
Georgi Gerganov 4c9fdfbe15
ubatch : new splitting logic (#14217)
ggml-ci
2025-06-20 10:14:14 +03:00
Georgi Gerganov 60c666347b
batch : rework llama_batch_allocr (#14153)
* batch : rework llama_batch_allocr

ggml-ci

* cont : move validation inside class

ggml-ci

* cont : move output counting to class

ggml-ci

* cont : minor

ggml-ci

* batch : add TODOs

ggml-ci
2025-06-13 13:47:55 +03:00
Georgi Gerganov 7f37b6cf1e
memory : migrate from llama_kv_cache to more generic llama_memory (#14006)
* memory : merge llama_kv_cache into llama_memory + new `llama_memory` API

ggml-ci

* context : fix casts

ggml-ci
2025-06-05 15:29:22 +03:00
Georgi Gerganov 3e63a58ef7
kv-cache : refactor the update/defrag mechanism (#13988)
* kv-cache : refactor update mechanism

ggml-ci

* memory : improve status handling

* defrag : reset head + add comments

ggml-ci

* cont : minor fixes

ggml-ci
2025-06-04 18:58:20 +03:00
Georgi Gerganov 3f55f781f1
llama : auto-batch preparation (#13845)
* llama : auto-batch

ggml-ci

* context : simplify if branching
2025-05-31 12:55:57 +03:00
Georgi Gerganov 12d0188c0d
kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface

ggml-ci

* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)

ggml-ci

* kv-cache : some comments

ggml-ci

* context : fix graph reserve for multiple sequences

ggml-ci

* kv-cache : fix typo [no ci]

* kv-cache : fix find_slot() logic for free slots

ggml-ci

* llama : add TODO for deprecating the defrag API in the future

* kv-cache : improve find_slot() using min/max seq pos info

ggml-ci

* llama : handle aborts and compute errors

ggml-ci

* memory : extract state into llama_memory_state

ggml-ci

* kv-cache : add comments

ggml-ci

* server : update batching logic to reset n_batch on successful decode

* server : upon full re-processing, remove the sequence from the cache

* kv-cache : add TODO for doing split_equal when split_simple fails

ggml-ci
2025-05-31 10:24:04 +03:00
Johannes Gäßler 10d2af0eaa
llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
Georgi Gerganov 51fb96b1ff
context : remove logits_all flag (#13284)
* context : remove logits_all flag

ggml-ci

* llama : remove logits_all flag + reorder llama_context_params

ggml-ci
2025-05-08 14:26:50 +03:00
Georgi Gerganov c642bc014c
kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
Diego Devesa 295354ea68
llama : fix K-shift with quantized K and BLAS backend (#13113) 2025-04-25 19:40:11 +02:00
fairydreaming 8fcb563613
Load all MoE experts during warmup (#11571)
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup

* common : use new API to enable warmup mode during model warmup

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-14 13:47:05 +01:00
Georgi Gerganov 84d5475541
llama : fix Gemma3 SWA KV cache shift (#12373)
* llama : fix Gemma3 SWA KV cache shift

ggml-ci

* hparams : add comment [no ci]
2025-03-13 19:08:07 +02:00
Georgi Gerganov e0dbec0bc6
llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Georgi Gerganov afa8a9ec9b
llama : add `llama_vocab`, functions -> methods, naming (#11110)
* llama : functions -> methods (#11110)

* llama : add struct llama_vocab to the API (#11156)

ggml-ci

* hparams : move vocab params to llama_vocab (#11159)

ggml-ci

* vocab : more pimpl (#11165)

ggml-ci

* vocab : minor tokenization optimizations (#11160)

ggml-ci

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* lora : update API names (#11167)

ggml-ci

* llama : update API names to use correct prefix (#11174)

* llama : update API names to use correct prefix

ggml-ci

* cont

ggml-ci

* cont

ggml-ci

* minor [no ci]

* vocab : llama_vocab_add_[be]os -> llama_vocab_get_add_[be]os (#11174)

ggml-ci

* vocab : llama_vocab_n_vocab -> llama_vocab_n_tokens (#11174)

ggml-ci

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-12 11:32:42 +02:00
Georgi Gerganov f66f582927
llama : refactor `src/llama.cpp` (#10902)
* llama : scatter llama.cpp into multiple modules (wip)

* llama : control-vector -> adapter

* llama : arch

* llama : mmap

ggml-ci

* ci : remove BUILD_SHARED_LIBS=OFF

ggml-ci

* llama : arch (cont)

ggml-ci

* llama : chat

ggml-ci

* llama : model

ggml-ci

* llama : hparams

ggml-ci

* llama : adapter

ggml-ci

* examples : fix

ggml-ci

* rebase

ggml-ci

* minor

* llama : kv cache

ggml-ci

* llama : impl

ggml-ci

* llama : batch

ggml-ci

* cont

ggml-ci

* llama : context

ggml-ci

* minor

* llama : context (cont)

ggml-ci

* llama : model loader

ggml-ci

* common : update lora

ggml-ci

* llama : quant

ggml-ci

* llama : quant (cont)

ggml-ci

* minor [no ci]
2025-01-03 10:18:53 +02:00