* ggml: allow casting between f32 and i32
* fix cuda
* add vulkan
* fix CPU non-cont
* add non-cont test case
* add note
* extend test number range
* correct note
* add cont version for vulkan
* vulkan : update ggml_vk_instance_validation_ext_available
This commit updates ggml_vk_instance_validation_ext_available() to
check for VK_EXT_validation_features instead of
VK_KHR_portability_enumeration.
Based on how the returned boolean is used later in the code (to enable
both the validation layer and the VK_EXT_validation_features extension),
it appears the function may have been intended to check for the
validation layer features extension.
* remove try/catch
This was a left over from a previous iteration where I was explicitly
quering for a specific validation layer first, which would throw.
* update warning message about validation layers
* vulkan: use memory budget extension to read memory usage
* fix: formatting and names
* formatting
* fix: detect and cache memory budget extension availability on init
* fix: read `budgetprops.heapBudget` instead of `heap.size` when memory budget extension is available
* style: lints
* vulkan: Add Integer Dot Product mul_mat_vec shader for legacy quants
* vulkan: use subgroup operations for quantize_q8_1 shader
* vulkan: add q8_1_x4 type with 128-bit alignment, use in mul_mat_vecq shader
* vulkan: use q8_1_x4 blocks in mul_mmq shader
* vulkan: do 8 calculations per invocation instead of 32 in mul_mat_vecq, similar to mul_mat_vec
* vulkan: tune mul_mat_vecq performance for Intel
* vulkan: fix quantizing issue when tensor is not divisible by 128
* vulkan: adapt integer dot mmv to mmv small m optimization (#15355)
* vulkan: allow all subgroup modes for mmv and mmvq
* vulkan: use prealloc intermediate reuse for mmvq path
* vulkan: tune mmvq for Intel, AMD GCN and Nvidia RTX 3090
* vulkan: adapt mmv quantize_y path to conditional sync logic
* vulkan: disable q8_0 mmvq on Nvidia
* vulkan: enable q8_0 on Nvidia pre-turing
* fix prealloc sync condition
* fix llvmpipe subgroup 8 issue
* vulkan: mul_mat_id coopmat2 optimizations
Add a path for when the tile fits in BN/2, similar to what we have for mul_mat.
Only call fetch_scales/store_scales once per QUANT_K block, and once at the
beginning in case start_k is not aligned.
* Also add a path for BN/4 - worth a couple more percent
This commit removes the portability_enumeration_ext variable from the
ggml_vk_instance_portability_enumeration_ext_available function as it
is initialized to false but never modified, making it redundant.
* vulkan: use subgroup function for mul_mat_id shader even without coopmat
* vulkan: fix compile warnings
* vulkan: properly check for subgroup size control and require full subgroups for subgroup mul_mat_id
* vulkan: disable subgroup mul_mat_id on devices with subgroups < 16
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.
Store the FA pipelines in a map, indexed by the pipeline state.
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs
There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.
The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.
* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.
* complete rebase against fused adds - multi_add shader can also compute partial sums
* fix validation errors
* disable add_rms_fusion for Intel due to possible driver bug
* resolve against #15489, sync after clearing partial sums
Track a list of nodes that need synchronization, and only sync if the new node
depends on them (or overwrites them). This allows some overlap which can
improve performance, and centralizes a big chunk of the synchronization logic.
The remaining synchronization logic involves writes to memory other than the
nodes, e.g. for dequantization or split_k. Each of these allocations has a bool
indicating whether they were in use and need to be synced. This should be
checked before they are written to, and set to true after they are done being
consumed.
* vulkan : support ggml_mean
* vulkan : support sum, sum_rows and mean with non-contiguous tensors
* vulkan : fix subbuffer size not accounting for misalign offset
* tests : add backend-op tests for non-contiguous sum_rows
* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support
* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
- Spread the work across the whole workgroup. Using more threads seems to
far outweigh the synchronization overhead.
- Specialize the code for when the division is by a power of two.
* vulkan: Reuse conversion results in prealloc_y
Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.
* don't use shared pointer for prealloc_y_last_pipeline_used
* vulkan: Use larger workgroups for mul_mat_vec when M is small
Also use subgroup instructions for (part of) the reduction when supported.
Without this, the more expensive reductions would eat into the benefits of
the larger workgroups.
* update heuristic for amd/intel
Co-authored-by: 0cc4m <picard12@live.de>
---------
Co-authored-by: 0cc4m <picard12@live.de>
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
* vulkan: fuse adds
Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.
* check runtimeDescriptorArray feature
* disable multi_add for Intel due to likely driver bug
* vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id
* vulkan: Support mul_mat_id with f32 accumulators, but they are not hooked up
- There's no explicit way to request f32 precision for mul_mat_id, but there
probably should be, and this gets the code in place for that.
