Commit Graph

700 Commits

Author SHA1 Message Date
Tarek Dakhran 086cf81e88
llama : fix parallel processing for lfm2 (#14705) 2025-07-17 09:22:11 +02:00
Georgi Gerganov d9b691081c
kv-cache : opt mask set input (#14600)
ggml-ci
2025-07-17 09:49:15 +03:00
Georgi Gerganov ad57d3edd2
batch : fix uninitialized has_cpl flag (#14733)
ggml-ci
2025-07-17 09:45:54 +03:00
Diner Burger 496957e1cb
llama : fix parameter order for hybrid memory initialization (#14725) 2025-07-16 21:17:25 +02:00
tempstudio b0f0ecc3dc
model : support output bias for qwen2 (#14711)
Co-authored-by: qwaqrm <qwaqrm@126.com>
2025-07-16 18:02:06 +03:00
Georgi Gerganov 225e7a1438
llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Aman Gupta ab14019821
Support diffusion models: Add Dream 7B (#14644)
* Support diffusion models: Add Dream 7B

* Move diffusion to examples

* Move stuff to examples. Add patch to not use kv-cache

* Address review comments

* Make sampling fast

* llama: remove diffusion functions

* Add basic timings + cleanup

* More cleanup

* Review comments: better formating, use LOG instead std::cerr, re-use batch, use ubatch instead of max_length

* fixup!

* Review: move everything to diffusion-cli for now
2025-07-16 20:03:51 +08:00
Shunta Saito e4841d24d3
llama : fix parallel processing for plamo2 (#14716) 2025-07-16 12:12:22 +02:00
Gabriel Larson 4a4f426944
model : add Kimi-K2 support (#14654)
* Kimi-K2 conversion

* add Kimi_K2  pre type

* Kimi-K2

* Kimi-K2 unicode

* Kimi-K2

* LLAMA_MAX_EXPERTS 384

* fix vocab iteration

* regex space fix

* add kimi-k2 to pre_computed_hashes

* Updated with kimi-k2 get_vocab_base_pre hash

* fix whitespaces

* fix flake errors

* remove more unicode.cpp whitespaces

* change set_vocab() flow

* add moonshotai-Kimi-K2.jinja to /models/templates/

* update moonshotai-Kimi-K2.jinja

* add kimi-k2 chat template

* add kimi-k2

* update NotImplementedError

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* except Exception

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* LLM_CHAT_TEMPLATE_KIMI_K2 if(add_ass){}

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-15 21:54:22 +02:00
Shunta Saito 68e37a61a7
model : add PLaMo-2 support (#14560)
* Add PLaMo-2 model using hybrid memory module

* Fix z shape

* Add cmath to include from llama-vocab.h

* Explicitly dequantize normalization weights before RoPE apply

* Revert unnecessary cast because the problem can be solved by excluding attn_k, attn_q when quantizing

* Use ATTN_K/Q_NORM for k,q weights to prevent quantization

* Remove SSM_BCDT that is not used from anywhere

* Do not duplicate embedding weights for output.weight

* Fix tokenizer encoding problem for multibyte strings

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Use LLM_FFN_SWIGLU instead of splitting ffn_gate and ffn_up

* Remove unnecessary part for Grouped Query Attention

* Fix how to load special token id to gguf

* Remove unused tensor mapping

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove llama_vocab_plamo2 class and replace it with llm_tokenizer_plamo2_session to follow the other tokenizer implementations

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Fix plamo2 tokenizer session to prevent multiple calls of build()

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-15 18:11:42 +02:00
Aman Gupta 9c9e4fc635
llama-context: add ability to get logits (#14672) 2025-07-14 21:01:41 +08:00
Molly Sophia 0d9226763c
llama : add jinja template for rwkv-world (#14665)
* llama : add jinja template for rwkv-world

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-14 07:43:43 +08:00
Ed Addario 982e347255
quantize : fix minor logic flaw in --tensor-type (#14572) 2025-07-13 18:02:17 +02:00
Tarek Dakhran f5e96b368f
model : support LiquidAI LFM2 hybrid family (#14620)
**Important**
LFM2 was [merged ](https://github.com/huggingface/transformers/pull/39340)into transformers, but has not yet been released.
To convert into gguf, install transformers from source
```shell
pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"
```
2025-07-11 20:27:01 +02:00
Georgi Gerganov 0d5375d54b
llama : move enum llama_vocab_pre_type to implementation (#14631)
ggml-ci
2025-07-11 13:46:07 +03:00
Dowon 576c82eda2
vocab : add midm-2.0 model pre-tokenizer (#14626) 2025-07-11 09:36:04 +02:00
Gabe Goodhart 0aedae00e6
model : Granite Four (#13550)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* llama : use im2col and mul_mat to perform convolution for Mamba

This removes the need for ggml_ssm_conv!!!
But performance seems slighly worse on my system,
especially for prompt processing.
Maybe ggml_mul_mat isn't optimized for small row sizes?
More performance testing is necessary until GGML_OP_SSM_CONV is removed.

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* llama : rename llama_cache to llama_past

This can be changed back later if the name change is wrong.
I was renaming the functions anyway to generalize kv-cache-related
functions to hybrid and recurrent model architectures.
I think llama_past is a better name than llama_cache for a combined
kv cache and recurrent state cache, because the states it contains
pretty much always come before the newly-added ones for any particular
sequence. Also 'llama_past_clear' sounds more obvious in what it does
than 'llama_kv_cache_clear'. The future is what the models generate.
(For embeddings, the kv cache isn't really used anyway)

Still, I'm open to better suggestions.

* examples : replace llama_kv_cache_seq_* with llama_past_seq_*

* mamba : fix non-contiguous usage of ggml_silu

* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* feat: Add conversion for Bamba models

This is borrowed and adapted from the original implementation
https://github.com/ggml-org/llama.cpp/pull/10810

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add Granite 4 conversion

This is a manual copy from my draft branch
https://github.com/gabe-l-hart/llama.cpp/blob/GraniteFourDraft/convert_hf_to_gguf.py#L5076

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Plumb bamba through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add bamba to llama_arch_is_hybrid_recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add optional mamba ssm_in bias tensor

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add template specialization for get_arr to load a vector<uint32_t> for layer index arr in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Use an explicit bool to determine mamaba vs mamba2

This allows other architectures like bamba and granitemoehybrid to use
mamab2 without a growing architecture `if` statement inside the mamba
implementation.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Isolate mamba(2) and granite attention layer building in static methods

This will allow these layer-builder methods to be used from other build
structs without complex inheritance.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizes in granite build_attention_layer

Also no need to pass in kv cache since it's already in the inp_attn

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First (broken) pass at end-to-end Bamba implementation

It generates (garbage) tokens! Still lots of debugging to do.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Only do Granite multipliers if set

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Pull granite ffn portion into a static function and reuse in hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(py): Allow gguf duplicate keys if they match by value and type

This is helpful for hybrid models that want to do gguf param setting by
calling multiple parent classes without needing to make those parent
classes try/except on every attempt to set a gguf value.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor(py): Simplify granitemoehybrid conversion to use parents better

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add GRANITE_MOE_HYBRID through llama-arch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support GRANITE_MOE_HYBRID in llama-model

This re-uses the Bamba code paths heavily and simply adds the missing parts
for loading MoE and the shared expert.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix flake8 errors

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix recurrent cache get after rebase

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix hybrid granite implementation for signature changes in build_mamba*_layer

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor relationship between non-hybrid classes and hybrid impl to use mixins

The challenge here is to give both the non-hybrid classes (llm_build_mamba
and llm_build_granite) AND the hybrid class (llm_build_hybrid_mamba) access
to the same intermediate "base class" functionality (build_mamba*_layer,
build_granite_attention_layer) without running into trouble with diamond
inheritance of llm_graph_context. Due to the non-trivial initialization
that happens in llm_graph_context, diamond inheritance results in multiple
initializations of the common base which cause problems around the unique
ptrs. I wanted to get away from `self->` everywhere, but this is still a
bit cleaner than making those methods static I think.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Implement the full copy-paste version to duplicate the layer builders

This follows the pattern where the type of input is pinned to the type of
memory and that is used to dispatch to the correct version of `build_rs` /
`build_attn`. There's a lot of code duplication that can hopefully be
pulled into common functions in the graph later.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llm_build_hybrid_mamba -> llm_build_granite_hybrid

I've got back-and-forth a lot about how/if to try to implement reuse of the
"child model" layer types for hybrid models. At the end of the day, I think
hybrid models are their own beast and even if their layers are inspired by
other models, they should maintain control of their own layer building (in
other words, the copy-paste method). Given that, the name should reflect
that this is not a generic hybrid model builder, but rather a granite-
specific hybrid model builder that can do MoE (granite 4) or dense (bamba).

As part if this, I also cleaned up dangling comments from previous attempts
at using static methods for reusability.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* memory : correctly handle failure in apply()

ggml-ci

* style: Remove TODO for adding first hybrid models to the switch

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge in tensor_mapping.py w/ SSM_NORM

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix bad merge resolution with variable renames/moves in llm_build_mamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Fix comment about duplicate key check

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Conform to standard way of initializing inp_out_ids

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* convert : fix jamba conv1d shape squeezing

* fix: Fix input initialization in granite_hybrid after removal of hybrid inputs

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use llm_graph_context_mamba in llm_build_granite_hybrid

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor mamba2/granite/jamba/granite_hybrid relationships as mixins

The key is for the mixin classes (llm_graph_context_mamba,
llm_graph_context_granite) to use virtual inheritance from
llm_graph_context. This allows the common members to exist only once in the
class hierarchy. The downside is that llm_graph_context will be
re-initialized once for each parent (ie 2x for single mixin, 3x for two
mixins, etc...).

