Commit Graph

283 Commits

Author SHA1 Message Date
Dongliang Wei 6c6e397aff
model : add support for SmallThinker series (#14898)
* support smallthinker

* support 20b softmax, 4b no sliding window

* new build_moe_ffn_from_probs, and can run 4b

* fix 4b rope bug

* fix python type check

* remove is_moe judge

* remove set_dense_start_swa_pattern function and modify set_swa_pattern function

* trim trailing whitespace

* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* better whitespace

Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use GGML_ASSERT for expert count validation

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Improve null pointer check for probs

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* use template parameter for SWA attention logic

* better whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* move the creation of inp_out_ids before the layer loop

* remove redundant judge for probs

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-28 13:47:00 +02:00
Shunta Saito 1dc9614e06
llama : fix kq_scale for the attention layers of PLaMo2 (#14892)
* Fix dimensions for expand

* Change dimensions to copy states to cache

* Fix the default value for plamo2 conversion

* Fix scale given to build_attn

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-27 09:38:44 +02:00
jacekpoplawski a12363bbf0
convert : text-only support for GLM-4.1V-9B-Thinking (#14823)
* use language_model part only, ignore visual layers

* fix rope_dim calculation
2025-07-23 23:23:57 +02:00
lgai-exaone e0cb5c5cb8
model : add EXAONE 4.0 support (#14630) 2025-07-18 10:45:49 +02:00
Piotr Wilkin (ilintar) 670e1360cd
convert : fix Ernie4.5 MoE without shared experts (#14746) 2025-07-18 01:17:16 +02:00
Piotr Wilkin (ilintar) cb887f1bc1
model: add Ernie 4.5 MoE support (#14658)
* Add Ernie4.5 MoE

* Fix Flake errors.

* Properly encode/decode MoE layer step

* Correct tensor mappings (.weight)

* Pass and read n_ff_exp

* n_ff_shexp calculation and further minor changes

* Rope fixes.

* .gitignore fix

* Add unit32 cast for Linux builds

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes from code review

* Fix trailing whitespace

* Reenable missing experts error

* Code style from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix non-MoE regression

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-17 23:15:32 +02:00
Aman Gupta ab14019821
Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B

* Move diffusion to examples

* Move stuff to examples. Add patch to not use kv-cache

* Address review comments

* Make sampling fast

* llama: remove diffusion functions

* Add basic timings + cleanup

* More cleanup

* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length

* fixup!

* Review: move everything to diffusion-cli for now
2025-07-16 20:03:51 +08:00
Sigbjørn Skjæret cf91f217f1
convert : add pre-computed hashes first to prevent order mishaps (#14701) 2025-07-16 08:51:12 +02:00
Gabriel Larson 4a4f426944
model : add Kimi-K2 support (#14654)
* Kimi-K2 conversion

* add Kimi_K2  pre type

* Kimi-K2

* Kimi-K2 unicode

* Kimi-K2

* LLAMA_MAX_EXPERTS 384

* fix vocab iteration

* regex space fix

* add kimi-k2 to pre_computed_hashes

* Updated with kimi-k2 get_vocab_base_pre hash

* fix whitespaces

* fix flake errors

* remove more unicode.cpp whitespaces

* change set_vocab() flow

* add moonshotai-Kimi-K2.jinja to /models/templates/

* update moonshotai-Kimi-K2.jinja

* add kimi-k2 chat template

* add kimi-k2

* update NotImplementedError

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* except Exception

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* LLM_CHAT_TEMPLATE_KIMI_K2 if(add_ass){}

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-15 21:54:22 +02:00
Shunta Saito 68e37a61a7
model : add PLaMo-2 support (#14560)
* Add PLaMo-2 model using hybrid memory module

* Fix z shape

* Add cmath to include from llama-vocab.h

* Explicitly dequantize normalization weights before RoPE apply

* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing

* Use ATTN_K/Q_NORM for k,q weights to prevent quantization

* Remove SSM_BCDT that is not used from anywhere

* Do not duplicate embedding weights for output.weight

* Fix tokenizer encoding problem for multibyte strings

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up

* Remove unnecessary part for Grouped Query Attention

* Fix how to load special token id to gguf

* Remove unused tensor mapping

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix plamo2 tokenizer session to prevent multiple calls of build()

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-15 18:11:42 +02:00
Molly Sophia 0d9226763c
llama : add jinja template for rwkv-world (#14665)
* llama : add jinja template for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-14 07:43:43 +08:00
Tarek Dakhran f5e96b368f
model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Dowon 576c82eda2
vocab : add midm-2.0 model pre-tokenizer (#14626) 2025-07-11 09:36:04 +02:00
Gabe Goodhart 0aedae00e6
model : Granite Four (#13550)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* llama : use im2col and mul_mat to perform convolution for Mamba

This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* llama : rename llama_cache to llama_past

This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)

Still, I'm open to better suggestions.

* examples : replace llama_kv_cache_seq_* with llama_past_seq_*

* mamba : fix non-contiguous usage of ggml_silu

* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* feat: Add conversion for Bamba models

This is borrowed and adapted from the original implementation
https://github.com/ggml-org/llama.cpp/pull/10810

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add Granite 4 conversion

This is a manual copy from my draft branch
https://github.com/gabe-l-hart/llama.cpp/blob/GraniteFourDraft/convert_hf_to_gguf.py#L5076

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Plumb bamba through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add bamba to llama_arch_is_hybrid_recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add optional mamba ssm_in bias tensor

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add template specialization for get_arr to load a vector<uint32_t> for layer index arr in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Use an explicit bool to determine mamaba vs mamba2

This allows other architectures like bamba and granitemoehybrid to use
mamab2 without a growing architecture `if` statement inside the mamba
implementation.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Isolate mamba(2) and granite attention layer building in static methods

This will allow these layer-builder methods to be used from other build
structs without complex inheritance.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizes in granite build_attention_layer

Also no need to pass in kv cache since it's already in the inp_attn

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at end-to-end Bamba implementation

It generates (garbage) tokens! Still lots of debugging to do.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only do Granite multipliers if set

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Pull granite ffn portion into a static function and reuse in hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(py): Allow gguf duplicate keys if they match by value and type

This is helpful for hybrid models that want to do gguf param setting by
calling multiple parent classes without needing to make those parent
classes try/except on every attempt to set a gguf value.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor(py): Simplify granitemoehybrid conversion to use parents better

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add GRANITE_MOE_HYBRID through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support GRANITE_MOE_HYBRID in llama-model

This re-uses the Bamba code paths heavily and simply adds the missing parts
for loading MoE and the shared expert.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix flake8 errors

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix recurrent cache get after rebase

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix hybrid granite implementation for signature changes in build_mamba*_layer

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor relationship between non-hybrid classes and hybrid impl to use mixins

The challenge here is to give both the non-hybrid classes (llm_build_mamba
and llm_build_granite) AND the hybrid class (llm_build_hybrid_mamba) access
to the same intermediate "base class" functionality (build_mamba*_layer,
build_granite_attention_layer) without running into trouble with diamond
inheritance of llm_graph_context. Due to the non-trivial initialization
that happens in llm_graph_context, diamond inheritance results in multiple
initializations of the common base which cause problems around the unique
ptrs. I wanted to get away from `self->` everywhere, but this is still a
bit cleaner than making those methods static I think.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Implement the full copy-paste version to duplicate the layer builders

This follows the pattern where the type of input is pinned to the type of
memory and that is used to dispatch to the correct version of `build_rs` /
`build_attn`. There's a lot of code duplication that can hopefully be
pulled into common functions in the graph later.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llm_build_hybrid_mamba -> llm_build_granite_hybrid

I've got back-and-forth a lot about how/if to try to implement reuse of the
"child model" layer types for hybrid models. At the end of the day, I think
hybrid models are their own beast and even if their layers are inspired by
other models, they should maintain control of their own layer building (in
other words, the copy-paste method). Given that, the name should reflect
that this is not a generic hybrid model builder, but rather a granite-
specific hybrid model builder that can do MoE (granite 4) or dense (bamba).

