Commit Graph

1775 Commits

Author SHA1 Message Date
Jianhui Zhou 5714d4b86e ggml: Add thread count control during repacking
This change enables the repack stage to utilize the user-specified
thread count, ensuring that both the logical thread IDs and the total
number of threads remain consistent between the repack and inference
stages.

In a NUMA architecture where the `--numa distribute` parameter is used,
logical threads are pinned to specific physical NUMA nodes. By aligning
the thread configuration across these two stages, we can fully leverage
the operating system's "first-touch" memory allocation policy:

1. Repack Stage: Logical thread i (bound to NUMA node j) is responsible
   for repacking and writing the weight data. Since the "first touch"
   occurs within this thread, the corresponding physical memory is
   allocated on node j.

2. Inference Stage: The same logical thread i (still bound to node j)
   reads these weights. Since the data already resides on the local
   node, low-latency local memory access is achieved.

Without ensuring consistency in the number of threads, data may be
randomly allocated to mismatched nodes, resulting in significant
cross-node access overhead during inference.

Signed-off-by: Jianhui Zhou <jonaszhou@zhaoxin.com>
2026-01-13 07:36:31 +00:00
Jianhui Zhou 11b753e786 ggml: optimize repack on NUMA by binding threads
When using repack buffer type, the physical memory allocation is dictated
by the first-touch policy. Since the main thread performs the write
operations, memory is often allocated on a single NUMA node, leading to
uneven weight distribution.

Multi-threaded repack can alleviate this problem, but the threads are
not bound to NUMA nodes.

This patch applies the same thread affinity strategy (--numa distribute)
to the repacking phase. By binding the repack threads to the same nodes
as the compute threads, we ensure that weights are written (and thus
allocated) on the local NUMA node, minimizing cross-node memory access
during inference.

Performance on Intel Xeon Silver 4514Y (32 core):
qwen3 8B  Q4_K: 19.39 -> 26.92 t/s (+39%)
qwen3 32B Q4_K:  4.99 ->  7.38 t/s (+48%)

Signed-off-by: Jianhui Zhou <jonaszhou@zhaoxin.com>
2026-01-08 14:12:59 +00:00
pestopoppa b1366757cf ggml-cpu: parallelize tensor repacking with OpenMP
Add OpenMP parallelization to tensor repack functions to significantly
speed up model loading on many-core CPUs.

Measured on AMD EPYC 9655 (96 cores):

| Model Size | Before | After | Speedup |
|------------|--------|-------|---------|
| 6.8GB Q4_K | 5.0s   | 3.3s  | 1.5x    |
| 19GB Q4_K  | 11.9s  | 5.3s  | 2.2x    |
| 271GB Q4_K | ~150s  | ~60s  | ~2.5x   |

The repack functions convert quantized tensors from storage layout
to SIMD-optimized layout for AVX-512. This was previously single-threaded
and is now parallelized across row groups.

Key changes:
- Convert pointer-increment loops to explicit indexing
- Add #pragma omp parallel for to outer loops (guarded by #ifdef _OPENMP)
- Each thread processes independent row groups
- Move thread-local dst_tmp arrays inside parallel region

Functions parallelized:
- repack_q4_0_to_q4_0_4_bl (Q4_0 x4 interleave)
- repack_q4_K_to_q4_K_8_bl (Q4_K_M, Q4_K_S models)
- repack_q2_K_to_q2_K_8_bl (Q2_K models)
- repack_q4_0_to_q4_0_8_bl (Q4_0 x8 interleave)
- repack_iq4_nl_to_iq4_nl_4_bl (IQ4_NL x4)
- repack_iq4_nl_to_iq4_nl_8_bl (IQ4_NL x8)

Tested on: AMD EPYC 9655 "Turin" with 192 threads
2026-01-01 12:51:30 +01:00
Ruben Ortlam 9e6649ecf2
vulkan: fix mul_mat_vec_iq1_s formatting (#18026) 2025-12-14 14:52:46 +01:00
Jeff Bolz 3238b1400c
vulkan: Fix data race/hang in scalar/cm1 flash attention (#17887) 2025-12-14 09:00:00 +01:00
lovedheart 4722671641
vulkan: improve mul_mat_vec_iq1_s speed (#17874) 2025-12-14 08:47:49 +01:00
Eve d15d177f43
vulkan: faster q6_k matmul (#17813)
* q6_k faster mul mat