Branch: GraniteFourWithJamba

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* fix: Fix input setup after upstream merge

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: Add support for dense FFN in GraniteMoeHybrid

This was already partially supported via reusing the granite ffn builder,
and there may be models that leverage this architecture going forward. The
naming is a bit odd, but in the transformers version, it reuses the same
model class and simply has zero regular experts and a single shared expert
(which is the same as a single dense FFN).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add support for dense FFN tensor names on c++ side

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use child inputs for Falcon H1 after merge resolution

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary prefix on tensor constants

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* fix: Revert order changes for Falcon H1 to stay consistent with upstream

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

* refactor: Collapse Bamba and GraniteMoeHybrid into GraniteHybrid

The only key difference is the use of rope which is now set via
rope_finetuned in the hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove use of diamond inheritance

Per PR discussion, it's simpler to keep this with basic inheritance and not
introduce the complexity of virtual inheritance and multiple inheritance

https://github.com/ggml-org/llama.cpp/pull/13550#issuecomment-3053787556

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Log mamba params for Granite Hybrid

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused ssm_in_b

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove ATTENTION_LAYER_INDICES hparam in favor of n_head_kv

This matches how recurrent vs attention heads are identified for Jamba

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused template expansion for get_arr

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Review cleanup in convert_hf_to_gguf

The gist is to be explicit about which base class is being used with the
multiple inheritance setup

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Undo hidden warnings about duplicate identical keys in add_key_value

After further discussion, this encourages sloppy overwriting in the model
converters

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: If not using ROPE, context is "infinite"

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* doc: Add a comment outlining expected duplicate key warnings

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unnecessary duplicate keys in converter

Co-authored-by: Francis Couture-Harpin <git@compilade.net>

(thanks for the sharp eyes and patience!)

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-11 02:20:13 +02:00
Ryan Mangeno 4bb625b713
Smoldocling support (#14597)
* support for smoldocling

* fixed merge conflicts

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* merge conflicts

* pre tokenizer merge fix

* convert : fix smollm3 jinja template (#14586)

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* support for smoldocling

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* fixed merge conflicts

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* safetensors tensor mapping

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>

* added back accidental removal of clean spaces for hunyuan

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* updated hash and reordererd model list

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update include/llama.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf_update.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-vocab.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* removed old tensor name

* removed tensor mappings -> handled by smolvlm

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: ryan-mangeno <ryanmangeno@gmail.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-10 19:41:00 +02:00
Xuan-Son Nguyen 435a6d10d6
llama : minor coding style fix for smollm3 (#14605) 2025-07-10 10:00:20 +03:00
Xuan-Son Nguyen cb9178f885
llama : remove llm_graph_input_one (#14603) 2025-07-09 23:09:28 +02:00
compilade 4a5686da22
llama : support Jamba hybrid Transformer-Mamba models (#7531)
* wip: llama : separate recurrent states from the KV cache

This will be necessary to support Jamba
(and other recurrent models mixed with Attention).

Doesn't compile yet, and finding a slot isn't yet done correctly for recurrent states.

* llama : use std::find for seq_nodes in llama_rs_cache

* llama : state checkpoints for recurrent models

* llama : correctly handle more edge cases for the rs cache

* llama : rename many llama_kv_cache_* functions

* llama : remove useless return value for some llama_cache_* functions

* llama : rethink recurrent state cell counts

* llama : begin work on support for variable GQA

This will also be useful for Jamba if we consider the Mamba layers
to have 0 KV heads.

* llama : gracefully fail when not finding hybrid slot

* llama : support Jamba

* llama : fix BERT inference without KV cache

* convert-hf : check for unprocessed Jamba experts

* convert-hf : support Mini-Jamba conversion

* llama : fix Jamba quantization sanity checks

* llama : sequence-length-aware batch splitting

* llama : use equal-sequence-length sub-batches for recurrent models

* ggml : simplify SSM-related operators

* llama : make recurrent state slot allocation contiguous

* llama : adapt internal uses of batches to llama_ubatch

* llama : fix batch split output count for embeddings

* llama : minimize swaps when reordering logits

This reduces overhead when running hellaswag
on thousands of sequences with very small 100k params Mamba models.

* llama : fix edge case finding batch seq_id of split recurrent cell

This otherwise was a problem when running the HellaSwag benchmark
with small batch sizes, making it crash.

* llama : avoid copies for simple batch splits

* ggml : make ggml_ssm_scan not modify its source tensors

* llama : fix shared recurrent tail cell count for small ubatch sizes

Otherwise it was impossible to run the 'parallel' example with '-ub 1'
with a Mamba or Jamba model.

* llama : fix .base() compilation error on Windows

* llama : allow doing the equivalent of SSM_CONV with SUM_ROWS and MUL

* ggml : allow GGML_OP_CONCAT to work on non-contiguous tensors

The implementation already supported it,
and this makes Mamba's conv step slightly faster.

* mamba : fix non-contiguous usage of ggml_silu

* llama : session saving and reloading for hybrid models

* convert_hf : fix Jamba conversion

* llama : fix mixed signedness comparison

* llama : use unused n_embd_k_gqa in k_shift

This also slightly reduces the diff from the master branch

* llama : begin renaming llama_past back to llama_kv_cache

* llama : remove implicit recurrent state rollbacks

* llama : partially apply clang-format style

* convert : fix jamba conv1d shape squeezing

* graph : add back hybrid memory graph input

But this time it contains the sub-cache graph inputs.
This *should* make it easier to handle updating the inputs
when caching the graph (eventually).

* model : add Jamba to Mamba-specific hparams printing

* jamba : remove redundant nullptr initializations

* model : remove unnecessary prefix for tensor loading constants

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : use ggml_swiglu_split for Mamba

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* model : make falcon-h1 use shared mamba2 layer builder

* memory : avoid referring to KV in recurrent cache logs

* gguf-py : avoid adding duplicate tensor mappings for Jamba

Some of the tensor names are common with Llama4

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-09 14:59:57 -04:00
Dowon ffd59e7d18
model : add skt/A.X-4.0 model vocabulary (#14589) 2025-07-09 11:22:31 +03:00
Sigbjørn Skjæret 105554595f
llama : remove unintended whitespace (#14592) 2025-07-09 10:19:50 +02:00
ibrahim khadraoui 04655063c4
model : add support for Falcon-H1 family (#14534)
* v1

* push more fixes

* another fix

* fix

* more fixes

* minor fix

* more cleaning on python code

* python fixes

* changed precision for multipliers float 32->64

* fixes

* another fix

* fix

* pre-norm -> norm

* fix

* Revert "fix"

This reverts commit 243e4d1a50.

* fix

* small fix ffn_norm

* try

* mix instead of max

* fix vocab size

* conflict solve

* fixed multipliers

* falcon-h1 specefic vocab resolved

* read arch from gguf.MODEL_ARCH

* mamba_d_ssm added to d_inner find_hparam

* remove unused functions from gguf_writer.py

* override modify_tensors instead of get_tensors

* fix conversion and d_inner

* added some cb functions for debugging puposes

* inp_out_ids moved outside of layers loop

* mup_vec create as float64

* fix rope_theta

* injected mup

* clean ups

* rm extra space

* rm unused MAMBA_CHUNK_SIZE

* rm unused key

* add bos False

* changed ROPE_TYPE

* cleaning debugging stuff

* cleaning debug quant

* fix comment

* some cleanups

* some cleanups

* Update src/llama-model-loader.cpp

* more cleanups

* moe cleanuips

* d_ssm -> d_inner;

* cleaning unused hparams

* cleanup

* more cleanups

* more cleanups on python conversion;

* minor cleanups

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* remove todo

* added falcon-h1

* tensor not required

* clean

* remove unneeded attributes

* more cleanups and fixed conversion

* remove final_norm

* flake8 fixes

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* flake8 fixes

* Update src/llama-hparams.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-arch.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* added hashes

* Update src/llama-arch.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-vocab.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update the update file

* Revert "update the update file"

This reverts commit 082ab4ad2a.

* fix: address suggestions

* fix: update convert_hf_to_gguf.py

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model-loader.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* d_inner fixed

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* reshaping ssm_norm for 34B

* removing generate_mup

* remove duplicates metadata keys

* rm comment

* final comment

* fix unused args

* fix constants

* fix bad merge

* Update src/llama-model.cpp

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: remove unused ssm_in_b and bad merge

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* falcon-h1: fix last comment

* Update convert_hf_to_gguf.py

Co-authored-by: compilade <git@compilade.net>

* falcon-h1: revert add_add_bos(False)

* falcon-h1: fix tied weights

* falcon-h1: remove whitespace

* falcon-h1: fix wrong size param

* falcon-h1: fix whitespace issues

---------

Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Younes B <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: compilade <git@compilade.net>
2025-07-09 10:03:49 +02:00
stevenkuang 699f4392a3
model : fix hunyuan moe chat template (#14584)
Signed-off-by: stevenkuang <stevenkuang@tencent.com>
2025-07-08 18:29:29 +02:00
Xuan-Son Nguyen 08382869a2
model : add SmolLM3 (#14581)
* Init - first pass.

* Model -> ModelBase.

* fix errors in conversion.

* Update the graph.

* up.

* up.

* wip

* cgraph ok

* rm redundant code

---------

Co-authored-by: Vaibhavs10 <vaibhavs10@gmail.com>
2025-07-08 18:07:01 +02:00
compilade bb4f7a9e4e
memory : fix broken batch splits for recurrent cache (#14575)
Splits producing more than one ubatch per batch for recurrent models
were broken with #14512.

This fixes it by moving the completeness check after the ubatch split loop.
2025-07-08 18:37:47 +03:00
Xuan-Son Nguyen 8f22dc0a53
model : add hunyuan moe (#14425)
* model : add hunyuan moe

* tokenizer ok

* fix tensor name

* cgraph init

* chat template

* wip

* almost working

* skip embed, fix bos

* cleanup

* yarn scaling

* cleanup

* correct rope type

* failed token fix

* ntk alpha freq_base

* tokenization working

* cleanup and pr changes

* vocab_size sanity check

* ntk alpha generic

* Update convert_hf_to_gguf.py

* Apply suggestions from code review

* fix regression

* fix style

---------

Co-authored-by: kooshi <1934337+kooshi@users.noreply.github.com>
2025-07-08 11:24:06 +03:00
Sigbjørn Skjæret e1a7059053
llama : fix incorrect minicpm3 v_states shape (#14571) 2025-07-07 23:35:35 +02:00
Sigbjørn Skjæret 12f55c302b
llama : remove ggml_cont where possible (#14568) 2025-07-07 21:35:08 +02:00
Georgi Gerganov 67d1ef23c6
batch : add optional for sequential equal split (#14511)
ggml-ci
2025-07-04 09:08:59 +03:00
Georgi Gerganov 7b50f7c025
graph : prepare for 4D mask (#14515)
ggml-ci
2025-07-04 09:05:36 +03:00
Georgi Gerganov c79184d2d1
batch : add n_used count (#14512)
ggml-ci
2025-07-04 09:04:59 +03:00
Georgi Gerganov a70c8a0c4b
kv-cache : use ggml_set_rows (#14285)
* kv-cache : use ggml_set_rows

ggml-ci

* graph : separate k and v indices

ggml-ci

* cont : remove redundant ifs

ggml-ci

* kv-cache : improve find_slot impl

* kv-cache : bounds-check when accessing slot_info indices

* kv-cache : add comments

ggml-ci

* ggml : add TODOs for adding GGML_OP_SET_ROWS support in the backends

ggml-ci
2025-07-03 10:53:35 +03:00
compilade 5d46babdc2
llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Georgi Gerganov 745f11fed0
memory : correctly handle failure in apply() (#14438)
ggml-ci
2025-06-30 18:03:03 +03:00
Sigbjørn Skjæret a0535ffa0d
ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (#14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (#14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-06-29 11:04:10 +02:00
Weizhao Ouyang 566c16fcce
model : add support for ERNIE 4.5 0.3B model (#14408)
Add Day-0 support for Baidu ERNIE 4.5 0.3B model.