As part if this, I also cleaned up dangling comments from previous attempts
at using static methods for reusability.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* memory : correctly handle failure in apply()

ggml-ci

* style: Remove TODO for adding first hybrid models to the switch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge in tensor_mapping.py w/ SSM_NORM

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge resolution with variable renames/moves in llm_build_mamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Fix comment about duplicate key check

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Conform to standard way of initializing inp_out_ids

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* convert : fix jamba conv1d shape squeezing

* fix: Fix input initialization in granite_hybrid after removal of hybrid inputs

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use llm_graph_context_mamba in llm_build_granite_hybrid

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor mamba2/granite/jamba/granite_hybrid relationships as mixins

The key is for the mixin classes (llm_graph_context_mamba,
llm_graph_context_granite) to use virtual inheritance from
llm_graph_context. This allows the common members to exist only once in the
class hierarchy. The downside is that llm_graph_context will be
re-initialized once for each parent (ie 2x for single mixin, 3x for two
mixins, etc...).

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* fix: Fix input setup after upstream merge

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Add support for dense FFN in GraniteMoeHybrid

This was already partially supported via reusing the granite ffn builder,
and there may be models that leverage this architecture going forward. The
naming is a bit odd, but in the transformers version, it reuses the same
model class and simply has zero regular experts and a single shared expert
(which is the same as a single dense FFN).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add support for dense FFN tensor names on c++ side

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use child inputs for Falcon H1 after merge resolution

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary prefix on tensor constants

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* fix: Revert order changes for Falcon H1 to stay consistent with upstream

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

* refactor: Collapse Bamba and GraniteMoeHybrid into GraniteHybrid

The only key difference is the use of rope which is now set via
rope_finetuned in the hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove use of diamond inheritance

Per PR discussion, it's simpler to keep this with basic inheritance and not
introduce the complexity of virtual inheritance and multiple inheritance

https://github.com/ggml-org/llama.cpp/pull/13550#issuecomment-3053787556

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Log mamba params for Granite Hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused ssm_in_b

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove ATTENTION_LAYER_INDICES hparam in favor of n_head_kv

This matches how recurrent vs attention heads are identified for Jamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused template expansion for get_arr

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Review cleanup in convert_hf_to_gguf

The gist is to be explicit about which base class is being used with the
multiple inheritance setup

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Undo hidden warnings about duplicate identical keys in add_key_value

After further discussion, this encourages sloppy overwriting in the model
converters

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: If not using ROPE, context is "infinite"

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* doc: Add a comment outlining expected duplicate key warnings

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary duplicate keys in converter

Co-authored-by: Francis Couture-Harpin <git@compilade.net>

(thanks for the sharp eyes and patience!)

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-11 02:20:13 +02:00
compilade 4a5686da22
llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* mamba : fix non-contiguous usage of ggml_silu

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* convert : fix jamba conv1d shape squeezing

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-09 14:59:57 -04:00
Dowon ffd59e7d18
model : add skt/A.X-4.0 model vocabulary (#14589) 2025-07-09 11:22:31 +03:00
ibrahim khadraoui 04655063c4
model : add support for Falcon-H1 family (#14534)
* v1

* push more fixes

* another fix

* fix

* more fixes

* minor fix

* more cleaning on python code

* python fixes

* changed precision for multipliers float 32->64

* fixes

* another fix

* fix

* pre-norm -> norm

* fix

* Revert "fix"

This reverts commit 243e4d1a50.

* fix

* small fix ffn_norm

* try

* mix instead of max

* fix vocab size

* conflict solve

* fixed multipliers

* falcon-h1 specefic vocab resolved

* read arch from gguf.MODEL_ARCH

* mamba_d_ssm added to d_inner find_hparam

* remove unused functions from gguf_writer.py

* override modify_tensors instead of get_tensors

* fix conversion and d_inner

* added some cb functions for debugging puposes

* inp_out_ids moved outside of layers loop

* mup_vec create as float64

* fix rope_theta

* injected mup

* clean ups

* rm extra space

* rm unused MAMBA_CHUNK_SIZE

* rm unused key

* add bos False

* changed ROPE_TYPE

* cleaning debugging stuff

* cleaning debug quant

* fix comment

* some cleanups

* some cleanups

* Update src/llama-model-loader.cpp

* more cleanups

* moe cleanuips

* d_ssm -> d_inner;

* cleaning unused hparams

* cleanup

* more cleanups

* more cleanups on python conversion;

* minor cleanups

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* remove todo

* added falcon-h1

* tensor not required

* clean

* remove unneeded attributes

* more cleanups and fixed conversion

* remove final_norm

* flake8 fixes

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* flake8 fixes

* Update src/llama-hparams.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* added hashes

* Update src/llama-arch.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update the update file

* Revert "update the update file"

This reverts commit 082ab4ad2a.

* fix: address suggestions

* fix: update convert_hf_to_gguf.py

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model-loader.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* d_inner fixed

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* reshaping ssm_norm for 34B

* removing generate_mup

* remove duplicates metadata keys

* rm comment

* final comment

* fix unused args

* fix constants

* fix bad merge

* Update src/llama-model.cpp

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: remove unused ssm_in_b and bad merge

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* falcon-h1: fix last comment

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: revert add_add_bos(False)

* falcon-h1: fix tied weights

* falcon-h1: remove whitespace

* falcon-h1: fix wrong size param

* falcon-h1: fix whitespace issues

---------

Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-09 10:03:49 +02:00
Xuan-Son Nguyen 20b7bf8a32
convert : fix smollm3 jinja template (#14586) 2025-07-09 09:26:13 +03:00
Xuan-Son Nguyen 08382869a2
model : add SmolLM3 (#14581)
* Init - first pass.

* Model -> ModelBase.

* fix errors in conversion.

* Update the graph.

* up.

* up.

* wip

* cgraph ok

* rm redundant code

---------

Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
2025-07-08 18:07:01 +02:00
Xuan-Son Nguyen 8f22dc0a53
model : add hunyuan moe (#14425)
* model : add hunyuan moe

* tokenizer ok

* fix tensor name

* cgraph init

* chat template

* wip

* almost working

* skip embed, fix bos

* cleanup

* yarn scaling

* cleanup

* correct rope type

* failed token fix

* ntk alpha freq_base

* tokenization working

* cleanup and pr changes

* vocab_size sanity check

* ntk alpha generic

* Update convert_hf_to_gguf.py

* Apply suggestions from code review

* fix regression

* fix style

---------

Co-authored-by: kooshi <1934337+kooshi@users.noreply.github.com>
2025-07-08 11:24:06 +03:00
Sigbjørn Skjæret e75ba4c043
gguf-py : add support for chat template jinja files (#14508)
* add support for chat template jinja files

* remove gemma3n hack
2025-07-02 21:02:35 +02:00
compilade 5d46babdc2
llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Weizhao Ouyang 566c16fcce
model : add support for ERNIE 4.5 0.3B model (#14408)
Add Day-0 support for Baidu ERNIE 4.5 0.3B model.

