* llama: automatically fit args to free memory
llama-fit-params tool
* fix CI
* hints for bug reports, ensure no reallocation
* fix segfault with Vulkan
* add llama-fit-params to CI
* fix CI
* fix CI
* fix CI
* minor adjustments
* fix assignment of 1 dense layer
* fix logger not being reset on model load failure
* remove --n-gpu-layer hint on model load failure
* fix llama-fit-params verbosity
* fix edge case
* fix typo [no ci]
* Make graph_max_nodes vary by ubatch size for models where chunking might explode the graph
* Update src/llama-context.h
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add missing const
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit changes the logging level for output buffer reallocations
in the llama_context::output_reserve function from INFO to DEBUG.
The motivation for this is that it currently logs to info and when
enabling verbose logging for llama-cli this will get mixed with the
output, for example:
```console
What is the capital of Sweden?output_reserve: reallocating output buffer from size 0.58 MiB to 1.74 MiB
1. Stockholm
2\. Helsinki
Based are the options
1. Stockholm
Explanation: Stockholm is the capital of
...
```
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.
* llama : update worst-case graph for unified cache
* ci : disable op offload in some tests
* fix spelling
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Fix llama-save-load-state which currently fails by handling the case
when batch.logits is nullptr (like when loading state) by allocating
space for all outputs as CPU logits.
* Qwen3 Next - cleaned up version
* Whitespaces and stuff
* Correct minor errors
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Misc. fixes.
* Clean up code, add missing hybrid qualifier
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...
* Whitespace
* Proper tensors for cb calls
* Use llama-graph.h vertical alignment
* BROKEN: chunking
* Set new tensors as inputs.
* Proper chunk logic
* It's the circle of life...
* More shenanigans for n_seq > 1
* Nail in the coffin?
* Fix Windows build
* Eh, one fails on Windows, the other fails on Mac... just use general capture.
* quant : cleanup
* model : cleanup
* qwen3 : cleanup
* cont : cleanup
* cont : cleanup
* ggml : revert change
* qwen3 : cleanup
* cont : cleanup
* Readd cmath
* qwen3 : fix typo
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Usual suspects
* fix my bad suggestion
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit updates the backend sampling implementation to support
intermixed usage of backend and CPU samplers within the same batch.
The initial implementation was developed as an all-or-nothing solution:
either perform backend sampling for the entire batch, or perform CPU
sampling for the entire batch.
The motivation for this change is to support batches with mixed
sequences. For example, we may have a backend sampler configured for
sequence 0, while sequence 1 in the same batch uses CPU sampling. This
was not supported in the initial implementation.
This issue manifested in llama-server with the webui: decoding with
backend samplers would work initially, but after changing to CPU
sampling, a slot (sequence) could still be using a backend sampler.
This meant that logits in output_reserve would not be allocated,
resulting in an error.
The solution in this commit inspects the batch to determine which
sampling modes are needed and allocates buffers accordingly. However,
there is a known inefficiency: when we have intermixed backend/CPU
samplers in the same batch, we currently copy all logits to the host,
even for sequences using backend samplers.
Added test_backend_cpu_mixed_batch to verify correct behavior with
mixed backend/CPU samplers in a single batch, including dynamic
sampler switching between decode calls.
This commit adds a check to skip the output reordering logic when
n_outputs == 1. With a single output token, the data is trivially
sorted and the reordering code is currently doing unnecessary work
(resetting and rebuilding output_ids to the same values).
The motivation for this change is improved code clarity and avoiding
confusion when debugging. While the performance impact is probably
negligible, this unnecessary work happens on every decode call in
llama-server when processing batches with single-token outputs.
This commit fixes the issue where both sampled tokens and logits/probs
were not being copied correctly from the backend to the host when
multiple backend samplers were used.
A test for this scenario has also been added to ensure that both types
of data are copied correctly when different backend samplers are
employed.
This commit introduces a sampling_info struct to encapsulate all
backend sampling related data within the llama_context class.
It also updates to use more descriptive names for sampled tokens and
candidates in the backend sampler ggml data structure.
This commit precomputes and caches the full-vocab token id list in
llama_context's constructor, so llama_get_backend_sampled_token_ids_ith
always returns a valid pointer.
The motivation for this is that this enables both common/sampling.cpp
and src/llama-sampling.cpp can simplify their logic.
Not all backends samplers that process logits need to set the
sampled_tokens_id as they may not change the order of the logits, for
example the temperature sampler only scales the logits but does not
change their order. Simliar the logit bias sampler only adds bias to
specific token ids but does not change the order of the logits. In
these cases there will not be a device to host copy of the sampled
token ids, and this is the use case where having this precomputed
list is useful.
This commit adds support for performing sampling operations on the
backend (e.g. GPU) as part of the model computation graph.
The motivation for this feature is to enable sampling to be performed
directly on the backend as part of the computation graph being executed,
allowing for some or all of the sampling to be done on the backend.
For example, the backend sampler chain might select/sample a token
directly in which case only the sampled token needs to be transferred
from device memory to host memory.
It is also possible for the backend samplers to perform filtering of
the logits, or compute and filter the probability distribution, in
which case only the filtered logits or probabilites need to be
transferred back to system memory for further processing by CPU
samplers.
Currently the backend sampling works in a similar manner to how
pooling works, it is a function that is called by build_graph and the
sampler operations become part of the models computation graph.