Signed-off-by: Weizhao Ouyang <weizhao.ouyang@arm.com>
2025-06-28 16:08:21 +02:00
Georgi Gerganov 72babea5de
graph : make llm_graph_context destructor virtual (#14410)
ggml-ci
2025-06-27 21:42:02 +03:00
Georgi Gerganov 43678060c1
recurrent : call balloc split_reset() in init_batch() (#14414)
ggml-ci
2025-06-27 17:55:45 +03:00
Xuan-Son Nguyen 8846aace49
model : gemma3n text-only (#14400)
* gemma3n

* add llm_graph_input_one
2025-06-26 20:34:02 +03:00
Sigbjørn Skjæret b25346221d
llama : return mistral-v7-tekken as default template only (#14390) 2025-06-26 15:01:14 +02:00
Georgi Gerganov 62af464227
batch : fix check for empty sequences in memory (#14364)
* batch : fix check for empty sequences in memory

ggml-ci

* cont : reuse the var

ggml-ci
2025-06-24 18:26:30 +03:00
Molly Sophia 72c6bc3f3d
llama : better rwkv chat template and add missing `inputs.use_jinja` setting (#14336)
* llama-cli : add missing `inputs.use_jinja` setting

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama : better legacy chat template for rwkv

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-06-23 19:56:19 +08:00
Georgi Gerganov 7b50d589a8
kv-cells : fix tracking of seq_pos (#14339)
* kv-cells : fix tracking of seq_pos during cache reuse

ggml-ci

* cont : improve error message

ggml-ci

* cont : add more comments
2025-06-23 12:27:35 +03:00
Ed Addario fa4a9f2a1c
quantize : handle user-defined pruning of whole layers (blocks) (#13037) 2025-06-22 23:16:26 +02:00
Georgi Gerganov 692e3cdd0a
memory : rename interface to llama_memory_context_i (#14296)
* memory : rename interface to llama_memory_context_i

ggml-ci

* cont : fix comments

* cont : use "mctx" for referencing a memory context

ggml-ci
2025-06-21 08:03:46 +03:00
Sigbjørn Skjæret 22015b2092
lint : remove trailing whitepace (#14304) 2025-06-20 16:37:44 +02:00
Ruikai Peng dd6e6d0b6a
vocab : prevent tokenizer overflow (#14301)
* vocab : prevent stack overflow in tokenize

* vocab : return error instead of aborting on oversized token count

* vocab : INT32_MIN from llama_tokenize on overflow
2025-06-20 07:13:06 -07:00
Sigbjørn Skjæret 88fc854b4b
llama : improve sep token handling (#14272) 2025-06-20 14:04:09 +02:00
Georgi Gerganov 812939a9e9
model : more uniform output id handling (#14275)
* model : more uniform output id handling

ggml-ci

* cont : revert n_outputs < n_tokens optimization

ggml-ci

* cont : fix out_ids initialization

ggml-ci
2025-06-20 10:50:27 +03:00
Georgi Gerganov 4c9fdfbe15
ubatch : new splitting logic (#14217)
ggml-ci
2025-06-20 10:14:14 +03:00
fanyang 456af35eb7
build : suppress gcc15 compile warnings (#14261)
* Change _contains_any() substrs to std::string_view and fix the find comparison logic.
2025-06-19 14:49:48 +02:00
Gabe Goodhart edc4a29eff
memory : Hybrid recurrent cache (#13979)
* feat: Add llama_model_is_hybrid API call

Also, split llama_model_is_recurrent into llm_arch_is_recurrent in
llama-arch with llama_model_is_recurrent delegating to
llm_arch_is_recurrent. The same split is done for hybird. This is needed
because there are places where the llama_model has not yet been initialized
but we need to check if the model is recurrent (specifically for the
per-layer recurrent check array in hparams).

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add c++ side constants for attention layer indices hparam

Branch: GraniteFour

* feat: Add support for distinguishing recurrent vs non-recurrent layers in hparams

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Auto-fill hparams.recurrent_layer_arr based on whether the model is recurrent

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: rename *_is_hybrid -> *_is_hybrid_recurrent

The implementation of the hybrid cache intentionally does not specify the
types of the child caches, so there was a naming mismatch with these
predicate functions that used "hybrid" to imply "hybrid recurrent."

Branch: HybridCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add layer filter to recurrent cache

Branch: HybridCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer sizing everywhere in kv caches

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First pass at llama_kv_cache_hybrid_recurrent

This follows the pattern in iswa where the two child caches are held
explicitly to support the case where a model requires a single attention
cache and a single recurrent cache where each layer uses exactly one of the
caches.

This is a rewrite of the more generic approach in the original hybrid cache
PR: https://github.com/ggml-org/llama.cpp/pull/13276

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Construct hybrid recurrent cache for hybrid recurrent models

This includes a refactor of the create_memory logic to avoid needing to use
the arch enum explicitly unless a model needs explicit cache instantiation
logic beyond the standard logic for recurrent, hybrid, unified, and iswa.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix wrong bool condition for split equal in hybrid cache

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix shift logic to defer to unified cache

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Support hybrid recurrent in llama-graph

NOTE: I intentionally did not add support for s_mask since it will be going
away soon

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix logic for initializing inputs and attn layers for hybrid caches

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update recurrent cache for changes to remove intermediate kv_cache interface

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix status for init_update sig for recurrent cache state

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add missing padding to n_ctx for hybrid cache construction

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update clear signature for data argument after rebase

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove errant virtual destructor leftover from previous impl attempt

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use per-layer n_embd_k/v_s calls for mamba (1) layers

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove n_embd_k/v_s from unified cache

No longer needed now that unified isn't also supporting recurrent

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140761069

Branch: HybridRecurrentCache

* refactor: Remove layer index from n_embd_k/v_s

Now that it's not used at all in the unified cache, we don't need to use
the layer index to zero it out for attention layers.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove n_embd_k/v_gqa from recurrent cache

This is no longer needed now that there are separate implementations

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140825128

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow custom layer filters for hybrid recurrent

This should help support architectures like Falcon H1 where there is
overlap between layers that need attention and recurrent caches.

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2140748922

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove logits_all after rebase

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove llama_model_is_hybrid_Recurrent public API

https://github.com/ggml-org/llama.cpp/pull/13979#discussion_r2141728423

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use llama_memory_state_ptr for child states in hybrid memory state

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Overhaul build_recurrent_state / build_inp_s_copy to match attention pattern

https://github.com/ggml-org/llama.cpp/pull/13979/files#r2141701738

This is a big overhaul to bring consistency between how inputs and per-
layer components are created for attention layers and recurrent layers. The
main changes are:

- Rename class llm_graph_input_s_copy -> llm_graph_input_rs
- Add a corresponding llm_graph_input_rs_hybrid_recurrent
- Rename build_inp_s_copy -> build_rs_inp_recurrent
- Add a corresponding build_rs_inp_hybrid_recurrent
- Rename build_recurrent_state -> build_rs to match build_attn w/
llm_graph_input_rs android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a corresponding overload of build_rs w/
llm_graph_input_rs_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input
- Add a llm_graph_input_attn_kv_hybrid_recurrent analogous to
llm_graph_input_attn_kv_unified
- Add a build_attn override that takes
llm_graph_input_attn_kv_hybrid_recurrent android-build AUTHORS bamba-9b-2.2T.gguf bamba-9b-2.2T.q4_k_m.gguf broken.log build build-rel build-xcframework.sh build.android build.android.bak ci cmake CMakeLists.txt CMakePresets.json CODEOWNERS common common.o CONTRIBUTING.md convert_hf_to_gguf_update.py convert_hf_to_gguf.py convert_llama_ggml_to_gguf.py convert_lora_to_gguf.py debug.log docs examples flake.lock flake.nix ggml ggml-alloc.o ggml-backend.o ggml-metal.o ggml-model-BF16.gguf ggml-model-Q4_K_M.gguf ggml-quants.o ggml.o gguf-py grammar-parser.o grammars include LICENSE licenses llama.log llama.o llamacpp_trace.log main.log Makefile media models mypy.ini pocs poetry.lock prompts pyproject.toml pyrightconfig.json q4_k_m_boot.log q8_0_boot.log quant.log quant2.log README.md requirements requirements.txt sampling.o scripts SECURITY.md src test-grammar-output.tmp test-json-schema-input.tmp tests tools vendor working.log as the first input

This makes the two paradigms fully consistent. The main drawback is the
code duplication in the build_attn and build_rs implementations where the
only difference between implementations is how they cast the memory state.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix resize vs reserve and skip null tensors in size computation

https://github.com/ggml-org/llama.cpp/pull/13979/files#r2149469788

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-Authored-By: @younesbelkada

* fix: Fix initialization of child states

Since initially writing this PR, the logic in the child state types changed
such that using the "init full" signature and keeping the ubatches on the
parent struct no longer worked.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use a common build_recurrent_state method that is cache-agnostic

This reduces the code duplication between the different build_rs impls and
also retains a similar signature to the previous build_recurrent_state
method while standardizing on the input-dispatched build_rs implementation.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* recurrent : rework graph inputs + add TODOs

ggml-ci

* refactor: Make status and child states const in hybrid and iswa

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Rename llama_kv_cache_[recurrent|hybrid_recurrent] to remove kv cache

This removes the notion of "kv" from the interface names for these memory
types. There are still many references to kv in the implementation of the
recurrent memory which will need further adjustment.

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor!: Rename all k/v related values for recurrent/hybrid to r/s

Anywhere that "kv_<state|cell|size|etc>" is used, I've used the more
generic "mem_" prefix. The specifics of "k" (key) translate to "r"
(recurrent state) and "v" (value) translate to "s" (state-space embedding
states).