Signed-off-by: Weizhao Ouyang <weizhao.ouyang@arm.com>
2025-06-28 16:08:21 +02:00
Sigbjørn Skjæret f667f1e624
convert : fix broken sentencepiece vocab (#14416) 2025-06-27 10:42:19 +02:00
Xuan-Son Nguyen 8846aace49
model : gemma3n text-only (#14400)
* gemma3n

* add llm_graph_input_one
2025-06-26 20:34:02 +03:00
Daniel Han b23fa0b3f4
convert : fix Llama 4 conversion (#14311) 2025-06-21 06:32:01 +02:00
Sigbjørn Skjæret 88fc854b4b
llama : improve sep token handling (#14272) 2025-06-20 14:04:09 +02:00
pqnet 5fc7856815
convert : fix remote option in Windows (#14100) 2025-06-19 12:21:40 +02:00
Sigbjørn Skjæret 3865cff4f5
convert : fix null head_dim AutoConfig regression (#14248) 2025-06-18 09:52:07 +02:00
Đinh Trọng Huy ad590be98c
model : add NeoBERT (#14164)
* convert neobert model to gguf

* add inference graph

* fix flake8 lint

* followed reviewer suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* follow reviewers suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* override NeoBERT feed-forward length

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 14:53:41 +02:00
Bartowski d7da8dc83a
model : Add support for Arcee AI's upcoming AFM model (#14185)
* Add Arcee AFM support

* Add draft update code

* Fix linter and update URL, may still not be final

* Update src/llama-model.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Remote accidental blank line

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-06-16 01:04:06 +02:00
Mikko Juola 9ae4143bc6
model : add dots.llm1 architecture support (#14044) (#14118)
Adds:

* Dots1Model to convert_hf_to_gguf.py

* Computation graph code to llama-model.cpp

* Chat template to llama-chat.cpp to detect this model's template.

---

The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.

The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:

* https://huggingface.co/rednote-hilab/dots.llm1.inst

* https://huggingface.co/rednote-hilab/dots.llm1.base

The model architecture is a combination of Qwen and Deepseek parts, as
seen here:

ffe12627b4/src/transformers/models/dots1/modular_dots1.py
2025-06-15 09:52:06 +02:00
Sigbjørn Skjæret 55f6b9fa65
convert : fix duplicate key DeepSeek-R1 conversion error (#14103) 2025-06-10 23:29:52 +02:00
Sigbjørn Skjæret 3678b838bb
llama : support GEGLU for jina-bert-v2 (#14090) 2025-06-10 18:02:08 +02:00
Sigbjørn Skjæret 1caae7fc6c
gguf-py : add add_classifier_output_labels method to writer (#14031)
* add add_classifier_output_labels

* use add_classifier_output_labels
2025-06-05 17:42:31 +02:00
Sigbjørn Skjæret 5e1c3aed40
convert : fix nomic-bert-moe mask token (#13757) 2025-06-01 18:07:21 +02:00
Sigbjørn Skjæret c496fe0b1d
convert : fix vocab padding code for bert models (#13954) 2025-06-01 17:23:11 +02:00
Sigbjørn Skjæret db38704f01
convert : fix rwkv bos/eos token (#13844) 2025-05-30 14:50:43 +02:00
Xuan-Son Nguyen 07e4351ce6
convert : allow partial update to the chkhsh pre-tokenizer list (#13847)
* convert : allow partial update to the chkhsh pre-tokenizer list

* code style

* update tokenizer out

* rm inp/out files for models not having gguf

* fixed hash for glm

* skip nomic-bert-moe test

* Update convert_hf_to_gguf_update.py

* fix minerva-7b hash

* rm redundant import
2025-05-30 12:24:37 +02:00
Đinh Trọng Huy 291f2b6913
llama : add support for DistilBert (#13907)
* add distilbert

* small fixes

* add note for LLM_ARCH_DISTIL_BERT

* Use MODEL_ARCH.BERT for DistilBert

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-30 11:56:02 +02:00
Sigbjørn Skjæret e83ba3e460
llama : add support for jina-reranker-v2 (#13900) 2025-05-29 21:42:31 +02:00
Sigbjørn Skjæret 5ca82fc1d7
convert : workaround for AutoConfig dummy labels (#13881) 2025-05-29 10:00:57 +02:00
Sigbjørn Skjæret 6385b843a8
llama : add RobertaForSequenceClassification reranker support (#13875) 2025-05-29 08:15:01 +02:00
Đinh Trọng Huy e0e3aa231d
llama : add support for BertForSequenceClassification reranker (#13858)
* convert: add support for BertForSequenceClassification

* add support for reranking using BertForSequenceClassification

* merge checks of eos and sep

* fix lint

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-28 19:01:58 +02:00
Đinh Trọng Huy aa6dff05be
convert: small addition to support LlamaModel (#13838)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-28 16:34:18 +02:00
Xuan-Son Nguyen a3938fb53d
convert : fix qwen omni conversion (#13859)
* convert : fix qwen omni conversion

* fix typo
2025-05-28 16:12:35 +02:00
Xuan-Son Nguyen 26b79b6cb3
convert : fix tensor naming conflict for llama 4 vision (#13836)
* convert : fix tensor naming conflict for llama 4 vision

* add comment
2025-05-28 10:05:54 +02:00
Xuan-Son Nguyen bc583e3c63
mtmd : support Qwen 2.5 Omni (input audio+vision, no audio output) (#13784)
* mtmd : allow multiple modalities at the same time

* refactor mtmd tokenizer

* fix compile

* ok, missing SinusoidsPositionEmbedding

* first working version

* fix style

* more strict validate of n_embd

* refactor if..else to switch

* fix regression

* add test for 3B

* update docs

* fix tokenizing with add_special

* add more tests

* fix test case "huge"

* rm redundant code

* set_position_mrope_1d rm n_tokens
2025-05-27 14:06:10 +02:00
Xuan-Son Nguyen 40aaa8a403
mtmd : add support for Qwen2-Audio and SeaLLM-Audio (#13760)
* mtmd : add Qwen2-Audio support

* small clean up

* update discussion link

* clarify mtmd_get_output_embd

* clarification in multimodal.md

* fix ultravox bug

* ggml_cont
2025-05-25 14:06:32 +02:00
Xuan-Son Nguyen 797990c4bc
mtmd : add ultravox audio input (#13623)
* convert ok, load ok

* warmup ok

* test

* still does not work?

* fix padding

* temporary give up

* fix merge conflict

* build_ultravox()

* rm test

* fix merge conflict

* add necessary mtmd APIs

* first working version (only 4s of audio)

* will this monster compile?

* fix compile

* please compile

* fPIC

* fix windows

* various fixes

* clean up audio_helpers

* fix conversion

* add some debug stuff

* long audio input ok

* adapt the api

* add --audio arg

* final touch UX

* add miniaudio to readme

* fix typo

* refactor kv metadata

* mtmd_default_marker()
2025-05-22 20:42:48 +02:00
antichristHater c76532e7ba
convert : add qwen2vl support for unsloth merges (#13686) 2025-05-21 18:40:35 +02:00
Xuan-Son Nguyen 92ecdcc06a
mtmd : add vision support for llama 4 (#13282)
* wip llama 4 conversion

* rm redundant __init__

* fix conversion

* fix conversion

* test impl

* try this

* reshape patch_embeddings_0

* fix view

* rm ffn_post_norm

* cgraph ok

* f32 for pos embd

* add image marker tokens

* Llama4UnfoldConvolution

* correct pixel shuffle

* fix merge conflicts

* correct

* add debug_graph

* logits matched, but it still preceives the image incorrectly

* fix style

* add image_grid_pinpoints

* handle llama 4 preprocessing

* rm load_image_size

* rm unused line

* fix

* small fix 2

* add test & docs

* fix llava-1.6 test

* test: add notion of huge models

* add comment

* add warn about degraded quality
2025-05-19 13:04:14 +02:00
Xuan-Son Nguyen c531edfa34
convert : fix conversion for llama 4 (#13567) 2025-05-15 17:40:07 +02:00
Gabe Goodhart d590cd4c24
model : Granite MoE shared (#13269)
* feat: Add GGUF conversion for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: hparam and arch plumbing for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Split MoE fused tensors for shared experts in conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First WIP cut at model arch in cpp

The hparam and architecture plumbing should be correct, but the
implementation of the shared experts seems to still be broken.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Cleaner (maybe more correct?) splitting for gate/up

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix the input to the shared experts

I had misread that the shared experts take the inputs _before_ the standard
MoE layer and was feeding the output of the MoE to the shared experts.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Avoid architecture-specific checks for Granite MoE Shared

This is a cleaner way that will allow more flexibility in architecture
strings going forward.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Split granite architectures out of llm_build_llama

This helps de-clutter the llama-family graph construction and allows
granite to diverge further (in preparation for Granite 4).

