Commit Graph

280 Commits

Author SHA1 Message Date
Aman Gupta 48e2fa9fb7
CUDA: add fp kernel for larger batch size MoE (#16512)
* CUDA: kernel for larger batch sizes for MoE

* WIP

* WIP

* WIP

* WIP

* WIP

* WIP

* fixup

* tests

* Move mmq_ids_helper to mmid

* cleanup

* Remove redundant checks
2025-10-14 13:15:15 +02:00
Georgi Gerganov e60f241eac
metal : FA support F32 K and V and head size = 32 (#16531)
* metal : FA support F32 K and V and head size = 32

* graph : remove obsolete comment [no ci]
2025-10-13 23:07:57 +03:00
Georgi Gerganov 0a319bb75e
metal : add support for non-padded FA KV (#16148)
* metal : pad K, V and Mask when needed

* cont : simplify

* cuda : add TODO about KV padding requirement

* metal : add comments

* metal : remove mask padding requirement
2025-10-07 08:23:30 +03:00
Georgi Gerganov 1d6092fc72
tests : add -INF blocks to the KQ mask in the FA tests (#16380)
* tests : add -INF blocks to the KQ mask in the FA tests

* cont : bump -INF block size to 64

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* ggml : prevent division by zero in FA CPU op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-07 08:22:35 +03:00
Reese Levine ef07a40906
ggml webgpu: add support for soft_max, optimize rms_norm (#16357)
* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-02 11:00:31 -07:00
Reese Levine 8d78cd2613
ggml webgpu: support for rope,div,sub,glu,scale,cont operators (#16187)
* Work on rope

* Simplify inplace operation generation and combine mul/add generation

* Work on rope variants

* implement neox rope

* rope complete

* Add sub,div,glu operators

* implement scale op

* Update cpy shader to handle cont/more types

* formatting

* Update test vars printing for rope,rms_norm

* Avoid ROPE hardcoded constants

* Add TODO to change ROPE constants to enum

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix TODO comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-30 09:57:51 -07:00
Jeff Bolz a74a0d69f3
tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences (#16295)
* tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences

* apply similar error bounds to test_cpy
2025-09-29 19:26:34 -05:00
Sigbjørn Skjæret adc76347d7
ggml : check cuda and metal argsort limits and add test (#16323)
* check cuda argsort limits and add test

* add metal check
2025-09-29 11:09:00 +02:00
Sigbjørn Skjæret b887d2f341
ggml : fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32 (#16307)
* fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32

* add test that fails on simd
2025-09-28 23:15:03 +02:00
Jeff Bolz d8359f5fde
vulkan: 64-bit im2col (#16135)
* vulkan: 64-bit im2col

Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.

* fix validation error for large im2col
2025-09-28 08:38:37 +02:00
Georgi Gerganov 6a2c6145a0
metal : extend mat-mat multiplication support (#16225)
* metal : support mul_mm with src1->type == GGML_TYPE_F16

* metal : support mul_mm_id with src1->type == GGML_TYPE_F16

[no ci]

* metal : mul_mm support ne00 % 32 != 0

* metal : support mul_mm_id with ne00 % 32 != 0

* cont : remove unnecessary unrolls

* cont : simplify data loading

* metal : optimize mul_mm when output bounds checks are not needed
2025-09-28 09:34:44 +03:00
Jeff Bolz 1384abf8b8
vulkan: handle mat_mul with A matrix > 4GB (#16176)
* vulkan: handle mat_mul with A matrix > 4GB

This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.

Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.

* build fixes
2025-09-27 20:36:34 -05:00
Aman Gupta c0bfc57af4
CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32 (#16277)
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32

This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.

My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32

* Review: refactor if statement
2025-09-27 18:49:32 +02:00
Aman Gupta 077c94d0ca
CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel

This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory

It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models

* Refactor into ggml_cuda_should_use_topk_moe

* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before

* Review: format + micro-optimizations

* Fix bug: fix tie breakers

* Add optional norm + clean-up code

* Use smem for final write

* Add bounds check

* Use better memory pattern for writeback
2025-09-25 16:35:05 +02:00
Georgi Gerganov dfcd53f7ec
metal : fuse NORM + MUL + ADD, support non-multiples of 4 (#16220)
* metal : fuse NORM + MUL + ADD

* metal : support norms of non-multiple of 4

* cont : fix comment [no ci]
2025-09-25 11:30:16 +03:00
Sigbjørn Skjæret 3ecb2f671a
ggml : implement set_rows with i32 index (#16159)
* implement set_rows with i32 index

* template fix

* test quantized path

warnings--

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* forgotten name change

* deduplicate cuda/sycl and test-fix

* indent++

* vulkan: support set_rows with i32 index type (#16162)

* disable i32 index for webgpu for now

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-22 19:13:00 +02:00
Shin-myoung-serp 96fdca043b
Vulkan: add conv_transpose_2d operation (#16022)
* Vulkan: add conv_transpose_2d operation

* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)

* Vulkan: fix incorrect indentation in conv_transpose_2d shader

* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation

* Vulkan: revert the order of the index calculation and bound check in conv_2d shader

* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.

* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
2025-09-22 10:04:01 +02:00
Ruben Ortlam 9073a73d82
vulkan: vec dot matrix multiplication fix (#16151)
* vulkan: fix matrix multiplication index calculation for odd m/n and odd k in combination with batching

* add odd m/n + odd k test with batching
2025-09-22 07:22:43 +02:00
Xuan-Son Nguyen 0dd58b6877
ggml : refactor forward_dup for cpu backend (#16062)
* ggml : refactor forward_dup for cpu backend

* clean up a bit

* add quant/dequant perf test
2025-09-19 06:31:56 +02:00
Bowen Han 38dbdf4c05
CUDA: Optimize PAD_REFLECT_1D (#15957)
* CUDA: Optimize PAD_REFLECT_1D
feat: add more test cases for PAD_REFLECT_1D

* use fast_div to improve performance

* Apply suggestion from JohannesGaessler

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Apply suggestion from JohannesGaessler

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* optimize

* use a concise expression to further speedup the cuda kernel

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-09-18 20:26:03 +02:00
Reese Levine d304f459d8
GGML WebGPU: Support for ADD, MUL, RMS_NORM, GET_ROWS operators (#16018)
* Add paramater buffer pool, batching of submissions, refactor command building/submission

* Add header for linux builds

* Free staged parameter buffers at once

* Format with clang-format

* Fix thread-safe implementation

* Use device implicit synchronization

* Update workflow to use custom release

* Remove testing branch workflow

* some f32 tests passing

* Disable set_rows until it's implemented

* f32 add all tests passing

* Begin work on set_rows

* Work on set rows

* Add error buffers for reporting unsupported SET_ROWS indices

* Remove extra comments

* Add templated addition, clean up code

* Get addition and multiplication working

* Implement rms_norm

* Add get_rows implementation

* Add new get_rows files

* Refactor use of wg size entry

* Fix compilation

* Try manually unrolled q4_0 quant

* Revert "Try manually unrolled q4_0 quant"

This reverts commit 77f8b96515.

* Move to constant max wg size

* Check for tensor size in supports_op

* Vectorize f32 and change default workgroup size

* Move f32 get_rows from < 4 to % 4 != 0

* fix linter errors

* Add in-place tests

---------

Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
2025-09-17 13:09:40 -07:00
Georgi Gerganov 0320ac5264
metal : refactor + optimize v2 (#15995)
* metal : improve naming

* metal : refactor device

ggml-ci

* cont : props

ggml-ci

* metal : apply ggml_mem_ranges_t

ggml-ci

* metal : remove GGML_METAL_USE_BF16

ggml-ci

* metal : refactor device buffer

ggml-ci

* cont : fix naming

* metal : sync before destroying the backend

ggml-ci

* metal : refactor context

ggml-ci

* metal : migrate ggml-metal.m to ggml-metal.cpp

ggml-ci

* metal : adjust ops API

ggml-ci

* metal : use C++ to store piplienes

ggml-ci

* metal : migrate ops to separate functions

ggml-ci

* metal : add ggml_metal_library_t

ggml-ci

* metal : improve naming

ggml-ci

* metal : cleanp

ggml-ci

* metal : add support for GGML_OP_LOG

ggml-ci

* metal : fix error handling

ggml-ci
2025-09-17 20:38:12 +03:00
Oliver Simons 00681dfc16
CUDA: Add `fastdiv` to `k_bin_bcast*`, giving 1-3% E2E performance (#15872)
* Add fastdiv and fastmodulo to k_bin_bcast kernel

* Address review comments

* `prod_` instead of `prod` suffix

* Add test case for `k_bin_bcast_unravel` in CUDA backend
2025-09-10 22:04:03 +02:00
Daniel Bevenius e7b6d83b52
tests : filter out no-ops from coverage report (#15900)
* tests : filter out no-ops from coverage report

This commit is a follow-up commit for #15745 to address the feedback on
how no-op operations should be filtered out from the coverage report.