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refacor: _recurrent -> _recr for brevity

It just _happens_ to have the same number of letters as _attn!

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix spacing for ref

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: recurrent_layer() -> is_recurrent()

Branch: HybridRecurrentCache

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix spacing for size_s_bytes declaration

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-19 08:08:14 +03:00
Xuan-Son Nguyen 95402553a5
llama-chat : fix multiple system message for gemma, orion (#14246) 2025-06-18 09:58:43 +02:00
Diego Devesa 6adc3c3ebc
llama : add thread safety test (#14035)
* llama : add thread safety test

* llamafile : remove global state

* llama : better LLAMA_SPLIT_MODE_NONE logic

when main_gpu < 0 GPU devices are not used

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 08:11:43 -07:00
Đinh Trọng Huy ad590be98c
model : add NeoBERT (#14164)
* convert neobert model to gguf

* add inference graph

* fix flake8 lint

* followed reviewer suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* follow reviewers suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* override NeoBERT feed-forward length

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-16 14:53:41 +02:00
Georgi Gerganov d3e64b9f49
llama : rework embeddings logic (#14208)
* llama : rework embeddings logic

ggml-ci

* cont : fix rerank

ggml-ci

* cont : engrish [no ci]

* cont : fix rerank

ggml-ci

* server : support both embeddings and completions with single model

ggml-ci

* cont : avoid embeddings_org

ggml-ci
2025-06-16 14:14:00 +03:00
Bartowski d7da8dc83a
model : Add support for Arcee AI's upcoming AFM model (#14185)
* Add Arcee AFM support

* Add draft update code

* Fix linter and update URL, may still not be final

* Update src/llama-model.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Remote accidental blank line

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-06-16 01:04:06 +02:00
Ed Addario 30e5b01de2
quantize : change int to unsigned int for KV overrides (#14197) 2025-06-15 18:53:45 +02:00
Georgi Gerganov 5fce5f948d
kv-cache : fix use-after-move of defrag info (#14189)
ggml-ci
2025-06-15 10:52:11 +03:00
Mikko Juola 9ae4143bc6
model : add dots.llm1 architecture support (#14044) (#14118)
Adds:

* Dots1Model to convert_hf_to_gguf.py

* Computation graph code to llama-model.cpp

* Chat template to llama-chat.cpp to detect this model's template.

---

The model is called "dots.llm1" (I decided to shorten it to dots1 or
DOTS1 in the code generally) architecture.

The only models that exist as of writing of this commit that follow this
architecture are "dots.llm1.inst" and "dots.llm1.base" from here:

* https://huggingface.co/rednote-hilab/dots.llm1.inst

* https://huggingface.co/rednote-hilab/dots.llm1.base

The model architecture is a combination of Qwen and Deepseek parts, as
seen here:

ffe12627b4/src/transformers/models/dots1/modular_dots1.py
2025-06-15 09:52:06 +02:00
Georgi Gerganov c311ac664d
cparams : rename LLAMA_MAX_PARALLEL_SEQUENCES to LLAMA_MAX_SEQ (#14188)
ggml-ci
2025-06-15 10:08:58 +03:00
Georgi Gerganov b9912ac570
batch : auto-gen positions + verify multi-sequence input (#14177)
* batch : verify multi-sequence input batches

ggml-ci

* cont : auto-gen positions + verify multi-seq input

ggml-ci

* cont : first print debug info, then perform validation

ggml-ci

* cont : fix position auto-gen + add comments

ggml-ci
2025-06-15 09:18:37 +03:00
Georgi Gerganov fb85a288d7
vocab : fix build (#14175)
ggml-ci
2025-06-13 20:03:05 +03:00
Guy Goldenberg 3cfbbdb44e
Merge commit from fork
* vocab : prevent integer overflow during load

* Add static cast and GGML_ABORT

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-13 19:20:25 +03:00
Georgi Gerganov 80709b70a2
batch : add LLAMA_BATCH_DEBUG environment variable (#14172)
* batch : add LLAMA_BATCH_DEBUG environment variable

ggml-ci

* cont : improve seq_id display
2025-06-13 18:35:00 +03:00
Georgi Gerganov 60c666347b
batch : rework llama_batch_allocr (#14153)
* batch : rework llama_batch_allocr

ggml-ci

* cont : move validation inside class

ggml-ci

* cont : move output counting to class

ggml-ci

* cont : minor

ggml-ci

* batch : add TODOs

ggml-ci
2025-06-13 13:47:55 +03:00
Đinh Trọng Huy d714dadb57
pooling : make cls_b and cls_out_b optional (#14165)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-13 11:34:08 +03:00
Georgi Gerganov c33fe8b8c4
vocab : prevent heap overflow when vocab is too small (#14145)
ggml-ci
2025-06-13 08:03:54 +03:00
Georgi Gerganov f6e1a7aa87
context : simplify output counting logic during decode (#14142)
* batch : remove logits_all flag

ggml-ci

* context : simplify output counting logic during decode

ggml-ci

* cont : fix comments
2025-06-12 11:50:01 +03:00
Georgi Gerganov c3ee46fab4
batch : remove logits_all flag (#14141)
ggml-ci
2025-06-12 11:49:26 +03:00
Georgi Gerganov 9596506965
kv-cache : fix split_equal handling in unified implementation (#14130)
ggml-ci
2025-06-12 10:02:15 +03:00
compilade a20b2b05bc
context : round n_tokens to next multiple of n_seqs when reserving (#14140)
This fixes RWKV inference which otherwise failed
when the worst case ubatch.n_seq_tokens rounded to 0.
2025-06-12 02:56:04 -04:00
Georgi Gerganov 89a184fa71
kv-cache : relax SWA masking condition (#14119)
ggml-ci
2025-06-11 16:48:45 +03:00
Georgi Gerganov 7ae2932116
kv-cache : add LLAMA_KV_CACHE_DEBUG environment variable (#14121) 2025-06-11 12:52:45 +03:00
compilade dad5c44398
kv-cache : avoid modifying recurrent cells when setting inputs (#13834)
* kv-cache : avoid modifying recurrent cells when setting inputs

* kv-cache : remove inp_s_mask

It was replaced with equivalent and simpler functionality
with rs_z (the first zeroed state) and the already-existing inp_s_copy.

* kv-cache : fix non-consecutive token pos warning for recurrent models

The problem was apparently caused by how the tail cells were swapped.

* graph : simplify logic for recurrent state copies

* kv-cache : use cell without src refs for rs_z in recurrent cache

* llama-graph : fix recurrent state copy

The `state_copy` shuffle assumes everything is moved at once,
which is not true when `states_extra` is copied back to the cache
before copying the range of states between `head` and `head + n_seqs`.
This is only a problem if any of the cells in [`head`, `head + n_seqs`)
have an `src` in [`head + n_seqs`, `head + n_kv`),
which does happen when `n_ubatch > 1` in the `llama-parallel` example.

Changing the order of the operations avoids the potential overwrite
before use, although when copies are avoided (like with Mamba2),
this will require further changes.

* llama-graph : rename n_state to state_size in build_recurrent_state

This naming should reduce confusion between the state size
and the number of states.
2025-06-10 18:20:14 -04:00
Sigbjørn Skjæret 3678b838bb
llama : support GEGLU for jina-bert-v2 (#14090) 2025-06-10 18:02:08 +02:00
Georgi Gerganov 40cbf571c9
kv-cache : fix shift and defrag logic (#14081)
* kv-cache : fix shift

ggml-ci

* cont : reset shift[i]

ggml-ci

* cont : fix defrag erasing cells that didn't move

ggml-ci
2025-06-09 23:04:35 +03:00
Georgi Gerganov 201b31dc2e
graph : fix geglu (#14077)
ggml-ci
2025-06-09 17:17:31 +03:00
Đinh Trọng Huy 91a8ee6a6f
add geglu activation function (#14074)
Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-06-09 05:15:31 +01:00
Sigbjørn Skjæret 0974ad7a7c
llama : fix llama_model_chat_template with template name (LLM_KV with suffix) (#14050) 2025-06-07 14:13:12 +02:00
Georgi Gerganov 745aa5319b
llama : deprecate llama_kv_self_ API (#14030)
* llama : deprecate llama_kv_self_ API

ggml-ci

* llama : allow llama_memory_(nullptr)

ggml-ci

* memory : add flag for optional data clear in llama_memory_clear

ggml-ci
2025-06-06 14:11:15 +03:00
Georgi Gerganov 487a5e0401
context : fix SWA-related warning for multiple sequences (#14045) 2025-06-06 13:29:18 +03:00
Sigbjørn Skjæret d17a809ef0
llama : support multiple classifier outputs and labels (#13940) 2025-06-06 09:03:25 +02:00
Georgi Gerganov 7f37b6cf1e
memory : migrate from llama_kv_cache to more generic llama_memory (#14006)
* memory : merge llama_kv_cache into llama_memory + new `llama_memory` API

ggml-ci

* context : fix casts

ggml-ci
2025-06-05 15:29:22 +03:00
Diego Devesa 3a077146a4
llama : allow using mmap without PrefetchVirtualMemory, apply GGML_WIN_VER to llama.cpp sources (#14013) 2025-06-05 11:57:42 +02:00
Sigbjørn Skjæret 9f47fa5792
vocab : warn about missing mask token (#14022) 2025-06-05 09:29:18 +02:00
Georgi Gerganov 9e31bec4fd
context : fix pos_min initialization upon error decode (#14008)
ggml-ci
2025-06-05 09:06:29 +03:00
Georgi Gerganov 3e63a58ef7
kv-cache : refactor the update/defrag mechanism (#13988)
* kv-cache : refactor update mechanism

ggml-ci

* memory : improve status handling

* defrag : reset head + add comments

ggml-ci

* cont : minor fixes

ggml-ci
2025-06-04 18:58:20 +03:00
Xuan-Son Nguyen 3ac67535c8
llama-graph : use ggml_repeat_4d (#13998) 2025-06-04 10:11:26 +02:00
Georgi Gerganov e0e806f52e
kv-cache : fix unified::seq_rm to work with seq_id < 0 (#13985)
ggml-ci
2025-06-04 09:50:32 +03:00
Georgi Gerganov 5582c49c39
gemma : more consistent attention scaling for v2 and v3 (#13951)
* gemma : fix attn scale for 27B