* 8 values

* fix comment

* switch to two at a time

* start ci for .glsl files
2025-12-14 08:29:37 +01:00
Georgi Gerganov a63cbafbbc ggml : arm repack fix build 2025-12-14 08:33:51 +02:00
Georgi Gerganov 71fdcf0616 ggml : arm repack fix build (whisper/0) 2025-12-14 08:33:51 +02:00
Congcong Cai 615655aafe cmake : set `CMAKE_RUNTIME_OUTPUT_DIRECTORY` for non standalone build (ggml/1394)
Some backend depends on CMAKE_RUNTIME_OUTPUT_DIRECTORY to create temporary file like metal backened.
Missing CMAKE_RUNTIME_OUTPUT_DIRECTORY will cause some cmake error like permission denied (try to copy file to root).
This PR wants to setup a default path for CMAKE_RUNTIME_OUTPUT_DIRECTORY when it does not exist.
2025-12-14 08:33:51 +02:00
Jeff Bolz 36255a2268
vulkan: support get_rows for i32 (#17941) 2025-12-13 10:12:53 +01:00
Jeff Bolz 3229a23fa6
vulkan: support GGML_OP_DIAG (#17893) 2025-12-13 10:07:49 +01:00
Jeff Bolz 303f8615e9
vulkan: Multi-pass softmax for large number of cols (#17892)
When the number of cols is large, split each row across multiple workgroups.
There are three phases that communicate partial results through temp buffers:
(1) compute max partials
(2) take max of partials, compute sum(exp(x-max)) partials
(3) sum partials, compute scaled result
2025-12-13 10:04:29 +01:00
Jeff Bolz 07a10c1090
vulkan: Allow non-pow2 n_experts in topk_moe (#17872) 2025-12-13 08:40:04 +01:00
Johannes Gäßler 482211438d
CUDA: fix overflow in MMA kernel without stream-k (#17939) 2025-12-12 17:43:58 +01:00
Sigbjørn Skjæret dcb7d17758
cann : fix ops broken by circular padding guard (#17825) 2025-12-12 15:49:27 +01:00
ixgbe 51604435e8
ggml-cpu : fix RISC-V Q4_0 repack select and RVV feature reporting (#17951)
* ggml-cpu:fix RISC-V Q4_0 repack select and RVV feature reporting

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* using the name VLEN instead of CNT

* Update ggml/include/ggml-cpu.h

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-12 16:26:03 +02:00
yulo c33a58bced
HIP: enable mmf for RDNA3 (#17879)
* enable mmf for RDNA3

* disable mmf for some shape

* move some mmvf to mmf

* more mmfv to mmf

* 3 is good in mmvf

---------

Co-authored-by: zhang hui <you@example.com>
2025-12-12 11:34:33 +01:00
Piotr Wilkin (ilintar) 53ecd4fdb9
SOLVE_TRI extension to more dimensions (#17793)
* Extended TRI

* Fix whitespace

* chore: update webui build output

* Just use cuBLAS for everything...

* Merge both versions

* Remove incorrect imports causing failures for CI

* Still failing... remove all direct cublas imports and rely on common imports from "common.cuh"

* Defines for hipBlas

* Aaaand MUSA defines...

* I hate this job...

* Stupid typo...

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-11 17:20:43 +01:00
Georgi Gerganov c6f6e4f96a
ggml-alloc : fix reuse-parent logic for misaligned sizes (#17884) 2025-12-11 14:30:10 +02:00
nullname 34ce48d97a
ggml-hexagon: fix `rope` failure at `test-backend-ops` (#17565)
* fix test failure

* fix: correct scaling calculations in rope_cache_init

* fix: optimize element copying in rope_hex_f32 using memcpy

* fix: optimize loop boundaries in rope_hex_f32 for better performance

* feat: add profiling macros for performance measurement in operations
2025-12-10 14:45:43 -08:00
Max Krasnyansky e1f4921980
Fix race conditions in threadpool when dealing with dynamic/frequent n_threads changes (#17748)
* tests: update barrier test to check for race condition in active threads

* cpu: combine n_graph and n_threads into a single atomic update

* tests: add multi-graph test for test_barrier
2025-12-10 12:32:23 -08:00
Georgi Gerganov 4dff236a52
ggml : remove GGML_KQ_MASK_PAD constant (#17910)
* ggml : remove GGML_KQ_MASK_PAD constant

* cont : remove comment
2025-12-10 20:53:16 +02:00
Sigbjørn Skjæret 4df6e859e9
cuda : add missing support check for xielu (#17895) 2025-12-10 16:16:20 +01:00
Johannes Gäßler 17f7f4baad
CUDA: fix unpadded strides in MMA FA kernel (#17891) 2025-12-10 12:39:56 +01:00
Neo Zhang Jianyu 2e9eab80c2
fix softmax for iGPU (#17838) 2025-12-10 16:59:57 +08:00
Gabe Goodhart 086a63e3a5
metal: SSM kernel improvements (#17876)
* feat: Add a batched version of ssm_conv

This was done using Claude Code. It found a number of optimizations around
how the threads were organized, resulting in a huge performance boost!