- A couple fixes to check_results.
- Remove casts to fp16 in coopmat1 FA shader (found by inspection).
* vulkan: perf_logger improvements
- Account for batch dimension in flops calculation.
- Fix how "_VEC" is detected for mat_mul_id.
- Fix "n" dimension for mat_mul_id (in case of broadcasting).
- Include a->type in name.
* use <=mul_mat_vec_max_cols rather than ==1
* examples/finetune -opt SGD (stochastic gradient descent) memory opt
add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.
support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)
llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)
(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val: [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00
SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val: [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)
note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')
-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.
note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence
new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)
cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)
since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)
test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values); tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)
* Vulkan: Implement GGML_OP_OPT_STEP_SGD
* tests: Fix OPT_STEP_SGD test-backend-ops
* SGD op param store weight-decay and not 1-alpha*wd
* minor + cosmetic changes
* fix vulkan sgd
* try CI fix
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
- Increase tile size for k-quants, to match non-k-quants
- Choose more carefully between large and medium tiles, considering how it
interacts with split_k
- Allow larger/non-power of two split_k, and make the splits a multiple of 256
- Use split_k==3 to when >1/2 and <=2/3 of the SMs would hae been used
* vulkan: optimizations for direct convolution
- Empirically choose a better tile size. Reducing BS_K/BS_NPQ helps fill
the GPU. The new size should be amenable to using coopmat, too.
- Fix shmem bank conflicts. 16B padding should work with coopmat.
- Some explicit loop unrolling.
- Skip math/stores work for parts of the tile that are OOB.
- Apply fastdiv opt.
- Disable shuffles for NV.
* Three tiles sizes for CONV_2D, and a heuristic to choose
* reallow collectives for pre-Turing
* make SHMEM_PAD a spec constant
* fixes for intel perf - no shmem padding, placeholder shader core count
* shader variants with/without unrolling
* 0cc4m's fixes for AMD perf
Co-authored-by: 0cc4m <picard12@live.de>
---------
Co-authored-by: 0cc4m <picard12@live.de>
The pipeline member can be cast to VkPipeline.
This is a VkPipeline_T* on 64 bit but a uint64_t on 32 bit.
Cf. VK_DEFINE_NON_DISPATCHABLE_HANDLE documentation.
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan
* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),
* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests
* * Performance fixes: minimized branch divergence, uses collectives to
eliminate redundant calculation, macros removed.
* Kernel shared memory size check
* Updates test-backend-ops to support graphs for performance
measurement.
* * Apple/Win32 compile errors fixed
* Subgroup size used to determine tile size -> fixes llvmpipe errors.
* Collectives disabled by default.
* Intel support is disabled as the performance is poor.
* Conv2d enabled for Intel with disabled collectives, disabled for Apple
* test-backend-ops modifications are reverted
* Trailing spaces and missing override fixed.
* Triggering pipeline relaunch.
* Code formatted with .clang-format.
* vulkan: support SET_ROWS
Add variants of the copy_to_quant shader that do the SET_ROWS operation.
Change these shaders to spread the work across the workgroup.
The memory access pattern is probably not great (one thread per quant block),
but should be fine for now.
* vulkan: optimize set_rows
Larger workgroups for non-quant types.
Set "norepeat" (there is manual repeat logic).
Use fastmod.
* vulkan: allow unclamped loads in coopmat2 mul_mat_id shader
* vulkan: increase coopmat2 mul_mat_id tile size
* vulkan: optimize mat_mul_id row_ids search to batch loads, and port to coopmat1 path
* vulkan: use smaller FA row size when head size is large. applies to both scalar and CM2 paths (CM1 isn't used due to shared memory limits)
* ggml : add ggml_scale_bias
* ggml_vec_mad1_f32
* add more simd
* add CUDA
* sycl
* vulkan
* cann (placeholder)
* opencl
* will this fix cpu?
* fix cuda
* suggestions from coderabbit
* fix cann compile error
* vDSP_vsmsa
* rm __ARM_FEATURE_SVE
* use memcpy for op params
* make code looks more consistent
* use scalar for __ARM_FEATURE_SVE
* add x param to ggml_vec_mad1_f32
* vulkan: allow FA split_k with smaller KV values
* vulkan: spread split_k_reduce work across more threads
k_num can get rather large. Use the whole workgroup to reduce the M/L values.
Launch a thread for each element in the HSV dimension of the output. Helps a
lot for large HSV (like deepseek).
The fused operation was grabbing the epsilon value from the wrong place.
Add an env var to disable fusion.
Add some missing checks for supported shapes/types.
Handle fused rms_norm+mul in check_results.