* cont : apply scale before attn

* cont : consistent attention scaling
2025-06-02 20:54:26 +03:00
Sigbjørn Skjæret 5e1c3aed40
convert : fix nomic-bert-moe mask token (#13757) 2025-06-01 18:07:21 +02:00
Georgi Gerganov 0fc16b42e8
kv-cache : split implementation in separate sources (#13920)
ggml-ci
2025-06-01 11:39:27 +03:00
Georgi Gerganov 803f8baf4f
llama : deprecate explicit kv_self defrag/update calls (#13921)
ggml-ci
2025-05-31 15:58:33 +03:00
Georgi Gerganov 3600cc2886
llama : use n_swa + n_ubatch cells for SWA cache (#13833)
* llama : use n_swa + n_ubatch cells for SWA cache

ggml-ci

* llama : add warning about multi-sqeuence SWA contexts
2025-05-31 15:57:44 +03:00
Georgi Gerganov 3f55f781f1
llama : auto-batch preparation (#13845)
* llama : auto-batch

ggml-ci

* context : simplify if branching
2025-05-31 12:55:57 +03:00
Georgi Gerganov 12d0188c0d
kv-cache : refactor + add llama_memory_state_i (#13746)
* kv-cache : simplify the "struct llama_kv_cache" interface

ggml-ci

* kv-cache : revert the (n_swa + n_ubatch) change (for next PR)

ggml-ci

* kv-cache : some comments

ggml-ci

* context : fix graph reserve for multiple sequences

ggml-ci

* kv-cache : fix typo [no ci]

* kv-cache : fix find_slot() logic for free slots

ggml-ci

* llama : add TODO for deprecating the defrag API in the future

* kv-cache : improve find_slot() using min/max seq pos info

ggml-ci

* llama : handle aborts and compute errors

ggml-ci

* memory : extract state into llama_memory_state

ggml-ci

* kv-cache : add comments

ggml-ci

* server : update batching logic to reset n_batch on successful decode

* server : upon full re-processing, remove the sequence from the cache

* kv-cache : add TODO for doing split_equal when split_simple fails

ggml-ci
2025-05-31 10:24:04 +03:00
Đinh Trọng Huy 291f2b6913
llama : add support for DistilBert (#13907)
* add distilbert

* small fixes

* add note for LLM_ARCH_DISTIL_BERT

* Use MODEL_ARCH.BERT for DistilBert

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-30 11:56:02 +02:00
zhangkaihuo 2c90da4c7e
llama : use llm_build_granite for minicpm (#13911) 2025-05-30 10:31:48 +02:00
Sigbjørn Skjæret e83ba3e460
llama : add support for jina-reranker-v2 (#13900) 2025-05-29 21:42:31 +02:00
Sigbjørn Skjæret 6385b843a8
llama : add RobertaForSequenceClassification reranker support (#13875) 2025-05-29 08:15:01 +02:00
Xuan-Son Nguyen 763d06edb7
llama : fix KV shift for qwen2vl (#13870)
* llama : fix KV shift for qwen2vl

* add ref to the PR
2025-05-28 22:35:31 +02:00
Đinh Trọng Huy e0e3aa231d
llama : add support for BertForSequenceClassification reranker (#13858)
* convert: add support for BertForSequenceClassification

* add support for reranking using BertForSequenceClassification

* merge checks of eos and sep

* fix lint

---------

Co-authored-by: dinhhuy <huy.dinh@brains-tech.co.jp>
2025-05-28 19:01:58 +02:00
Georgi Gerganov 34b7c0439e
cmake : add llama-cparams.cpp to build (#13832) 2025-05-27 19:08:44 +03:00
Georgi Gerganov 81713121ee
kv-cells : track min/max used cells and per-sequence positions (#13808)
* kv-cells : track min/max used cells and per-sequence positions

ggml-ci

* kv-cells : fix pos-modification updates for seq_pos

ggml-ci

* kv-cells : add comments

ggml-ci
2025-05-27 13:49:41 +03:00
Georgi Gerganov f9cd68398b
sampling : make sure samplers return at least 1 token (#13822)
* sampling : min-p should always return at least one token

ggml-ci

* sampling : same for typical sampling

* tests : sampling tests use min_keep == 0

ggml-ci
2025-05-27 12:07:52 +03:00
Georgi Gerganov 4f81b33e32
llama : validate seq id batch input (#13809)
* llama : validate seq id batch input

ggml-ci

* cont : fix the fix

ggml-ci
2025-05-27 09:40:59 +03:00
Georgi Gerganov 79c137f776
examples : allow extracting embeddings from decoder contexts (#13797)
ggml-ci
2025-05-26 14:03:54 +03:00
Georgi Gerganov de2ef53a4b
kv-cache : rework kv_cell (#13706)
* kv-cache : rework kv_cell

ggml-ci

* kv-cells : use "shift" instead of "delta" consistently

ggml-ci

* llama : add llama_max_parallel_sequences()

ggml-ci

* kv-cells : update comments [no ci]

* context : fail upon construction if sequences exceed max value

ggml-ci

* kv-cells : get_pos() -> pos_get() + comments

ggml-ci

* kv-cells : fix tracking of "used" cells

ggml-ci
2025-05-25 16:34:36 +03:00
Piotr Jasiukajtis 4032ca4066
llama : add support for Qwen3 MoE tied word embeddings (#13768) 2025-05-25 10:29:43 +02:00
Olivier Chafik f5cd27b71d
`server`: streaming of tool calls and thoughts when `--jinja` is on (#12379)
* add common_json w/ support for truncated json healing

* add common_chat_msg_diff

* partial common_chat_parse

* refactor parser w/ optionals

* server: wire chat diffs in stream mode

* fix trigger of thinking models (must happen after thoughts are closed)

* fix functionary v3.2 raw python!

* rename: common_chat_syntax (now contains format)

* rm common_regex.at_start

* don't return empty <think></think>

* accommodate yet another deepseek r1 distill fantasy syntax (`<|tool▁calls|>`)

* fix QwQ 32B tool call parsing after thoughts (hermes2)

* better logs for grammar triggers

* consume spaces after parse_json_tool_calls

* fix required tool calls w/ thinking models that have pre-opened thinking tags

* fix thinking model's initial trigger + test qwq's template

* run most test_tool_call tests in stream + non-stream modes

* make functionary v3.2 parsing more strict (differentiate first match from others)

* send final diff from server, to close off raw python arguments

* support partial content streaming in Generic mode

* tool-call: allow content prelude before hermes2 tool calls (for Qwen2.5)

* Update function-calling.md

* Update tool_bench.py

* chat-parser: remove input from exception (llm output may contain PII)

---------

Co-authored-by: ochafik <ochafik@google.com>
Co-authored-by: Olivier Chafik <ochafik@users.noreply.github.com>
2025-05-25 01:48:08 +01:00
0cc4m 259469c4b5
Move GLM4 f32 attention fix to the correct function (#13750) 2025-05-24 16:49:12 +02:00
Sigbjørn Skjæret c3a2624339
vocab : fix ugm tokenizer precision (#13743) 2025-05-24 12:29:09 +02:00
Georgi Gerganov d13d0f6135
hparams : initialize arrays (#13728)
ggml-ci
2025-05-23 20:16:13 +03:00
Xuan-Son Nguyen 8a2afb7520
llama : allow custom list of swa_layers (#13726) 2025-05-23 17:07:04 +02:00
Georgi Gerganov 8a1d206f1d
tts : fix n_ubatch + make WavTokenizer cache-less (#13713)
ggml-ci
2025-05-22 22:21:07 +03:00
Georgi Gerganov 8e186ef0e7
hparams : support models for which all layers use SWA (#13682)
ggml-ci
2025-05-21 20:00:49 +03:00
Georgi Gerganov 797f2ac062
kv-cache : simplify the interface (#13660)
* kv-cache : simplify the interface

ggml-ci

* context : revert llama_batch_allocr position change

ggml-ci
2025-05-21 15:11:13 +03:00
Georgi Gerganov b44890df2e
model : disable SWA for Phi models (#13676)
* model : disable SWA for Phi models

ggml-ci

* model : update warning message

* model : print warning only if n_swa > 0

* model : fix typo
2025-05-21 13:09:21 +03:00
Georgi Gerganov be0239693c
model : fix llama4 graph (#13663)
ggml-ci
2025-05-20 19:21:04 +03:00
Georgi Gerganov a4090d1174
llama : remove llama_kv_cache_view API + remove deprecated (#13653)
ggml-ci
2025-05-20 16:13:16 +03:00
0cc4m c9c64dee57
Set GLM4 blk.*.attn_output.weight, kqv_out-* matmul to GGML_PREC_F32 to fix infinity values in output (#13639) 2025-05-20 10:11:56 +02:00
Georgi Gerganov e298d2fbd0
kv-cache : add SWA support (#13194)
* kv-cache : prepare for SWA

ggml-ci

* kv-cache : initial iSWA implementation

ggml-ci

* kv-cache : rework error recovery logic

ggml-ci

* models : fix Phi-3 SWA parameters

ggml-ci

* model : adjust Granite to rope factor changes

ggml-ci

* server : check if context can do shifts

ggml-ci

* iswa : for now, always enable shifts (experiment)

ggml-ci

* kv-cache : simplify SWA logic

ggml-ci

* kv-cache : apply defrag when we fail to find slots for the batch

ggml-ci

* llama : update docs about llama_decode

ggml-ci

* kv-cache : update warning logs when no space for the batch is available

ggml-ci

* llama : add llama_kv_self_seq_pos_min()

* kv-cache : keep track of partial SWA computes and print warnings

* server : disallow use cases involving partial SWA context

ggml-ci

* llama : add param to control SWA cache size

ggml-ci

* minor : clean-up

ggml-ci
2025-05-20 08:05:46 +03:00
Diego Devesa 5364ae4ba5
llama : print hint when loading a model when no backends are loaded (#13589) 2025-05-16 16:38:07 +02:00
Diego Devesa c6a2c9e741
gguf : use ggml log system (#13571)
* gguf : use ggml log system

* llama : remove unnecessary new lines in exception messages
2025-05-15 19:13:11 +02:00
Georgi Gerganov e3a9421b78
kv-cache : fix out-of-bounds view during reserve graph (#13547)
* kv-cache : fix reserve graph out-of-bounds access

ggml-ci

* cont : add comment

* cont : fix comments [no ci]

* cont : more correct comment [no ci]
2025-05-14 23:15:15 +03:00
Sigbjørn Skjæret f5170c1d7a
editorconfig : fix trailing whitespace from #13542 (#13546) 2025-05-14 21:22:49 +03:00
Gilad S. 017f10b5fa
fix: crash when calling `llama_state_get_size` on a context without a KV cache (#13542) 2025-05-14 19:18:18 +03:00
Diego Devesa b7d2672082
llama : fix quantize with dl backends (#13539) 2025-05-14 16:12:36 +02:00
Gabe Goodhart 5e7d95e22e
fix: Move build_inp_pos to the top of the graph section for build_granite (#13538)
This matches how others do it, but will still avoid the extra
initialization when rope is disabled.