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Optimized SSM_SCAN kernel for metal

This used Claude Code and resulted in a modest performance improvement
while maintaining correctness.

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Add test-backend-ops perf tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Real representitive tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use function constant for ssm_conv batch size

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: backend op tests for ssm_scan from granite4 1b-h

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: remove commented out templates

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: float4 version of ssm_conv_batched

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add missing ggml_metal_cv_free

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-09 21:30:02 +02:00
Piotr Wilkin (ilintar) b63509262a
Add DIAG for CUDA (#17873)
* Add DIAG for CUDA

* Refactor parameters
2025-12-09 20:28:57 +01:00
Gabe Goodhart 02e409a5be
ggml : Provide macos-specific backtrace printing to avoid terminal death (#17869)
* fix: Provide macos-specific backtrace printing to avoid terminal death

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add GGML_BACKTRACE_LLDB env var to enable using lldb for backtrace

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-09 18:29:07 +02:00
Georgi Gerganov 6b82eb7883
metal : print node names for debugging (#17882) 2025-12-09 15:25:49 +02:00
Sigbjørn Skjæret 86a3f0fad8
ggml : allow fill node alloc inplace (#17870) 2025-12-09 12:23:47 +01:00
Chenguang Li ca709e427b
CANN: add support for partial RoPE and Vision mode (#17543)
* cann: add support for partial RoPE and Vision mode

Add support for two important RoPE variants: partial rotation (rope_dims < ne0)
and Vision mode rotation.

1. Support for partial RoPE (rope_dims < ne0):
   - Split tensor into head (first rope_dims dimensions) and tail portions
   - Apply rotation only to head portion using RotaryPositionEmbedding operator
   - Copy unrotated tail portion directly from source to destination
   - Handle both contiguous and non-contiguous tensor layouts

2. Support for Vision mode (GGML_ROPE_TYPE_VISION):
   - Set rope_dims = ne0 for Vision mode to rotate entire tensor
   - Vision mode pairs dimension i with dimension i+n_dims (where n_dims = ne0/2)
   - No tail handling needed since entire tensor is rotated

Implementation details:
   - Use has_tail flag to determine execution path: head/tail splitting when
     rope_dims < ne0, or full tensor rotation when rope_dims == ne0
   - Support both F32 and F16 data types with intermediate F32 conversion
   - Copy non-contiguous tensors to contiguous buffers before calling
     RotaryPositionEmbedding operator for compatibility
   - Improve cache invalidation logic to include rope_dims and indep_sects
     parameters

These enhancements enable CANN backend to handle various RoPE configurations
used in modern vision-language models and models with partial rotation.

* cann: fix review comment
2025-12-09 17:53:23 +08:00
Johannes Gäßler 0cdce38a97
CUDA: fix FP16 overflow in tile FA kernel (#17875) 2025-12-09 09:34:02 +01:00
Jay Zenith 51e0c2d917
cuda : add FILL op support (#17851)
* cuda : add FILL op support

* cuda : add missing FILL op files
2025-12-08 21:10:12 +08:00
wsbagnsv1 5814b4dce1
cuda: optimize SOLVE_TRI using registers and FMAF (#17703)
* ggml-cuda: optimize solve_tri_f32_fast and fix stride handling

- Switch from using shared memory for the RHS/solution matrix to a register-based approach (x_low, x_high), reducing shared memory pressure and bank conflicts.
- Implement explicit `fmaf` instructions for the reduction loop.
- Update kernel arguments to pass strides in bytes rather than elements to align with standard ggml tensor arithmetic (casting to `char *` before addition).
- Remove unused `MAX_K_FAST` definition.

* Small cleanup

* Remove comments in solve_tri.cu

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use const for variables in solve_tri.cu

* Replace fmaf with more readable code

* remove last fmaf

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-08 10:41:08 +01:00
ixgbe 79d61896d3
ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support (#17784)
* ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* cmake: enable RISC-V zihintpause extension for Spacemit builds

* readme : add ZIHINTPAUSE support for RISC-V

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-12-08 10:41:34 +02:00
lovedheart 08f9d3cc1d
Vulkan: improve mul_mat_vec_iq1_m (#16907)
* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
2025-12-07 18:40:42 +01:00
Law Po Ying d9e03db1e7
sycl: add missing BF16 conversion support for Intel oneAPI (#17780)
* sycl: add missing BF16 conversion support for Intel oneAPI

* Fix Line 645: Trailing whitespace
2025-12-07 09:18:18 +08:00
Jeff Bolz db97837385
vulkan: perf_logger improvements (#17672)
* vulkan: perf_logger improvements

- Move perf_logger from device to ctx.
- Add an env var to control the frequency we dump the stats. If you set a very
large value, it just dumps when the ctx is destroyed.
- Add a fusion info string to the tracking, only log one item per fused op.
- Fix MUL_MAT_ID flops calculation.

