This commit add support for the EmbeddingGemma 300m. This model supports
sliding window attention (SWA) and a new swq_type is introduced to
support symmetric SWA masking.
This commit also extracts the code from the function
llama_is_masked_swa in llama-impl.h, so that the logic can be shared
by both llm_graph_input_attn_no_cache::set_input and
llama_kv_cache::set_input_kq_mask.
With this commit the EmbeddingGemma 300m model can be converted to
to GGUF and used with llama.cpp.
Once the model has been uploaded to HuggingFace it can be used like
this:
```console
./build/bin/llama-cli -hf ggml-org/embeddinggemma-300m-GGUF:Q8_0
```
This commit fixes the model type for the Gemma 270M model in
llama_model.cpp which should be LLM_TYPE_270M. I incorrectly added this
previously as LLM_TYPE_537M which was wrong.
The motivation for this is that it causes the model to not be identified
properly when using tools like llama-bench. For example:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model | size | ...
| ------------------------------ | ---------: | ...
| gemma3 ?B Q8_0 | 271.81 MiB | ...
| gemma3 ?B Q8_0 | 271.81 MiB | ...
```
With the changes in this commit the output will be:
```console
$ ./build/bin/llama-bench -m models/gemma-3-270m-Q8_0.gguf
| model | size | ...
| ------------------------------ | ---------: | ...
| gemma3 270M Q8_0 | 271.81 MiB | ...
| gemma3 270M Q8_0 | 271.81 MiB | ...
```
* feat: Add NEMOTRONH to python arch enum
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add NEMOTRONH to c++ arch enum
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add NEMOTRONH to llama-arch layer map
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First pass at conversion for nemotronh
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add a verbose log for each tensor loaded
This is really helpful for diagnosing mismatches between the expected and
received tensors
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: First (broken) pass at nemotronh model architecture
It generates tokens, just not valid ones!
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Explicitly enable add_bos_token during conversion
The `tokenizer.json`/`tokenizer_config.json` in the model are a bit
contradictory. In the config, add_bos_token is set to False, but the
tokenizer model itself has a post_processor that adds the BOS token via
type: TemplateProcessing
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use relu2 (LLM_FFN_RELU_SQR) for activation in FFN layers
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Only allocate attention cache for attention layers (not non-recurrent)
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Move residual add to after every block
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use the correct norm tensor for the MLP blocks
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Nemotron-H: MLP gate cleanup (pass NULL for unused gate)
This model does not use a gate in MLP blocks; pass NULLs for gate tensors to make intent clear and avoid unused-pointer noise.
* SSM: respect ssm_dt_rank for dt_dim when provided
Use GGUF-provided time_step_rank (ssm_dt_rank) to set dt_dim when > 0; fallback to max(64, n_embd/16).
* fix: plamo2 - revert dt_dim to default (remove ssm_dt_rank usage)
* Rename nemotronh to nemotron_h for consistency
- Update architecture name from NEMOTRONH to NEMOTRON_H in constants.py
- Change architecture string from 'nemotronh' to 'nemotron_h' in all files
- Update enum LLM_ARCH_NEMOTRONH to LLM_ARCH_NEMOTRON_H
- Update class name llm_build_nemotronh to llm_build_nemotron_h
- Consistent naming with underscore convention (nemotron_h vs nemotronh)
* feat: Support conversion for older NemotronH models
https://github.com/ggml-org/llama.cpp/issues/nemotron-nano-15409
Branch: gabe-l-hart/nvidia-nemotron-nano-15409
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Maicon Domingues <dominguesm@outlook.com>
Co-authored-by: weatherman <fxdstudios@gmail.com>
This commit adds support for the 18-layer model type in the Gemma3
series, which is the size of the Gemma3-270m model.
The motivation for this commit is was the only change required for
Gemma3-270m to be converted to GGUF format and used with llama.cpp.
Once the model has been converted and uploaded to Huggingface it can be
used like this:
```console
$ ./build/bin/llama-cli -hf ggml-org/gemma-3-270m-GGUF:Q8_0
```
* Add support for Llada-8b: diffusion model
* Add README
* Fix README and convert_hf_to_gguf
* convert_hf_to_gguf.py: address review comments
* Make everything in a single example
* Remove model-specific sampling
* Remove unused argmax
* Remove braced initializers, improve README.md a bit
* Add diffusion specific gguf params in set_vocab, remove setting rope_theta and rms_norm_eps
* Remove adding the mask token
* Move add_add_bos_token to set_vocab
* use add_bool in gguf_writer.py
* support smallthinker
* support 20b softmax, 4b no sliding window
* new build_moe_ffn_from_probs, and can run 4b
* fix 4b rope bug
* fix python type check
* remove is_moe judge
* remove set_dense_start_swa_pattern function and modify set_swa_pattern function
* trim trailing whitespace
* remove get_vocab_base of SmallThinkerModel in convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* better whitespace
Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use GGML_ASSERT for expert count validation
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Improve null pointer check for probs
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* use template parameter for SWA attention logic
* better whitespace
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* move the creation of inp_out_ids before the layer loop
* remove redundant judge for probs
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
MiniCPM models use the llm_build_granite constructor which was changed
in the Granite Four PR to use hparams.rope_finetuned instead of a
use_rope parameter. MiniCPM models need rope enabled by default.
Fixes inference from gibberish to correct responses.