Branch: GraniteFour

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-05-14 15:53:59 +03:00
Ed Addario e5c834f718
quantize : improve tensor-type pattern matching (#13033) 2025-05-13 19:12:31 +02:00
Gabe Goodhart d590cd4c24
model : Granite MoE shared (#13269)
* feat: Add GGUF conversion for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: hparam and arch plumbing for granitemoeshared

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Split MoE fused tensors for shared experts in conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: First WIP cut at model arch in cpp

The hparam and architecture plumbing should be correct, but the
implementation of the shared experts seems to still be broken.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Cleaner (maybe more correct?) splitting for gate/up

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix the input to the shared experts

I had misread that the shared experts take the inputs _before_ the standard
MoE layer and was feeding the output of the MoE to the shared experts.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Avoid architecture-specific checks for Granite MoE Shared

This is a cleaner way that will allow more flexibility in architecture
strings going forward.

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Split granite architectures out of llm_build_llama

This helps de-clutter the llama-family graph construction and allows
granite to diverge further (in preparation for Granite 4).

NOTE: I removed the granite scale factors from llm_build_deci because they
appear to only be there as copy-paste from llm_build_llama. The HF config
does not seem to set those values:
https://huggingface.co/Deci/DeciLM-7B/blob/main/config.json

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Fix compiler warning about uninitialized inp_pos

This should not have been reachable, but it warns on some compliers

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consoladate GraniteMoEShared into GraniteMoE for conversion

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Consolidate GraniteMoEShared into GraniteMoE on the c++ side

Branch: GraniteMoEShared

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-05-13 15:12:01 +02:00
Johannes Gäßler 10d2af0eaa
llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
Georgi Gerganov 064cc596ac
context : fix state io for memory-less contexts (#13470)
ggml-ci
2025-05-12 15:12:27 +03:00
David Huang 7f323a589f
Add `--no-op-offload` to improve `-ot` pp perf in MoE models like llama4 400B (#13386) 2025-05-11 14:18:39 +02:00
Sigbjørn Skjæret d2a4ef05c6
vocab : add ByteDance-Seed/Seed-Coder (#13423) 2025-05-10 22:08:07 +02:00
Johannes Gäßler 0cf6725e9f
CUDA: FA support for Deepseek (Ampere or newer) (#13306)
* CUDA: FA support for Deepseek (Ampere or newer)

* do loop unrolling via C++ template
2025-05-09 13:34:58 +02:00
Diego Devesa 27ebfcacba
llama : do not crash if there is no CPU backend (#13395)
* llama : do not crash if there is no CPU backend

* add checks to examples
2025-05-09 13:02:07 +02:00
Xuan-Son Nguyen 3f96aeff39
llama : one-off chat template fix for Mistral-Small-2503 (#13398)
* llama : one-off chat template fix for Mistral-Small-2503

* update readme

* add mistral-v7-tekken
2025-05-09 11:17:51 +02:00
Georgi Gerganov 6562e5a4d6
context : allow cache-less context for embeddings (#13108)
* context : allow cache-less context for embeddings

ggml-ci

* context : enable reranking with encode()

ggml-ci

* context : encode() clears embd_seq

ggml-ci

* examples : use llama_encode() when appropriate

ggml-ci

* models : nomic bert moe does not require KV cache

* llama : update comments for llama_decode/llama_encode

ggml-ci

* context : update warning log [no ci]
2025-05-08 14:28:33 +03:00
Georgi Gerganov 51fb96b1ff
context : remove logits_all flag (#13284)
* context : remove logits_all flag

ggml-ci

* llama : remove logits_all flag + reorder llama_context_params

ggml-ci
2025-05-08 14:26:50 +03:00
Diego Devesa f061021206
llama : print size and type of overridden tensors (#13364) 2025-05-08 13:15:15 +02:00
Sigbjørn Skjæret bc4e1128f7
llama : deci : support ffn-free with attention (#13296) 2025-05-07 12:49:27 +02:00
piDack 6c7fd67b64
llama : support tie embedding for chatglm models (#13328) 2025-05-07 09:23:11 +02:00
DocShotgun ffc727203a
sampling : make top_n_sigma no-op at <=0 or a single candidate (#13345) 2025-05-06 22:36:24 +02:00
oobabooga 91a86a6f35
sampling : don't consider -infinity values in top_n_sigma (#13344) 2025-05-06 20:24:15 +02:00
Xuan-Son Nguyen 2f54e348ad
llama : fix build_ffn without gate (#13336)
* llama : fix build_ffn without gate

* fix build on windows

* Revert "fix build on windows"

This reverts commit fc420d3c7e.
2025-05-06 14:25:40 +02:00
oobabooga 233461f812
sampling : Integrate Top-nσ into main sampling chain (and add it to the server) (#13264)
* sampling: add Top-nσ sampler to `llama-server` and sampler ordering

* revert: sampler ordering

* revert: VS' crappy auto-formatting

* revert: VS' crappy auto-formatting pt.2

* revert: my crappy eye sight...

* sampling: add XTC to Top-nσ sampler chain

* sampling: add Dyna. Temp. to Top-nσ sampler chain

* sampling: actually remove Top-nσ from sampler(oops)

* Integrate top_n_sigma into main sampler chain

* Define COMMON_SAMPLER_TYPE_TOP_N_SIGMA

* Formatting

* Lint

* Exit early in the sampler if nsigma < 0

---------

Co-authored-by: CasualAutopsy <casual_autopsy@outlook.com>
2025-05-05 22:12:19 +02:00
ymcki 3bf785f3ef
llama : Llama-3_1-Nemotron-Ultra-253B-v1 support (#12843) 2025-05-03 17:39:51 +02:00
Georgi Gerganov a75cb30dc9
context : fix reorder logic (#13267)
ggml-ci
2025-05-02 20:54:13 +03:00
Jared Van Bortel 2f567611c0
llama-model : support Qwen2 embedding models and pooling_mode_lasttoken (#13245) 2025-05-02 11:42:30 -04:00
Georgi Gerganov c642bc014c
kv-cache : separate recurrent vs non-recurrent impl (#12799)
* kv-cache : serparate recurrent vs non-recurrent impl (wip)

ggml-ci

* kv-cache : init -> contructor + add llama_memory_params

ggml-ci

* kv-cache : fix callback reference

ggml-ci

* context : llama_kv_cache -> llama_memory_i

ggml-ci

* context : move memory creation logic to model

ggml-ci

* llama : remove reference of memory during encode

ggml-ci

* kv-cache : hide padding details in the implementation

ggml-ci

* kv-cache : add ubatch_next()

ggml-ci

* context : simplify sbatch logic

ggml-ci

* kv-cache : hide defrag logic in the implementation

ggml-ci

* context : hide kv cache details in implementation

ggml-ci

* build : fix

ggml-ci

* cont : another fix

ggml-ci

* kv-cache : simplify interface (wip)

ggml-ci

* kv-cache : use separate KV cell structs for unified/recurrent

ggml-ci

* kv-cache : clean-up

ggml-ci

* model : better llama_model::create_model() signature

ggml-ci

* kv-cache : fix recurrent seq_rm()

ggml-ci

* kv-cache : replace `struct callbacks` with `llama_model &`

ggml-ci

* kv-cache : replace `struct graph_params` with `llama_context &`

ggml-ci

* kv-cache : fix offload check

ggml-ci

* context : avoid passing unique_ptr

ggml-ci

* kv-cache : avoid using the backends from the llama_context

ref #13113

ggml-ci

* kv-cache : more consistent debug logs [no ci]

* kv-cache : do not pass the full llama_context for kv graphs

ggml-ci

* kv-cache : remove comment

* kv-cache : ggml_rope_ext_inplace -> ggml_rope_ext

ggml-ci

* kv-cache : fix recurrent multi-user case

ggml-ci

* memory : remove comments [no ci]
2025-05-02 17:48:36 +03:00
Sigbjørn Skjæret cb06a3c363
llama : orion rope type is neox (#13261) 2025-05-02 12:44:24 +02:00
Sigbjørn Skjæret 626083faf7
llama : plamo rope type is neox (#13260) 2025-05-02 12:40:56 +02:00
piDack 2af6880178
llama-chat : reset glmedge chat template (#13253)
* reset glmedge chat template

* fix glmedge chat template
2025-05-02 11:06:09 +02:00
matteo e0f572c846
llama-chat : update GLM4 chat template (#13238)
* update GLM4 chat template

* Update chat template

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-05-01 21:16:38 +02:00
Jared Van Bortel a70183eb00
llama-model : fix the reported size class for nomic-embed-text-v2-moe (#13223) 2025-05-01 10:09:41 +03:00
ddh0 16a457facd
fix typo: `n_ctx_pre_seq` -> `n_ctx_per_seq` (#13221) 2025-04-30 21:28:43 +01:00
Georgi Gerganov d9d398f84f
sampling : when top-k <= 0 -> noop (#13173)
ggml-ci
2025-04-29 20:22:57 +03:00
Johannes Gäßler cdf76586b2
CUDA: fix non-cont. inputs for batched mat mul (#13155) 2025-04-29 16:00:27 +02:00
Sigbjørn Skjæret 7d3af70b08
llama : llm_type order by size (#13177) 2025-04-29 13:25:53 +02:00
Sigbjørn Skjæret e98b3692be
llama : set qwen3 model type sizes (#13175) 2025-04-29 11:00:31 +02:00
Xuan-Son Nguyen b6ce7430b7
llama-graph : fix text position for mrope (#13159)
* llama-graph : fix text position for mrope

* fix typo

* explicitly set 4th dim in the loop
2025-04-29 09:45:49 +03:00
AT 5f5e39e1ba
model : Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture (#12466)
* Nomic Embed Text V2 with Mixture-of-Experts (MoE) architecture

- Adds MoE-based embedding model supporting multilingual embeddings.
- Selects architecture variant based on hyperparameter detection (MoE layers).
- Removes unnecessary subclass initialization checks for clarity.

https://www.nomic.ai/blog/posts/nomic-embed-text-v2

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

* fix tokenizer

* don't rename this tensor

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2025-04-28 22:52:15 +03:00
Xuan-Son Nguyen 4e87962e34
mtmd : fix glm-edge redundant token count (#13139)
* mtmd : fix glm-edge redundant token count