* fix vector sizes
2025-12-06 18:46:46 +01:00
Vishal Singh 017761daf5
ggml-zendnn : add ZenDNN backend for AMD CPUs (#17690)
* ggml-zennn: add ZenDNN backend support

* ggml-zendnn : address ZenDNN backend review fixes and suggestions

* docs : apply blockquote syntax to ZenDNN docs

---------

Co-authored-by: Manoj Kumar <mkumar@zettabolt.com>
2025-12-07 00:13:33 +08:00
Phylliida Dev 09c7c50e64
ggml : add circular tiling support to pad, for Vulkan, CUDA, and CPU (used for making seamless textures) (#16985)
* Feat: Added vulkan circular tiling support

* Feat: Added cpu circular

* Feat: Added cuda kernels

* Added tests

* Added tests

* Removed non-pad operations

* Removed unneded changes

* removed backend non pad tests

* Update test-backend-ops.cpp

* Fixed comment on pad test

* removed trailing whitespace

* Removed unneded test in test-backend-ops

* Removed removed test from calls

* Update ggml/src/ggml-vulkan/vulkan-shaders/pad.comp

Co-authored-by: Ruben Ortlam <picard12@live.de>

* Fixed alignment

* Formatting

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Format pad

* Format

* Clang format

* format

* format

* don't change so much stuff

* clang format and update to bool

* fix duplicates

* don't need to fix the padding

* make circular bool

* duplicate again

* rename vulkan to wrap around

* Don't need indent

* moved to const expr

* removed unneded extra line break

* More readable method calls

* Minor wording changes

* Added final newline

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Added circular pad ext tests

* Gate non circular pad devices

* Cleaned gating of non-circular pad devices

---------

Co-authored-by: Phylliida <phylliidadev@gmail.com>
Co-authored-by: Ruben Ortlam <picard12@live.de>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-06 15:07:02 +01:00
Johannes Gäßler f334b79494
HIP: fix RDNA3 FP16/BF16 matrix multiplication (#17817) 2025-12-06 13:45:36 +01:00
Sky 7b43f55753
ggml : improve error handling for search path existence checks (#17653)
* Improve error handling for search path existence checks

Refactor existence checks for search paths using std::error_code to handle potential errors.

* Improve cache file existence check with error code 

Update fs::exists to use std::error_code for error handling.

* Simplify existence check for search paths

Simplify existence check for search paths

* Fix logging path in error message for posix_stat

* Update ggml/src/ggml-backend-reg.cpp

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Adapt to the coding standard

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-12-06 12:28:16 +01:00
Jeff Bolz 2960eb2975
vulkan: Use one row per workgroup for f32 mmv (#17711)
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
2025-12-06 11:12:26 +01:00
Jeff Bolz c6c5e85979
vulkan: support solve_tri with larger N/K values (#17781)
Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
2025-12-06 08:56:45 +01:00
Georgi Gerganov 8ce774a102
metal : fix build(#17799)
* metal : fix build

* tests : fix context destruction
2025-12-06 09:33:59 +02:00
Masato Nakasaka 67788f6846
vulkan: Replace deprecated VK_EXT_validation_features (#17637)
* replaced deprecated VK_EXT_validation_features

* forgot to remove old code
2025-12-06 06:39:42 +01:00
Masato Nakasaka d8c0a7b085
vulkan: Fix mismatch in TOPK_MOE unit test (#17541)
* Fix shader to support 2D workgroup mapping to a single subgroup

* Set required_subgroup_size

topk_moe shader requires static WARP_SIZE and actual subgroup size to match
2025-12-06 06:23:30 +01:00
Jeff Bolz 933414c0b6
vulkan: add more num_blocks instantiations in rms_norm (#17701) 2025-12-05 22:08:56 +01:00
Jeff Bolz a0f3897d53
vulkan: fix top_k bug when there are ties in the input (#17659)
* vulkan: Reduce temporary memory usage for TOP_K

- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.

* vulkan: fix top_k bug when there are ties in the input

I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).

I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-05 22:03:19 +01:00