NOTE: I removed the granite scale factors from llm_build_deci because they
appear to only be there as copy-paste from llm_build_llama. The HF config
does not seem to set those values:
https://huggingface.co/Deci/DeciLM-7B/blob/main/config.json

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix compiler warning about uninitialized inp_pos

This should not have been reachable, but it warns on some compliers

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consoladate GraniteMoEShared into GraniteMoE for conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consolidate GraniteMoEShared into GraniteMoE on the c++ side

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-05-13 15:12:01 +02:00
Sigbjørn Skjæret d2a4ef05c6
vocab : add ByteDance-Seed/Seed-Coder (#13423) 2025-05-10 22:08:07 +02:00
Xuan-Son Nguyen 053367d149
mtmd : support InternVL 2.5 and 3 (#13422)
* convert : internvl support

* InternVL3-1B working

* fix regression

* rm mobilevlm from test

* fix conversion

* add test for internvl

* add to list of pre-quant

* restore boi/eoi check

* add clarify comment for norm eps
2025-05-10 16:26:42 +02:00
Sigbjørn Skjæret 1a844be132
convert : support rope_scaling type and rope_type (#13349) 2025-05-08 15:34:29 +02:00
Xuan-Son Nguyen 32916a4907
clip : refactor graph builder (#13321)
* mtmd : refactor graph builder

* fix qwen2vl

* clean up siglip cgraph

* pixtral migrated

* move minicpmv to a dedicated build function

* move max_feature_layer to build_llava

* use build_attn for minicpm resampler

* fix windows build

* add comment for batch_size

* also support tinygemma3 test model

* qwen2vl does not use RMS norm

* fix qwen2vl norm (2)
2025-05-06 22:40:24 +02:00
Sigbjørn Skjæret 764b85627b
convert : qwen2/3moe : set yarn metadata if present (#13331)
* set yarn metadata if present

* add comment about enabling YaRN

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-05-06 11:12:06 +02:00
Xuan-Son Nguyen 5215b91e93
clip : fix confused naming ffn_up and ffn_down (#13290)
* clip :  fix confused naming ffn_up and ffn_down

* rm ffn_i/o/g naming

* rename n_embd, n_ff

* small fix

* no check n_ff
2025-05-05 12:54:44 +02:00
Sigbjørn Skjæret ae803bfc3d
convert : bailingmoe : set yarn metadata if present (#13312) 2025-05-05 12:34:26 +02:00
ymcki 3bf785f3ef
llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
Jared Van Bortel 2f567611c0
llama-model : support Qwen2 embedding models and pooling_mode_lasttoken (#13245) 2025-05-02 11:42:30 -04:00
Jared Van Bortel 7d2123484e
convert : use correct context length for nomic-embed-text-v2 (#13216) 2025-05-02 11:41:54 -04:00
Xuan-Son Nguyen 074e42ab31
convert : converting mmproj for Qwen2/2.5VL from convert_hf_to_gguf (#13209)
* wip

* qwen2.5vl ok

* vision: fix models missing "text_config"

* add test

* fix test repo name

* fix 32B model

* Revert "fix 32B model"

This reverts commit 651752f1ae.

* clarify about 32B

* rm qwen surgery script

* update llava/readme

* move V_ENC_EMBD_PATCH handling to Qwen2VLVisionModel
2025-05-02 17:17:15 +02:00
Xuan-Son Nguyen dcf886007d
convert : explicitly disable trust_remote_code for AutoConfig (#13246) 2025-05-02 08:45:10 +02:00
Xuan-Son Nguyen 8936784f7a
mtmd : add **vision** support for Mistral Small 3.1 (#13231)
* convert ok

* load ok, missing patch merger

* ah sheet it works

* update llava/readme

* add test

* fix test
2025-05-01 17:05:42 +02:00
Xuan-Son Nguyen 3e168bede4
convert : improve model arch handling (#13122)
* convert : improve model arch handling

* use AutoConfig

* rm trust_remote_code

* Update convert_hf_to_gguf.py

* fix self.block_count for vision

* fix NomicBertModel
2025-04-30 16:56:24 +02:00
Xuan-Son Nguyen 07c2e2f76c
convert : correct typo image_mean --> image_std (#13208) 2025-04-30 13:06:15 +02:00
AT 5f5e39e1ba
model : Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture (#12466)
* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture

- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.

https://www.nomic.ai/blog/posts/nomic-embed-text-v2

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

* fix tokenizer

* don't rename this tensor

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2025-04-28 22:52:15 +03:00
matteo ced44be342
llama-chat : fix wrong template in GLM4-0414 (#13140)
* fix wrong template in GLM4-0414

* fix spaces

* no bos token since it is already in the template

* moved the chatgml4 check to higher priority

* restored template for old GLM models

* moved the GLM4 template check in the correct place with correct check
2025-04-27 21:57:32 +02:00
HimariO ca2bb89eac
clip : Add Qwen2.5VL support (#12402)
* implment vision model architecture, gguf convertor

* handle window attention inputs

* add debug utils

* fix few incorrect tensor memory layout

* move position id remap out of ggml to avoid int32 cuda operations

* cleaning up

* ignore transformers Qwen2_5_xxx type check

* remove not so often use `qwen2vl-cli` debug functions

* remove commented-out code blocks

* fix attn weight scaling after rebase

* add `PROJECTOR_TYPE_QWEN2_5_VL`

* remove `KEY_USE_GLU_MLP`, `KEY_USE_RMS_NORM`

* replace `KEY_FULLATTN_BLK_IDX` with `KEY_WIN_ATTN_PATTERN`

* remove `attn_window_size` from gguf

* fix model conversion

* clean up

* fix merging problem

* add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-27 10:10:34 +02:00
Xuan-Son Nguyen ecda2ec4b3
mtmd : Support Pixtral 12B (#13065)
* add pixtral text model (vision is wip)

* cgraph ok, just missing 2D RoPE

* fix bad rebase

* first working version

* fix problem with img_break token

* support dynamic image size

* update docs

* update test script
2025-04-23 20:21:59 +02:00
piDack eb1776b15a
convert : Append mult-eos,half-rope,bos to GLM4-0414 and Z (#13021)
* append mult-eos,half-rope,bos to GLM4-0414

* remove unset var
2025-04-23 16:59:14 +02:00
Xuan-Son Nguyen dc39a5e7a8
mtmd : support SmolVLM (version 1 and 2) (#13050)
* mtmd : support SmolVLM (version 1 and 2)

* correct chat template

* fix n_patches

* scale_factor is an int

* add more models to test
2025-04-22 16:24:54 +02:00
Xuan-Son Nguyen 2016f07bd1
convert : experimental support for `--mmproj` flag (#13023)
* convert : experimental support for `--mmproj` flag

* fix bad ctrl+f replace

* fix style

* split into subclasses TextModel and VisionModel

* rename Mode --> ModelBase

* small fix

* correct CLIP_VISION arch name (because existing GGUF already use it)

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

* fix Mistral3Model

* fix typo

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2025-04-20 23:29:36 +02:00
Juk Armstrong daa422881a
llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Yuxuan Zhang 06bb53ad9b
llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
Daniel Han ec6c09d0fa
convert : Llama4 RoPE fix (#12889) 2025-04-11 09:49:09 +02:00
Xuan-Son Nguyen 5b1f13cb64
convert : proper tensor name mapping for llama4 (#12870)
* Llama-4 mapping

* remove hacky renaming

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2025-04-11 09:23:37 +02:00
Xuan-Son Nguyen 64eda5deb9
convert : ability to lazy-load safetensors remotely without downloading to disk (#12820)
* gguf util : add SafetensorRemote

* fix style

* convert: add --remote option

* convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.

* correct metadata.name

* small style fix

* support HF_TOKEN

* convert : use writeable buffer for remote lazy tensors

* convert : fix flake8 lint regarding lamdba assigment

* multithreaded download

* multithread: print debug

* fix style

* Revert "multithreaded download"

This reverts commit 42fc895ace.