* fix chat template

* temporary disable GLMEdge test chat tmpl
2025-04-28 16:12:56 +02:00
pockers21 fb0471d175
context : do not clear output buffer on reserve (#13152)
Co-authored-by: pockers21 <liyang2@uniontech.com>
2025-04-28 16:45:40 +03:00
Xuan-Son Nguyen d2b2031e5f
llama : (mrope) allow using normal 1D position for text token (#13138)
* llama : (mrope) use normal position for text token

* rm n_pos_per_embd from llm_graph_input_attn_temp
2025-04-28 14:20:56 +02:00
Xuan-Son Nguyen e5d6c2554e
llama-chat : fix typo GML --> GLM (#13143) 2025-04-28 10:11:58 +02:00
Johannes Gäßler 69699be48a
CUDA: fix q_nope_absorbed prec for DS 2 Lite f16 (#13137) 2025-04-28 09:29:26 +02:00
matteo ced44be342
llama-chat : fix wrong template in GLM4-0414 (#13140)
* fix wrong template in GLM4-0414

* fix spaces

* no bos token since it is already in the template

* moved the chatgml4 check to higher priority

* restored template for old GLM models

* moved the GLM4 template check in the correct place with correct check
2025-04-27 21:57:32 +02:00
Diego Devesa 295354ea68
llama : fix K-shift with quantized K and BLAS backend (#13113) 2025-04-25 19:40:11 +02:00
City 558a764713
Force FP32 compute in GLM4 FFN Down (#13101)
* Force FP32 compute in cuBLAS GEMM

* Revert "Force FP32 compute in cuBLAS GEMM"

This reverts commit 6efd872732.

* Force F32 compute in GLM4 ffn down

* Edit comment to clarify issue

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-25 14:38:34 +02:00
Georgi Gerganov 13b4548877
cmake : do not include ./src as public for libllama (#13062)
* cmake : do not include ./src as public for libllama

ggml-ci

* cmake : rework tests

ggml-ci

* llguidance : remove unicode include

ggml-ci

* cmake : make c++17 private

ggml-ci
2025-04-24 16:00:10 +03:00
Xuan-Son Nguyen ecda2ec4b3
mtmd : Support Pixtral 12B (#13065)
* add pixtral text model (vision is wip)

* cgraph ok, just missing 2D RoPE

* fix bad rebase

* first working version

* fix problem with img_break token

* support dynamic image size

* update docs

* update test script
2025-04-23 20:21:59 +02:00
Xuan-Son Nguyen dc39a5e7a8
mtmd : support SmolVLM (version 1 and 2) (#13050)
* mtmd : support SmolVLM (version 1 and 2)

* correct chat template

* fix n_patches

* scale_factor is an int

* add more models to test
2025-04-22 16:24:54 +02:00
Xuan-Son Nguyen 84a9bf2fc2
mtmd : merge llava, gemma3 and minicpmv CLI into single `llama-mtmd-cli` (#13012)
* mtmd : merge `llava-cli` and `gemma3-cli` into single `mtmd-cli`

* support for minicpmv

* remove cpp files of llava and minicpmv

* update hot topics

* mtmd : add not supported msg for qwen2vl

* Update examples/llava/mtmd.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-21 15:32:58 +02:00
Georgi Gerganov 2f74c354c0
graph : make FA compatible with MLA + add initial Metal kernels (#12953)
* graph : make mla compatible with FA

* metal : add exp FA kernels for DeepSeek models

ggml-ci

* llama : minor naming updates

ggml-ci

* ggml : disable FA for DS head sizes

* tests : add FA tests for MLA shapes

ggml-ci
2025-04-17 18:16:36 +03:00
Mikko Juola 971f245b3b
llama : recognize IBM Granite 3.3 FIM tokens (#12988)
The Granite's FIM tokens are very similar to Qwen's; it's just that
they use underscore instead of a dash. So <fim_middle> for example
instead of <fim-middle>.

Opening up tokenizer_config.json in ibm-granite/granite-3.3-8b-base
shows:

```
    "<fim_prefix>",
    "<fim_middle>",
    "<fim_suffix>",
    "<fim_pad>",
    ...
    "<reponame>",
```
2025-04-17 11:37:05 +03:00
Juk Armstrong daa422881a
llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Ed Addario 71e90e8813
quantize: Handle user-defined quantization levels for additional tensors (#12511)
* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' coding guidelines

* Update descriptions to match existing style

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' guidelines

* Implement general --tensor-type instead of tensor-specific command option

* Fix implied type bug

* Restore missing #includes

* Add regex capability for tensor selection

* Refactor function name and update ALLOWED_TENSOR_TYPE

* Add missing #include

* Handle edge case when tensor name is cls.output

* Minor logging improvement
2025-04-13 21:29:28 +03:00
Yuxuan Zhang 06bb53ad9b
llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
Xuan-Son Nguyen 8b91d5355a
llama : correct rms norm for llama 4 (#12882) 2025-04-11 08:49:50 +02:00
Bo Zheng d3bd7193ba
llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
Plamen Minev 381603a775
ci: detach common from the library (#12827)
* fix: detach common from the library

* fix: building chat test template
2025-04-09 10:11:11 +02:00
Georgi Gerganov a19b5cef16
llama : fix FA when KV cache is not used (i.e. embeddings) (#12825)
* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
2025-04-08 19:54:51 +03:00
Xuan-Son Nguyen 1466621e73
llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
Georgi Gerganov 3e1d29348b
kv-cache : simplify + fix warning for recurrent models (#12756)
ggml-ci
2025-04-04 21:48:10 +03:00
yumeyao 5dd5d1ab00
vocab : use string_view::find() to avoid unnecessary looking up beyond the fragment range (#12706) 2025-04-03 18:32:54 +03:00
Georgi Gerganov 833e2b7409
model : print tensor size during load (#12711)
* model : print tensor size during load

* cont : fix units MB -> MiB

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-02 16:38:54 +03:00
Diego Devesa e0e912f49b
llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
Georgi Gerganov a10b36c91a
llama : refactor kv cache guard (#12695)
* llama : refactor kv cache guard

ggml-ci

* cont : fix comment [no ci]

* llama : fix kv_cache restore logic

ggml-ci

* context : simplify kv cache updates

ggml-ci

* cont : better name [no ci]

* llama : fix llama_decode return code when could not find KV slot

ggml-ci

* context : change log err -> warn [no ci]

* kv-cache : add comment + warning
2025-04-02 14:32:59 +03:00
Sigbjørn Skjæret 83a88bd6af
vocab : BailingMoE : change possessive quantifiers to greedy (#12677) 2025-04-02 11:21:48 +02:00
jklincn e39e727e9a
llama : use LLM_KV_GENERAL_FILE_TYPE instead of gguf_find_key (#12672) 2025-04-01 14:54:28 +02:00
Daniel Bevenius c80a7759da
vocab : add special infill tokens for CodeLlama (#11850)
* vocab : add special infill tokens for CodeLlama

The commit adds the following special tokens for CodeLlama infill:
- `▁<PRE>`
- `▁<SUF>`
- `▁<MID>`

The motivation for this is that currently the infill example uses
CodeLlama as a suggested model. But when using this model the following
error is generated:
```console
/llama.cpp-debug/examples/infill/infill.cpp:165: GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0) failed

Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
305251 Aborted                 (core dumped)
./build/bin/llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf \
  -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 \
  --in-prefix "def helloworld():\n    print(\"hell" \
  --in-suffix "\n   print(\"goodbye world\")\n    "
```

* squash! vocab : add special infill tokens for CodeLlama

Add _<EOT> as well.
2025-03-31 18:40:56 +02:00
Sigbjørn Skjæret 2c3f8b850a
llama : support BailingMoE (Ling) (#12634) 2025-03-30 22:21:03 +02:00
Juyoung Suk b3de7cac73
llama : add Trillion 7B model support (#12556)
* Support Trillion 7B

* Update llama.h

* Update llama.h

* Update llama-vocab.cpp for Trillion

* Update llama-vocab.cpp
2025-03-30 20:38:33 +02:00
Sergei Vorobyov 7242dd9675
llama-chat : Add Yandex instruct model template support (#12621)
* add yandex template

* update yandex chat template

* fix tests

* adjust chat template

* fix style

* fix tool macro in template

* add clarify comment

---------

Co-authored-by: Sergei Vorobev <serv01@yandex-team.ru>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-30 20:12:03 +02:00
Xuan-Son Nguyen af6ae1efb2
llama : fix non-causal mask for gemma 3 (#12615) 2025-03-30 00:07:37 +01:00
Djip007 0bb2919335
llama : change cpu_buft_list order: ACCEL -> GPU host -> CPU extra -> CPU (#12632)
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.

Co-authored-by: philou <philou@framework>
2025-03-29 14:07:37 +01:00
Sigbjørn Skjæret 3714c3ee1a
llama : fix incorrect Qwen2Moe ffn_moe_out graph callback (#12631) 2025-03-28 22:13:02 +01:00
Georgi Gerganov b4ae50810e
metal : improve FA + improve MoE (#12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 20:21:59 +02:00
Johannes Gäßler dd373dd3bf
llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Si1w f125b8dccf
llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
HighDoping 953c2a62cf
model : restore support for T5Encoder (#12590) 2025-03-27 11:43:33 +01:00
Georgi Gerganov f28bc4c286
llama : make loras compatible with repacking (#12593)
* llama : make loras compatible with repacking

ggml-ci

* cont : simplify

ggml-ci

* cont : add TODO [no ci]
2025-03-27 08:24:10 +02:00
Georgi Gerganov 2d77d88e70
context : fix worst-case reserve outputs (#12545)
ggml-ci
2025-03-25 09:19:23 +02:00
compilade 00d53800e0
llama-vocab : add SuperBPE pre-tokenizer (#12532) 2025-03-24 11:47:24 +01:00
Prajwal B Mehendarkar c54f6b7988
mmap : skip resource limit checks on AIX (#12541) 2025-03-24 12:17:10 +02:00
Xuan-Son Nguyen fbdfefe74e
llama : gemma3 : use output tensor if it exists in model weight (#12506)
* llama : gemma3 : use output tensor if it exists in model weight