* vulkan: Handle updated FA dim2/3 definition
Pack mask boolean and n_head_log2 into a single dword to keep the push
constant block under the 128B limit.
* handle null mask for gqa
* allow gqa with dim3>1
* kv-cache : use ggml_set_rows
ggml-ci
* graph : separate k and v indices
ggml-ci
* cont : remove redundant ifs
ggml-ci
* kv-cache : improve find_slot impl
* kv-cache : bounds-check when accessing slot_info indices
* kv-cache : add comments
ggml-ci
* ggml : add TODOs for adding GGML_OP_SET_ROWS support in the backends
ggml-ci
* implement unary REGLU/GEGLU/SWIGLU cpu ops
* relax constraints
* duplicate shape of source
* fix ggml_vec_geglu_f16
* special case gated ops
* implement unary REGLU/GEGLU/SWIGLU cuda ops
* tighten constraints again
* refactor into GGML_GLU_OP
* metal : add glu kernels
ggml-ci
* add CUDA_GLU_BLOCK_SIZE [no ci]
* more constraints and use 64bit ints
ggml-ci
* 64bit multiplication [no ci]
* implement swapped variants (cpu/cuda)
* update comment [no ci]
ggml-ci
* Vulkan: Add GLU ops and shaders
* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate
* ggml : implement GLU for split up/gate (#14181)
* implement GLU for split up/gate
* add tests for ggml_glu_split
* Vulkan: Implement glu_split logic and shader support
* add split to logging [no ci]
* SYCL: refactor element_size ops and add split up and gate support to gated kernels
* SYCL: switch GEGLU to use tanh approximation
---------
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
* GGML: increase OP count in assertion
* Refactor: Optimize SYCL element-wise operations with unary function inlining
This commit refactors the SYCL element-wise operations to improve performance by:
- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.
The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.
* vulkan: Increase workgroup size for GLU, for performance (#14345)
* vulkan: Increase workgroup size for GLU, for performance
* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup
* merge fix
* metal : add support for split and swap
ggml-ci
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Add fusion support for RMS_NORM+MUL
- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.
* extract some common fusion logic
* fix -Winconsistent-missing-override
* move ggml_can_fuse to a common function
* build fix
* C and C++ versions of can_fuse
* move use count to the graph to avoid data races and double increments when used in multiple threads
* use hash table lookup to find node index
* change use_counts to be indexed by hash table slot
* minimize hash lookups
style fixes
* last node doesn't need single use.
fix type.
handle mul operands being swapped.
* remove redundant parameter
---------
Co-authored-by: slaren <slarengh@gmail.com>
* Add support for VK_EXT_debug_utils to add labels to Vulkan objects. In step 1 compute pipelines are getting labeled.
* remove #ifdef for debug utils and add queue marker.
This change moves the command pool/buffer tracking into a vk_command_pool
structure. There are two instances per context (for compute+transfer) and
two instances per device for operations that don't go through a context.
This should prevent separate contexts from stomping on each other.
Use the same descriptor set layout for all pipelines (MAX_PARAMETER_COUNT == 8)
and move it to the vk_device. Move all the descriptor pool and set tracking to
the context - none of it is specific to pipelines anymore. It has a single vector
of pools and vector of sets, and a single counter to track requests and a single
counter to track use.
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D
* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D
* Missing barrier added to shader.
Number of additional tests reduced to 108.
* * Fixes typo in variable name.
* Removes extra whitespaces.
* Adds int64->int32 casts to prevent possible warnings.
* Problem size reduced in tests to pass tests with llvmpipe.
* supports_op condition moved from unintended position
This shader uses coopmat1 to do the Q*K^T multiply. The P*V multiply is more
difficult for various reasons so I haven't done it. Performance for this
shader is around 2.5x better than for the scalar shader when doing prompt
processing. Some of the benefit may be from other optimizations like staging
through shared memory, or splitting by rows.
* vulkan: scalar flash attention implementation
* vulkan: always use fp32 for scalar flash attention
* vulkan: use vector loads in scalar flash attention shader
* vulkan: remove PV matrix, helps with register usage
* vulkan: reduce register usage in scalar FA, but perf may be slightly worse
* vulkan: load each Q value once. optimize O reduction. more tuning
* vulkan: support q4_0/q8_0 KV in scalar FA
* CI: increase timeout to accommodate newly-supported tests
* vulkan: for scalar FA, select between 1 and 8 rows
* vulkan: avoid using Float16 capability in scalar FA
This assert fired running Qwen_Qwen3-30B-A3B-Q2_K.gguf:
GGML_ASSERT(nei0 * nei1 <= 3072);
The tensor is 8 x 512. Increase this array size to accommodate.