* bring back _get_request_headers

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-04-10 17:24:44 +02:00
Bo Zheng d3bd7193ba
llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
Xuan-Son Nguyen 1466621e73
llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
Sigbjørn Skjæret 5936a616e4
convert : BailingMoE : fix qkv split when head_dim is 0 (#12687)
NOTE: Ling-lite-base is broken, see https://huggingface.co/inclusionAI/Ling-lite-base/discussions/2
2025-04-01 14:37:13 +02:00
Sigbjørn Skjæret 35782aeedb
convert : BailingMoE : avoid setting rope_dim to 0 (#12678) 2025-03-31 23:09:48 +02:00
Sigbjørn Skjæret 403fbacbbc
convert : Qwerky : use lora_rank_tokenshift and lora_rank_decay if present (#12667) 2025-03-31 16:36:25 +02:00
Sigbjørn Skjæret 2c3f8b850a
llama : support BailingMoE (Ling) (#12634) 2025-03-30 22:21:03 +02:00
Juyoung Suk b3de7cac73
llama : add Trillion 7B model support (#12556)
* Support Trillion 7B

* Update llama.h

* Update llama.h

* Update llama-vocab.cpp for Trillion

* Update llama-vocab.cpp
2025-03-30 20:38:33 +02:00
Si1w f125b8dccf
llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
Csaba Kecskemeti d5c6309d91
convert : Support Qwen2_5_VLForConditionalGeneration (#12595) 2025-03-27 11:11:23 +01:00
Georgi Gerganov df4d20cd53
convert : fix squeeze for ssm_conv tensors (#12573)
* convert : fix squeeze for ssm_conv tensors

* convert : match ssm_conv tensors by type

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-03-26 08:21:05 -04:00
Sigbjørn Skjæret 53af4dba42
convert: fix Mistral3/Gemma3 model hparams init (#12571)
* Fix Mistral3/Gemma3 model hparams init

* set positional args correctly

* use existing hparams if passed
2025-03-25 23:03:10 +01:00
compilade 00d53800e0
llama-vocab : add SuperBPE pre-tokenizer (#12532) 2025-03-24 11:47:24 +01:00
Bartowski 732b5fbf5e
convert : avoid calls to tokenizer.added_tokens_decoder (#12473)
tokenizer.added_tokens_decoder returns a fresh dict every time relatively slowly (~0.04s on average) which results in massive slowdowns when we have a huge number of added tokens
2025-03-20 08:36:37 +02:00
Sigbjørn Skjæret 108e53c2f1
llama : add support for GPT2, Bloom and CodeShell tied word embeddings (#12456)
* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
2025-03-19 09:08:49 +01:00
Xuan-Son Nguyen 29fff308c7
llama : support converting Mistral Small text-only (#12450) 2025-03-18 19:16:19 +01:00
Molly Sophia 7dfad387e3
llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Xuan-Son Nguyen 7841fc723e
llama : Add Gemma 3 support (+ experimental vision capability) (#12343)
* llama : Add Gemma 3 text-only support

* fix python coding style

* fix compile on ubuntu

* python: fix style

* fix ubuntu compile

* fix build on ubuntu (again)

* fix ubuntu build, finally

* clip : Experimental support for Gemma 3 vision (#12344)

* clip : Experimental support for Gemma 3 vision

* fix build

* PRId64
2025-03-12 09:30:24 +01:00
Xuan-Son Nguyen c43a3e7996
llama : add Phi-4-mini support (supersede #12099) (#12108)
* Added Phi-4-mini-instruct support

* Update regex per ngxson

* Change the vocab base to Xenova/gpt-4o

* fix conversion update script

* no need to check longrope

* minor style fix

* fix python style

---------

Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
2025-02-28 12:44:11 +01:00
Georgi Gerganov 68ff663a04
repo : update links to new url (#11886)
* repo : update links to new url

ggml-ci

* cont : more urls

ggml-ci
2025-02-15 16:40:57 +02:00
piDack 0cec062a63
llama : add support for GLM-Edge and GLM-Edge-V series models (#10573)
* add glm edge chat model

* use config partial_rotary_factor as rope ratio

* support for glm edge model

* vision model support

* remove debug info

* fix format

* llava.cpp trailing whitespace

* remove unused AutoTokenizer

* Update src/llama.cpp for not contain <|end|> or </s>

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add edge template

* fix chat template

* fix confict

* fix confict

* fix ci err

* fix format err

* fix template err

* 9b hf chat support

* format

* format clip.cpp

* fix format

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/llava/clip.cpp

* fix format

* minor : style

---------

Co-authored-by: liyuhang <yuhang.li@zhipuai.cn>
Co-authored-by: piDack <pcdack@hotmail.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: liyuhang <yuhang.li@aminer.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-02 09:48:46 +02:00
Xuan Son Nguyen ec7f3ac9ab
llama : add support for Deepseek-R1-Qwen distill model (#11310)
* llama : add support for Deepseek-R1-Qwen distill model

* coding style
2025-01-20 14:35:07 +01:00
RunningLeon 4dbc8b9cb7
llama : add internlm3 support (#11233)
* support internlm3

* fix lint
2025-01-16 20:10:38 +02:00
Daniel Bevenius 2739a71e4b
convert : sort print supported models [no ci] (#11179)
This commit sorts the list of supported models when printing them out.

The motivation for this change is to make it easier to find a specific
model in the list of supported models. For example:
```console
$ ./convert_hf_to_gguf.py --print-supported-models
Supported models:
- ArcticForCausalLM
- BaiChuanForCausalLM
- BaichuanForCausalLM
- BertForMaskedLM
- BertModel
- BitnetForCausalLM
- BloomForCausalLM
- BloomModel
- CamembertModel
- ChameleonForCausalLM
- ChameleonForConditionalGeneration
- ChatGLMForConditionalGeneration
- ChatGLMModel
- CodeShellForCausalLM
- Cohere2ForCausalLM
- CohereForCausalLM
- DbrxForCausalLM
- DeciLMForCausalLM
- DeepseekForCausalLM
- DeepseekV2ForCausalLM
- DeepseekV3ForCausalLM
- ExaoneForCausalLM
- FalconForCausalLM
- FalconMambaForCausalLM
- GPT2LMHeadModel
- GPTBigCodeForCausalLM
- GPTNeoXForCausalLM
- GPTRefactForCausalLM
- Gemma2ForCausalLM
- GemmaForCausalLM
- GraniteForCausalLM
- GraniteMoeForCausalLM
- GrokForCausalLM
- InternLM2ForCausalLM
- JAISLMHeadModel
- JinaBertForMaskedLM
- JinaBertModel
- LLaMAForCausalLM
- LlamaForCausalLM
- LlavaStableLMEpochForCausalLM
- MPTForCausalLM
- MT5ForConditionalGeneration
- MambaForCausalLM
- MambaLMHeadModel
- MiniCPM3ForCausalLM
- MiniCPMForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- NemotronForCausalLM
- NomicBertModel
- OLMoForCausalLM
- Olmo2ForCausalLM
- OlmoForCausalLM
- OlmoeForCausalLM
- OpenELMForCausalLM
- OrionForCausalLM
- Phi3ForCausalLM
- PhiForCausalLM
- PhiMoEForCausalLM
- PlamoForCausalLM
- QWenLMHeadModel
- Qwen2ForCausalLM
- Qwen2MoeForCausalLM
- Qwen2VLForConditionalGeneration
- RWForCausalLM
- RWKV6Qwen2ForCausalLM
- RobertaModel
- Rwkv6ForCausalLM
- StableLMEpochForCausalLM
- StableLmForCausalLM
- Starcoder2ForCausalLM
- T5EncoderModel
- T5ForConditionalGeneration
- T5WithLMHeadModel
- UMT5ForConditionalGeneration
- WavTokenizerDec
- XLMRobertaForSequenceClassification
- XLMRobertaModel
- XverseForCausalLM
```
2025-01-11 05:50:33 +01:00
Daniel Bevenius ff3fcabc72
convert : add --print-supported-models option (#11172)
* convert : add --print-supported-models option

This commit adds a new option to the convert_hf_to_gguf.py script to
print the supported models.