* also add to the llm_tensor_names
2025-03-22 23:28:19 +01:00
Georgi Gerganov af04481e6b
model : do not repack if a GPU device is present (#12498)
ggml-ci
2025-03-21 16:14:29 +02:00
Sigbjørn Skjæret 960e726077
chore : cleanup llama_model_loader::TENSOR_ usage (#12492) 2025-03-21 10:21:36 +01:00
Sigbjørn Skjæret dbb3a4739e
llama : make Qwen2MoE QKV bias optional (#12477) 2025-03-20 12:49:59 +01:00
fairydreaming 568013d0cd
context : clear sets containing encoder output sequence ids before storing new values (#12470)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-19 21:01:57 +01:00
Sigbjørn Skjæret 108e53c2f1
llama : add support for GPT2, Bloom and CodeShell tied word embeddings (#12456)
* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
2025-03-19 09:08:49 +01:00
Georgi Gerganov 75422e8bc4
graph : normalize Q, K, V shapes + sync cross attention (#12449)
* graph : normalize Q, K, V shapes and add comments

ggml-ci

* context : synchronize before getting cross attention data

* model : fix command-r attention norm check
2025-03-18 21:35:19 +02:00
Xuan-Son Nguyen 99aa304fb9
llama : add support for EXAONE tied word embeddings (#12451) 2025-03-18 17:24:33 +01:00
Georgi Gerganov 8551c44d84
context : always use non-causal attention for encoder graphs (#12447)
* context : always use non-causal attention for encoder graphs

ggml-ci

* context : move the change to llama_context::encode()

ggml-ci
2025-03-18 13:05:49 +02:00
Molly Sophia 7dfad387e3
llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Sigbjørn Skjæret 8ba95dca20
llama : fix OLMo-2-0325-32B-Instruct K-norm size (#12400) 2025-03-16 19:46:36 +02:00
Georgi Gerganov dc079cfdff
context : fix init of n_outputs (#12397)
ggml-ci
2025-03-16 19:29:36 +02:00
fairydreaming 8fcb563613
Load all MoE experts during warmup (#11571)
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup

* common : use new API to enable warmup mode during model warmup

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-14 13:47:05 +01:00
Georgi Gerganov c522ce4143
graph : simplify attn input build for unified KV cache (#12381)
ggml-ci
2025-03-14 10:47:44 +02:00
Georgi Gerganov 081bee8c64
hparams : add SWA rope parameters (#12374)
ggml-ci
2025-03-14 09:03:24 +02:00
Georgi Gerganov 84d5475541
llama : fix Gemma3 SWA KV cache shift (#12373)
* llama : fix Gemma3 SWA KV cache shift

ggml-ci

* hparams : add comment [no ci]
2025-03-13 19:08:07 +02:00
Georgi Gerganov e0dbec0bc6
llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Xuan-Son Nguyen 7841fc723e
llama : Add Gemma 3 support (+ experimental vision capability) (#12343)
* llama : Add Gemma 3 text-only support

* fix python coding style

* fix compile on ubuntu

* python: fix style

* fix ubuntu compile

* fix build on ubuntu (again)

* fix ubuntu build, finally

* clip : Experimental support for Gemma 3 vision (#12344)

* clip : Experimental support for Gemma 3 vision

* fix build

* PRId64
2025-03-12 09:30:24 +01:00
Olivier Chafik 669912d9a5
`tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
Daniel Bevenius a057897ad4
llama : add xcframework build script (#11996)
* llama : add xcframework build script

This commit adds a script to build an XCFramework for Apple
ios, macos, visionos, and tvos platforms.

The generated XCFramework can then be added to a project and used in
the same way as a regular framework. The llama.swiftui example project
has been updated to use the XCFramework and can be started using the
following command:
```console
$ open examples/llama.swiftui/llama.swiftui.xcodeproj/
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10747

* examples : remove llama.cpp (source dir ref) from project.pbxproj

This commit removes the reference to llama.cpp from the project.pbxproj
file since Package.swift has been removed.

* ci : updated build.yml to use build-xcframework.sh

* ci : add xcframework build to github releases

This commit adds the ability to create a GitHub release with the
xcframework build artifact.

* scripts : add apple app validation scripts

This commit adds scripts that can validate the iOS, macOS, tvOS, and
VisionOS applications. The scripts create a simple test app project,
copy the llama.xcframework to the test project, build and archive the
app, create an IPA from the archive, and validate the IPA using altool.

The motivation for this is to provide some basic validation and
hopefully avoid having to manually validate apps in Xcode.

* llama : remove Package.swift

This commit removes the Package.swift file, as we are now building an
XCFramework for the project.

* llama : remove Sources and spm-headers directories

* llama : use TargetConditionals.h for visionOS/tvOS
2025-03-05 06:30:31 +01:00
mgroeber9110 5bbe6a9fe9
ggml : portability fixes for VS 2017 (#12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-04 18:53:26 +02:00
Xuan-Son Nguyen c43a3e7996
llama : add Phi-4-mini support (supersede #12099) (#12108)
* Added Phi-4-mini-instruct support

* Update regex per ngxson

* Change the vocab base to Xenova/gpt-4o

* fix conversion update script

* no need to check longrope

* minor style fix

* fix python style

---------

Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
2025-02-28 12:44:11 +01:00
Vitali Lovich 3e9a2860e9
llama : expose llama_model_n_head_kv in the API (#11997)
It's useful to be able to have this from the library layer as it's a key
parameter of the model (e.g. to figure out how much KV cache memory is
needed).
2025-02-25 11:29:33 +02:00
Georgi Gerganov 51f311e057
llama : skip loading unused tensors (#12004)
* llama : assign unknown/unused tensors to host buffer type

ggml-ci

* llama : skip unused tensors

ggml-ci
2025-02-21 18:33:18 +02:00
Daniel Bevenius 9626d9351a
llama : fix indentation in llama-grammar [no ci] (#11943)
This commit adjusts the indentation for the functions `parse_sequence`
and `parse_rule` in src/llama-grammar.cpp.

The motivation is consistency and improve readability.
2025-02-19 06:16:23 +01:00
Georgi Gerganov 68ff663a04
repo : update links to new url (#11886)
* repo : update links to new url

ggml-ci

* cont : more urls

ggml-ci
2025-02-15 16:40:57 +02:00
Olivier Chafik c7f460ab88
`server`: fix tool-call of DeepSeek R1 Qwen, return reasoning_content (Command 7RB & DeepSeek R1) unless `--reasoning-format none` (#11607)
* extract & return thoughts in reasoning_content field (unless --reasoning-format) for DeepSeek R1 & Command R7B

* tool-calls: add deepseek r1 template (models/templates/llama-cpp-deepseek-r1.jinja) + hackommodate broken official template

* tool-calls: accommodate variety of wrong tool call opening tags both R1 Qwen 32B and 7B distills like to spit out

* server/oai: ensure content is null when there are tool calls, and reasoning_content appears before content for readability

* tool-calls: add DeepSeek R1 Qwen distills to server/README.md & server tests

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 10:05:16 +00:00
Vinesh Janarthanan 27e8a23300
sampling: add Top-nσ sampler (#11223)
* initial sampling changes:

* completed top nsigma sampler implementation

* apply parameter to only llama-cli

* updated readme

* added tests and fixed nsigma impl

* cleaned up pr

* format

* format

* format

* removed commented tests

* cleanup pr and remove explicit floats

* added top-k sampler to improve performance

* changed sigma to float

* fixed string format to float

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* added llama_sampler_init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 08:45:57 +02:00
Daniel Bevenius 3e69319772
llama : update llama_decode_internal ref [no ci] (#11840)
This commit updates the comment in llama_kv_cache.h to reflect the
change of the function name from llama_decode_internal to
llama_decode_impl.
2025-02-13 08:07:51 +02:00
bandoti fef0cbeadf
cleanup: fix compile warnings associated with gnu_printf (#11811) 2025-02-12 10:06:53 -04:00
Daniel Bevenius 369be5598a
llama : fix typo in llama-grammar.h [no ci] (#11816) 2025-02-12 09:40:01 +02:00
Wilken Gottwalt 19b392d58d
llama-mmap: fix missing include (#11796)
Technically the fixed width types come only from iostream and
cstdint/stdint.h headers. memory and vector headers should not provide
these. In GCC 15 the headers are cleaned up and you require the proper
header cstdint.

src/llama-mmap.h:26:5: error: ‘uint32_t’ does not name a type
   26 |     uint32_t read_u32() const;
      |     ^~~~~~~~
2025-02-10 20:58:18 +02:00
Georgi Gerganov bdcf8b6a56
cont : fix mmap flag print (#11699) 2025-02-08 16:49:38 +02:00
Georgi Gerganov ed926d8833
llama : fix defrag logic (#11707)
* llama : fix defrag logic

ggml-ci

* cont : better logic

ggml-ci

* cont : clamp fragmentation to 0.0

ggml-ci
2025-02-07 16:05:34 +02:00
Christian Fillion 2d219b389e
vocab : ignore invalid UTF-8 input in the BPE tokenizer (#11729)
Silently insert U+FFFD(s) (Unicode replacement character) instead until the
next valid codepoint can be found.

This fixes `llama_tokenize` throwing an exception across the C API boundary
or libllama's module boundary (the caller's runtime might be incompatible!)

Returing a proper error code might be desirable, however the signature
of `llama_tokenize` doesn't allow it as all return values already have
existing meaning.
2025-02-07 15:55:47 +02:00
magicse 333820d749
llama : fix progress dots (#11730)
* Update llama.cpp

For display progress dots in terminal.
Without this it didn't display dots progress during loading model from file.

* Update llama.cpp

removed trailing spaces
2025-02-07 15:48:47 +02:00
Christian Fillion 7ee953a64a
llama : add llama_sampler_init for safe usage of llama_sampler_free (#11727)
The C API in llama.h claims users can implement `llama_sampler_i` to
create custom `llama_sampler`. The sampler chain takes ownership and
calls `llama_sampler_free` on them. However, `llama_sampler_free` is
hard-coded to use `delete`. This is undefined behavior if the object
wasn't also allocated via `new` from libllama's C++ runtime. Callers
in C and C-compatible languages do not use C++'s `new` operator. C++
callers may not be sharing the same heap as libllama.
2025-02-07 11:33:27 +02:00
tv1wnd 855cd0734a
llama : fix old glm4 models (#11670) 2025-02-06 22:48:51 +01:00
Georgi Gerganov 9dd7a0390f
llama : add log about loading model tensors (#11699) 2025-02-06 13:41:37 +02:00
Johannes Gäßler fd08255d0d
CUDA: non-contiguous (RMS) norm support (#11659)
* CUDA: non-contiguous (RMS) norm support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-04 22:21:42 +01:00