This commit adds a note to the README in the model-conversion
examples, advising developers to verify that previous versions of models
pass logits verification before adding new models from the same family.
This commit updates the embedding model verification script to use the
CONVERTED_EMBEDDING_MODEL environment variable instead of using the
EMBEDDING_MODEL_PATH (the original embedding model path) as the basis
for the converted model file name.
The motivation for this that currently if the converted embedding model
file name differs from the original embedding model directory/name the
verification script will look for the wrong .bin files that were
generating when running the models.
* model-conversion : use CONVERTED_MODEL value for converted model [no ci]
This commit updates the model verification scripts to use the
CONVERTED_MODEL environment variable instead of using the MODEL_PATH
(the original model path) as the basis for the converted model file
name.
The motivation for this that currently if the converted model file name
differs from the original model directory/name the verification scripts
will look for the wrong .bin files that were generating when running the
models.
For example, the following steps were not possible:
```console
(venv) $ huggingface-cli download google/gemma-3-270m-it --local-dir ggml-org/gemma-3-270m
(venv) $ python3 convert_hf_to_gguf.py ggml-org/gemma-3-270m --outfile test-bf16.gguf --outtype bf16
(venv) $ cd examples/model-conversion/
(venv) $ export MODEL_PATH=../../ggml-org/gemma-3-270m
(venv) $ export CONVERTED_MODEL=../../test-bf16.gguf
(venv) $ make causal-verify-logits
...
Data saved to data/llamacpp-test-bf16.bin
Data saved to data/llamacpp-test-bf16.txt
Error: llama.cpp logits file not found: data/llamacpp-gemma-3-270m.bin
Please run scripts/run-converted-model.sh first to generate this file.
make: *** [Makefile:62: causal-verify-logits] Error 1
```
With the changes in this commit, the above steps will now work as
expected.
This commit removes the maximum difference check from the
compare-logits.py which would stop early if the difference between
the logits exceeded a threshold.
The motivation for removing this is that it can be useful to be able to
get the complete log for debugging/reporting purposes.
This commit adds the token ids to the printed prompt outputs.
The motivation for this is that is can be useful to see the actual token
ids alongside the token strings for debugging.
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.
* llama : update worst-case graph for unified cache
* ci : disable op offload in some tests
* fix spelling
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Qwen3 Next - cleaned up version
* Whitespaces and stuff
* Correct minor errors
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Misc. fixes.
* Clean up code, add missing hybrid qualifier
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...
* Whitespace
* Proper tensors for cb calls
* Use llama-graph.h vertical alignment
* BROKEN: chunking
* Set new tensors as inputs.
* Proper chunk logic
* It's the circle of life...
* More shenanigans for n_seq > 1
* Nail in the coffin?
* Fix Windows build
* Eh, one fails on Windows, the other fails on Mac... just use general capture.
* quant : cleanup
* model : cleanup
* qwen3 : cleanup
* cont : cleanup
* cont : cleanup
* ggml : revert change
* qwen3 : cleanup
* cont : cleanup
* Readd cmath
* qwen3 : fix typo
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Usual suspects
* fix my bad suggestion
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit adds the --kv-unified flag to the usage example
in the README.md file for the batched example.
The motivation for this is that without this flag the example will fail
with the following error:
```console
Hello my name is
split_equal: sequential split is not supported when there are coupled
sequences in the input batch (you may need to use the -kvu flag)
decode: failed to find a memory slot for batch of size 4
main: llama_decode() failed
```
* feat(llama-gguf): Print out the tensor type in llama-gguf r
Branch: Mamba2Perf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(off-topic): print the number of elements in tensors with llama-gguf
Branch: Mamba2SSD
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: valign
Branch: GGUFToolOutputs
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Update examples/gguf/gguf.cpp
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit modifies the script `run-org-model.py` to ensure that the
model configuration is explicitly passed to the `from_pretrained` method
when loading the model. It also removes a duplicate configuration
loading which was a mistake.
The motivation for this change is that enables the config object to be
modified and then passed to the model loading function, which can be
useful when testing new models.
Note: the full Google Play version of AI Chat app will be open will be open sourced in another repo soon, therefore didn't go through the trouble of pruning the history using `git filter-repo` here.