The motivation for this is that it can be useful to know which models
are supported by the script without having to look at the code.

Example usage:
```console
$ ./convert_hf_to_gguf.py --print-supported-models
Supported models:
- GPTNeoXForCausalLM
- BloomForCausalLM
- BloomModel
- MPTForCausalLM
- OrionForCausalLM
- BaichuanForCausalLM
- BaiChuanForCausalLM
- XverseForCausalLM
- FalconForCausalLM
- RWForCausalLM
- GPTBigCodeForCausalLM
- GPTRefactForCausalLM
- StableLmForCausalLM
- StableLMEpochForCausalLM
- LlavaStableLMEpochForCausalLM
- LLaMAForCausalLM
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- DeciLMForCausalLM
- BitnetForCausalLM
- GrokForCausalLM
- DbrxForCausalLM
- MiniCPMForCausalLM
- MiniCPM3ForCausalLM
- QWenLMHeadModel
- Qwen2ForCausalLM
- Qwen2VLForConditionalGeneration
- WavTokenizerDec
- Qwen2MoeForCausalLM
- GPT2LMHeadModel
- PhiForCausalLM
- Phi3ForCausalLM
- PhiMoEForCausalLM
- PlamoForCausalLM
- CodeShellForCausalLM
- InternLM2ForCausalLM
- BertModel
- BertForMaskedLM
- CamembertModel
- RobertaModel
- NomicBertModel
- XLMRobertaModel
- XLMRobertaForSequenceClassification
- GemmaForCausalLM
- Gemma2ForCausalLM
- Starcoder2ForCausalLM
- Rwkv6ForCausalLM
- RWKV6Qwen2ForCausalLM
- MambaForCausalLM
- MambaLMHeadModel
- FalconMambaForCausalLM
- CohereForCausalLM
- Cohere2ForCausalLM
- OLMoForCausalLM
- OlmoForCausalLM
- Olmo2ForCausalLM
- OlmoeForCausalLM
- JinaBertModel
- JinaBertForMaskedLM
- OpenELMForCausalLM
- ArcticForCausalLM
- DeepseekForCausalLM
- DeepseekV3ForCausalLM
- DeepseekV2ForCausalLM
- UMT5ForConditionalGeneration
- MT5ForConditionalGeneration
- T5ForConditionalGeneration
- T5WithLMHeadModel
- T5EncoderModel
- JAISLMHeadModel
- ChatGLMModel
- ChatGLMForConditionalGeneration
- NemotronForCausalLM
- ExaoneForCausalLM
- GraniteForCausalLM
- GraniteMoeForCausalLM
- ChameleonForCausalLM
- ChameleonForConditionalGeneration
```

* squash! convert : add --print-supported-models option

Fix flake8 error.
2025-01-10 11:30:53 +01:00
Molly Sophia ee7136c6d1
llama: add support for QRWKV6 model architecture (#11001)
llama: add support for QRWKV6 model architecture (#11001)

* WIP: Add support for RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Some graph simplification

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add support for RWKV6Qwen2 with cpu and cuda GLA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV6[QWEN2]: Concat lerp weights together to reduce cpu overhead

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix some typos

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix wkv test & add gla test

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix cuda warning

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update README.md

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update ggml/src/ggml-cuda/gla.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix fused lerp weights loading with RWKV6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* better sanity check skipping for QRWKV6 in llama-quant

thanks @compilade

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: compilade <git@compilade.net>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2025-01-10 09:58:08 +08:00
Pierrick Hymbert f8feb4b01a
model: Add support for PhiMoE arch (#11003)
* model: support phimoe

* python linter

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: minor

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>

* doc: add phimoe as supported model

ggml-ci

---------

Co-authored-by: ThiloteE <73715071+ThiloteE@users.noreply.github.com>
2025-01-09 11:21:41 +01:00
fairydreaming 9394bbd484
llama : Add support for DeepSeek V3 (#11049)
* convert : extend DEEPSEEK2 model architecture to support DeepseekV3ForCausalLM by adding EXPERT_WEIGHTS_NORM and EXPERT_GATING_FUNC model parameters and FFN_EXP_PROBS_B tensor type

* vocab : add DeepSeek V3 pre-tokenizer regexes

* unicode : handle ACCENT_MARK and SYMBOL categories in regex

* llama : add DeepSeek V3 chat template, handle new model parameters and tensor types

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-01-04 21:06:11 +01:00
DAN™ 46be942214
llama : add support for the cohere2 model architecture (#10900) 2025-01-04 16:33:31 +02:00
ymcki bc7b1f8632
convert : fix Llama-3_1-Nemotron-51B rope settings (#11008)
* conflict resolution

* move comments after bracket to its own line

* DeciLMCausalModel now reads rope_theta from config.json properly
2024-12-31 13:04:48 +02:00
Yun Dou b92a14a841
llama : support InfiniAI Megrez 3b (#10893)
* Support InfiniAI Megrez 3b

* Fix tokenizer_clean_spaces for megrez
2024-12-23 01:35:44 +01:00
ymcki 6f0c9e034b
llama : support for Llama-3_1-Nemotron-51B (#10669)
* conflict resolution

* move comments after bracket to its own line
2024-12-23 01:22:33 +01:00
Billel Mokeddem 7ae33a616f
llama : add Falcon3 support (#10883)
* Add Falcon3 model support

* Add fix for adding bos to added special tokens

* Add comment explaining the logic behind the if statement

* Add a log message to better track the when the following line of code is triggered

* Update log to only print when input and output characters are different

* Fix handling pre-normalized tokens

* Refactoring
2024-12-23 00:09:58 +02:00
Georgi Gerganov 5cd85b5e00
convert : add BertForMaskedLM (#10919) 2024-12-21 10:10:18 +02:00
Molly Sophia 0a11f8b7b5
convert : fix RWKV v6 model conversion (#10913)
* Enable --no-context-shift for llama-perplexity example

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV 6: Fix error in ggml_cuda_op_bin_bcast

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-12-20 11:44:58 +02:00
Sukriti Sharma 2fffc52b50
llama : fix Roberta embeddings (#10856)
* fix: Use gpt2 tokenizer for roberta and add eos/bos tokens

Branch: RobertaTokenizer

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fixes to position embeddings

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* map roberta-bpe to gpt-2

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix linting

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
2024-12-19 15:04:51 +02:00
fairydreaming 7585edbdeb
convert : Add support for Microsoft Phi-4 model (#10817)
* convert : use GPT2 vocab for Phi-4 model

* convert : use null value of sliding_window to distinguish Phi-4 from other PHI3-based models

* llama : do not use sliding window attention mask for Phi-4 model

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-12-19 10:37:12 +01:00
Georgi Gerganov 0bf2d10c55
tts : add OuteTTS support (#10784)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
2024-12-18 19:27:21 +02:00
Diego Devesa 4da69d1abd
Revert "llama : add Falcon3 support (#10864)" (#10876)
This reverts commit 382bc7f2e8.
2024-12-18 01:36:46 +01:00
Billel Mokeddem 382bc7f2e8
llama : add Falcon3 support (#10864) 2024-12-17 17:24:56 +02:00
Valentin Mamedov a0974156f3
llama : add Deepseek MoE v1 & GigaChat models (#10827)
* Add deepseek v1 arch & gigachat template

* improve template code

* add readme

* delete comments

* remove comment

* fix format

* lint llama.cpp

* fix order of deepseek and deepseek2, move gigachat temlate to the end of func

* fix order of deepseek and deepseek2 in constants; mark shared exp as deepseek arch need

* remove comments

* move deepseek above deepseek2

* change placement of gigachat chat template
2024-12-15 19:02:46 +02:00
HimariO ba1cb19cdd
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor

