* Change to warn instead of debug, to explain reason for stopping.
* Update tools/main/main.cpp
Fix printing --2
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : optmize FA vec for large heads and sequences
* metal : adjust small-batch mul mv kernels
ggml-ci
* batched-bench : fix total speed computation
ggml-ci
* cont : add comments
ggml-ci
* convert : fix tensor naming conflict for llama 4 vision
* convert ok
* support kimi vision model
* clean up
* fix style
* fix calc number of output tokens
* refactor resize_position_embeddings
* add test case
* rename build fn
* correct a small bug
- Use server_tokens in more places in server and util.cpp
- Convert most functions that used llama_tokens to server_tokens
- Modify input tokenizer to handle JSON objects as subprompts
- Break out MTMD prompt parsing into utility function
- Support JSON objects with multimodal_data arrays for MTMD prompts along with other existing types
- Add capability to model endpoint to indicate if client can send multimodal data
- Add tests.
* Fix -Werror=return-type so ci/run.sh can run
* Update tools/mtmd/clip.cpp
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Remove false now that we have abort
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Update docker.yml
修改docker.yml文件中的内容使其停止周期性的运行该workflow,如果想要运行该workflow可以手动启动
* feat:Modify the header file include path
1. There's no llava directory in the tools directory.
2. Because the command `target_include_directories(mtmd PUBLIC .)` is used in the `mtmd` CMakeLists.txt file, other targets that link against `mtmd` automatically include the `mtmd` directory as a search path for header files. Therefore, you can remove `target_include_directories(${TARGET} PRIVATE ../llava`` or use `target_include_directories(${TARGET} PRIVATE ../mtmd`` to explicitly require the `llama-server` target to use header files from `mtmd`.
* Restore the docker.yml file
Add tracking for high watermark cache usage and make it available in /metrics endpoint.
Use-case: Tracking largest needed cache usage under realistic workload
to better understand memory requirements and be able to adjust
cache size/quantization for model/cache accordingly.
* wip lfm2 vision model
* Fix conv weight
* Implement dynamic resolution
* Fix cuda
* support LFM2-VL-450M
* happy CI
* Remove extra `ggml_conv` and put others into the right place
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* model : add harmony parser for gpt-oss
* gpt-oss : fix grammar trigger from causing empty stack
* gpt-oss: tweak the grammar trigger again
* gpt-oss : add support for recipient in role header
* gpt-oss : fix ungrouped tool calls in grammar
* gpt-oss : loosen function name matching during parse
* gpt-oss : clean up workarounds
* gpt-oss : add template tests
* gpt-oss : simulate thinking and tool call tags
* gpt-oss : undo think tags when reasoning_format is none
* gpt-oss : set special tokens back to user defined
* gpt-oss : update openai-gpt-oss template
* server : filter out harmony thought messages
* gpt-oss : simplify parsing