* Add Qwen2VL cli entrypoint

* [WIP] add qwen2vl arch

* Verify m-rope output

* Add vl-rope/2d-rope support for qwen2vl ViT

* update qwen2vl cli tool

* update 5D tensor op workaround

* [WIP] qwen2vl vision model

* make batch and clip utils compatible with qwen2vl

* [WIP] create inference workflow, gguf convert script but fix

* correcting vision-rope behavior, add the missing last layer back to ViT

* add arg parser to qwen2vl_surgery

* replace variable size array with vector

* cuda-gdb cmake preset

* add fp32 mrope, vision rope kernel

* add fp16 support for qwen2vl and m-rope

* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`

* fix rope op mode switching, out dated func args

* update `llama_hparams`

* update to keep up stream changes

* resolve linter, test errors

* add makefile entry, update speical image padding token

* add mrope unit test, fix few compiler warnings

* rename `mrope` related function, params

* minor updates on debug util, bug fixs

* add `m-rope` testcase to `test-backend-ops`

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix traililng whitespce

* store `llama_hparams.rope_sections` with fixed size array

* update position id tensor size check in GGML_OP_ROPE

* minor updates

* update `ggml_backend_*_supports_op` of unsupported backends

* remote old `rope_section` compare operator

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 14:43:46 +02:00
Robert Collins 62e84d9848
llama : add 128k yarn context for Qwen (#10698)
* add 128k yarn context for Qwen

* added property for model tensors

* removing useless line
2024-12-07 23:12:27 +02:00
Sukriti Sharma 784a14aa49
convert : add support for Roberta embeddings (#10695) 2024-12-07 09:02:14 +02:00
Riccardo Orlando 6fe6247831
llama : add Minerva 7B model support (#10673)
* Support for Minerva 7B

* Update convert_hf_to_gguf_update.py
2024-12-05 20:30:59 +02:00
JFLFY2255 8d0cfd554a
llama: Support MiniCPM-1B (with & w/o longrope) (#10559) 2024-12-04 11:42:50 +02:00
Shane A 80acb7b430
Rename Olmo1124 to Olmo2 (#10500) 2024-11-25 19:36:09 +01:00
Gabe Goodhart 9336db462c
convert : XLMRoberta Type Vocab Size (#10458)
This matches the key in common bert-based embedding models and may have a
value other than 1 in it.

Branch: XLMRobertaTypeVocabSize

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-11-24 11:02:34 +02:00
Shane A a88ad007de
llama : add OLMo November 2024 support (#10394)
* Add OLMo November 2024 constants

* Add OLMo November 2024 converter

* Add loading of OLMo November 2024 tensors and hyper parameters

* Add building of OLMo November 2024 model
2024-11-19 11:04:08 +02:00
Faisal Zaghloul 60e17ce23c
Remove identical wte/etw logic for jais (#10203) 2024-11-07 08:46:12 -08:00
Xuan Son Nguyen 7554aa4655
convert-lora : make `--base` optional (#10110)
* convert-lora : make `--base` optional

* lint

* handle case where base_model_name_or_path is invalid

* do not include metadata from base model

* clarify unspecified --base

* add small comment [no ci]

* trigger ci
2024-11-02 12:53:17 +01:00
Georgi Gerganov bc5ba007b2
server : check that the prompt fits in the slot's context (#10030)
ggml-ci
2024-10-25 10:13:46 +03:00
Molly Sophia 11d47057a5
Rwkv chat template fix (#10001)
* llama: remove useless template matching for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Add comment about the hack for rwkv models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-10-22 15:22:26 +02:00
Molly Sophia 4ff7fe1fb3
llama : add chat template for RWKV-World + fix EOT (#9968)
* Add chat template for RWKV-World

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV: Fix the chat template not being used

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6: Set EOT token to ``\n\n``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* readme: add rwkv into supported model list

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-10-22 13:33:37 +03:00
compilade 1927378bcc
convert : refactor rope_freqs generation (#9396)
* convert : refactor rope_freqs generation

This should also fix vocab-only conversion for Phi-3.

* convert : adapt MiniCPM3 to separate rope_freqs insertion

MiniCPM3's tokenizer is treated as a SentencePiece tokenizer to avoid
having to run its custom Python code which mixes tokenization
in the same file as tool calls.

gguf-py : add long and short RoPE factors to tensor mappings

Empty, but the key names are used to populate the mappings.
2024-10-01 09:31:36 +03:00
nopperl f99d3f8367
py : add model class for Chameleon conversion (#9683) 2024-09-29 15:02:06 +03:00
Georgi Gerganov f4d2b8846a
llama : add reranking support (#9510)
* py : add XLMRobertaForSequenceClassification [no ci]

* py : fix scalar-tensor conversion [no ci]

* py : fix position embeddings chop [no ci]

* llama : read new cls tensors [no ci]

* llama : add classigication head (wip) [no ci]

* llama : add "rank" pooling type

ggml-ci

* server : add rerank endpoint

ggml-ci

* llama : aboud ggml_repeat during classification

* rerank : cleanup + comments

* server : accept /rerank endpoint in addition to /v1/rerank [no ci]

* embedding : parse special tokens

* jina : support v1 reranker

* vocab : minor style

ggml-ci

* server : initiate tests for later

ggml-ci

* server : add docs

* llama : add comment [no ci]

* llama : fix uninitialized tensors

* ci : add rerank tests

ggml-ci

* add reranking test

* change test data

* Update examples/server/server.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add `--reranking` argument

* update server docs

* llama : fix comment [no ci]

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-09-28 17:42:03 +03:00
nopperl 9a913110cf
llama : add support for Chameleon (#8543)
* convert chameleon hf to gguf

* add chameleon tokenizer tests

* fix lint

* implement chameleon graph

* add swin norm param

* return qk norm weights and biases to original format

* implement swin norm

* suppress image token output

* rem tabs

* add comment to conversion

* fix ci

* check for k norm separately

* adapt to new lora implementation

* fix layer input for swin norm

* move swin_norm in gguf writer

* add comment regarding special token regex in chameleon pre-tokenizer

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* fix punctuation regex in chameleon pre-tokenizer (@compilade)

Co-authored-by: compilade <git@compilade.net>

* fix lint

* trigger ci

---------

Co-authored-by: compilade <git@compilade.net>
2024-09-28 15:08:43 +03:00
Gabe Goodhart 3d6bf6919f
llama : add IBM Granite MoE architecture (#9438)
* feat(gguf-py): Add granitemoe architecture

This includes the addition of new tensor names for the new moe layers.
These may not be correct at this point due to the need for the hack in
gguf_writer.py to double-check the length of the shape for these layers.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add GraniteMoeModel

GraniteMoe has the same configuration deltas as Granite

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granitemoe convert): Split the double-sized input layer into gate and up

After a lot of staring and squinting, it's clear that the standard mixtral
expert implementation is equivalent to the vectorized parallel experts in
granite. The difference is that in granite, the w1 and w3 are concatenated
into a single tensor "input_linear." Rather than reimplementing all of the
math on the llama.cpp side, the much simpler route is to just split this
tensor during conversion and follow the standard mixtral route.

Branch: GraniteMoE

Co-Authored-By: alex.brooks@ibm.com

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(granitemoe): Implement granitemoe

GraniteMoE follows the mixtral architecture (once the input_linear layers
are split into gate_exps/up_exps). The main delta is the addition of the
same four multipliers used in Granite.

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Typo fix in docstring

Co-Authored-By: ggerganov@gmail.com

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(conversion): Simplify tensor name mapping in conversion

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Remove unused tensor name mappings

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert): Sanity check on merged FFN tensor sizes

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow "output" layer in granite moe architecture (convert and cpp)

Branch: GraniteMoE

Co-Authored-By: git@compilade.net
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(granite): Add missing 'output' tensor for Granite

This is a fix for the previous `granite` architecture PR. Recent snapshots
have included this (`lm_head.weights`) as part of the architecture

Branch: GraniteMoE

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-25 10:06:52 +03:00
Gabe Goodhart 0d2ec43833
llama : support IBM Granite architecture (#9412)
* feat(gguf-py): Add Granite model and params to gguf-py

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(convert_hf_to_gguf): Add registration and param setup for Granite

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): Add config parsing for Granite multiplier params

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(llama.cpp): First pass at full port of granite deviations from llama

Something is still not working right since the results are mostly terrible,
but on occasion it's producing relevant results at this point, so
_something_ is working.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Determine granite language 3b instruct by vocab size

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel

The defaults in LlamaModel are needed for Granite as well

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Switch Granite param names to use _scale for consistency

Other scalar multipliers are called *_scale, so this provides a more
consistent naming convention.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale

The transformers names with _multiplier will now be converted to the _scale
equivalent during conversion.

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams

Branch: GraniteLM

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-09-17 09:44:58 +03:00
compilade d54c21df7e
convert : identify missing model files (#9397) 2024-09-16 10:30:22 +03:00
Shane A 0aadac10c7
llama : support OLMoE (#9462) 2024-09-16 09:47:37 +03:00
CarryFun 95ca85168b
llama : support MiniCPM3 (#9322)
Co-authored-by: 范睿凯 <fanruikai@modelbest.cn>
2024-09-16 09:45:20 +03:00
Csaba Kecskemeti 3c7989fd29
py : add "LLaMAForCausalLM" conversion support (#9485)
Co-authored-by: Csaba Kecskemeti <csabakecskemeti@Csabas-Mac-Pro.local>
2024-09-15 10:48:25 +03:00
daminho c837981bba
py : add Phi-1.5/Phi-2 tokenizer (#9361)
* add phi2 tokenizer

* add phi name to convert_hf_to_gguf_update.py

* make tokenizer_pre consistent; llama.cpp work
2024-09-12 14:28:20 +03:00
Molly Sophia 39f852f440
py : add special tokens in hf_converter for RWKV v6 (#9428)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-12 14:25:16 +03:00
Molly Sophia 0b4ac75772
RWKV v6: Add time_mix_decay_w1/w2 in quant exclusion list (#9387)
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2024-09-10 10:02:30 +03:00
compilade 9bc6db28d0
ggml-quants : ternary packing for TriLMs and BitNet b1.58 (#8151)
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b

* ggml-quants : faster 1.625 bpw AVX2 vec_dot

Not using a lookup table anymore makes it match q4_0 speed.

* gguf-py : fix formatting

* llama : remove spaces on empty line

* ggml-quants : subtract 1 when back in epi8

This makes the 1.625 bpw type go faster than q4_0. Still not the fastest.

* ggml-quants : Q2_2 now faster than Q4_K on with AVX2

* ggml-quants : cleanup Q1_3 code formatting

* ggml-quants : ARM NEON vec_dot for q2_2 and q1_3

* ggml-quants : use ceiling division when quantizing q1_3

* convert-hf : simplify BitNet pre-quantization

This still results in the exact same tensor weights and scales,
but it reveals some weirdness in the current algorithm.

* convert-hf : allow converting the weird BitNet 1.3B

Its FFN size is 5460 which is not convenient.
The offending tensors are kept in F16,
which makes the final model 5.01 bpw.

* bitnet : replace 1.58b with b1.58, as in the paper

* ggml-quants : fix build failure on Windows

* ggml-quants : attempt to fix Arm 32-bit support

* ggml : add some informative comments in q1_3 vec_dot

* ggml : add TQ1_0 and TQ2_0 ternary quantization types

* ggml : even faster TQ2_0

* ggml : also faster TQ1_0

Same optimization as for TQ2_0 by offsetting the sum instead of the weights.
This makes TQ1_0 almost as fast as Q8_0 on AVX2.

* ggml : fix build issues in certain environments

* ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0

* ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat

The compiler seems smart enough to use the same instruction
even when using vget_high_s8 instead.

* ggml : remove q1_3 and q2_2

No more 1.625 bpw and 2.000 bpw,
now instead using 1.6875 bpw and 2.0625 bpw
with TQ1_0 and TQ2_0, respectively.

* llama : remove the separate scale tensors of BitNet b1.58

They won't be needed, since the remaining ternary quant types have
built-in scales.

* ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency

* ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot

Not yet tested on hardware which supports it,
might not work or might not even compile. But also it might.
It should make the performance better on recent ARM CPUs.

* ggml-quants : remove comment about possible format change of TQ2_0

Making it slightly more convenient for AVX512
but less convenient for everything else is not worth the trouble.

* gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0

* ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0

This does not change anything for ternary models,
since their values should never end up being in halfway cases anyway.

* convert : allow direct conversion to TQ1_0 and TQ2_0

The token embeddings and output tensors are kept in F16
to allow quantizing them to Q4_K and Q6_K with llama-quantize.

* llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0

Q4_0 is not completely symmetric (so not lossless for ternary models),
but it should be good enough.

* ggml-quants : allow using ARM dot product instructions for TQ1_0

* ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support

* ggml : remove unused ggml_mul special case

It would otherwise conflict with the more general
optimization coming with Mamba-2.

* ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators

* test-backend-ops : add TQ1_0 and TQ2_0 comments for later

Not yet adding uncommented, because some backends like SYCL and Metal
do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT.
(and Metal also doesn't handle it with GGML_OP_GET_ROWS)
Support for TQ1_0 and TQ2_0 for other backends than CPU
will be added in follow-up pull requests.
2024-09-05 21:48:47 -04:00
Molly Sophia 8f1d81a0b6
llama : support RWKV v6 models (#8980)
* convert_hf_to_gguf: Add support for RWKV v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add RWKV tokenization

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Do not use special tokens when matching in RWKV tokenizer

* Fix model loading

* Add (broken) placeholder graph builder for RWKV

* Add workaround for kv cache

* Add logits conversion to rwkv5

* Add rwkv5 layer norms

* Add time mix KVRG & correct merge mistake

* Add remaining time mix parameters

* Add time mix output loading

* Add placeholder llm_build_time_mix

* Fix build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Load more tensors for rwkv v6

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix rwkv tokenizer

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add unary operator Exp

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* RWKV v6 graph building

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``rescale_every_n_layers`` parameter

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Add ``wkv.head_size`` key for RWKV

so it doesn't reuse Mamba ssm parameters

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix offloading layers to CUDA

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Fix parallel inferencing for RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Remove trailing whitespaces

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv: Avoid using inplace operations

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv: Avoid using ``eval``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* convert_hf_to_gguf: rwkv tokenizer: Don't escape sequences manually

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* ggml: Add backward computation for unary op ``exp``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* Use MODEL_ARCH.RWKV6 instead of MODEL_ARCH.RWKV

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* build_rwkv6: Simplify graph

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Detect model.type

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix tensor loading for 7B/14B models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Fix group_norm assertion failure with Metal

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Clean up

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add quantization tensor exclusion

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Use the new advanced batch splits

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update src/llama.cpp

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Use ``ggml_norm`` instead of ``ggml_group_norm``

Co-authored-by: compilade <git@compilade.net>

* llama: rwkv6: Apply code style and misc changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Use class name ``Rwkv6Model``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Make use of key ``feed_forward_length``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add kv ``time_mix_extra_dim`` and ``time_decay_extra_dim``

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* converter: Match ``new_name`` instead of ``name`` for float32 explicit tensors

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Keep ``time_mix_w1/w2`` as F32

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Remove unused nodes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Apply code format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: rwkv6: Add lora for some supported tensors

Currently att.key/receptance/value/gate/output, ffn.receptance/key/value, as well as head.weight

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* rwkv : speed-up tokenization using trie

* minor : style + indentation

* llama: rwkv6: Avoid division by zero

Co-authored-by: compilade <git@compilade.net>

* ggml: rwkv_wkv: Avoid copying the state

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Layl Bongers <3094382+LaylBongers@users.noreply.github.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-09-01 17:38:17 +03:00
Carsten Kragelund Jørgensen 75e1dbbaab
llama : fix llama3.1 rope_freqs not respecting custom head_dim (#9141)
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00