The feedback regarding the UNARY and GLU sub-operations not being
handled I not exactly sure what should be done. They are included in the
coverage, for example ABS, ELU, EXP, GELU, GEGLU, GEGLU_ERF etc are in
the list of covered operations:
```console
$ ./build/bin/test-backend-ops --show-coverage
Operations covered by tests (89):
  ✓ ABS
  ✓ ACC
  ✓ ADD
  ✓ ADD1
  ✓ ADD_ID
  ✓ ARANGE
  ✓ ARGMAX
  ✓ ARGSORT
  ✓ CLAMP
  ✓ CONCAT
  ✓ CONV_2D
  ✓ CONV_2D_DW
  ✓ CONV_3D
  ✓ CONV_TRANSPOSE_1D
  ✓ CONV_TRANSPOSE_2D
  ✓ COS
  ✓ COUNT_EQUAL
  ✓ CPY
  ✓ CROSS_ENTROPY_LOSS
  ✓ CROSS_ENTROPY_LOSS_BACK
  ✓ DIAG_MASK_INF
  ✓ DIV
  ✓ DUP
  ✓ ELU
  ✓ EXP
  ✓ FLASH_ATTN_EXT
  ✓ GATED_LINEAR_ATTN
  ✓ GEGLU
  ✓ GEGLU_ERF
  ✓ GEGLU_QUICK
  ✓ GELU
  ✓ GELU_ERF
  ✓ GELU_QUICK
  ✓ GET_ROWS
  ✓ GET_ROWS_BACK
  ✓ GROUP_NORM
  ✓ HARDSIGMOID
  ✓ HARDSWISH
  ✓ IM2COL
  ✓ IM2COL_3D
  ✓ L2_NORM
  ✓ LEAKY_RELU
  ✓ LOG
  ✓ MEAN
  ✓ MUL
  ✓ MUL_MAT
  ✓ MUL_MAT_ID
  ✓ NEG
  ✓ NORM
  ✓ OPT_STEP_ADAMW
  ✓ OPT_STEP_SGD
  ✓ OUT_PROD
  ✓ PAD
  ✓ PAD_REFLECT_1D
  ✓ POOL_2D
  ✓ REGLU
  ✓ RELU
  ✓ REPEAT
  ✓ REPEAT_BACK
  ✓ RMS_NORM
  ✓ RMS_NORM_BACK
  ✓ ROLL
  ✓ ROPE
  ✓ ROPE_BACK
  ✓ RWKV_WKV6
  ✓ RWKV_WKV7
  ✓ SCALE
  ✓ SET
  ✓ SET_ROWS
  ✓ SGN
  ✓ SIGMOID
  ✓ SILU
  ✓ SILU_BACK
  ✓ SIN
  ✓ SOFT_MAX
  ✓ SOFT_MAX_BACK
  ✓ SQR
  ✓ SQRT
  ✓ SSM_CONV
  ✓ SSM_SCAN
  ✓ STEP
  ✓ SUB
  ✓ SUM
  ✓ SUM_ROWS
  ✓ SWIGLU
  ✓ SWIGLU_OAI
  ✓ TANH
  ✓ TIMESTEP_EMBEDDING
  ✓ UPSCALE

Operations without tests (14):
  ✗ ADD_REL_POS
  ✗ CUSTOM
  ✗ DIAG
  ✗ DIAG_MASK_ZERO
  ✗ FLASH_ATTN_BACK
  ✗ GET_REL_POS
  ✗ IM2COL_BACK
  ✗ MAP_CUSTOM1
  ✗ MAP_CUSTOM2
  ✗ MAP_CUSTOM3
  ✗ POOL_1D
  ✗ POOL_2D_BACK
  ✗ WIN_PART
  ✗ WIN_UNPART

Coverage Summary:
  Total operations: 103
  Tested operations: 89
  Untested operations: 14
  Coverage: 86.4%
```

Refs: https://github.com/ggml-org/llama.cpp/pull/15745

* use of ggml_op enum values instead of strcmp
2025-09-10 14:17:09 +02:00
Jeff Bolz 4f63cd705c
vulkan: Fix OOB accesses in soft_max_back (#15861) 2025-09-09 14:41:15 +02:00
Aman Gupta a972faebed
CUDA: Add mul_mat_id support for the mmf kernel (#15767)
* CUDA: Add mul_mat_id support the mmf

Add support for mul_mat_id for bs < 16

* Review: use warp_size, fix should_use_mmf condition

* Launch one block per expert, stride along n_expert_used

* templatize mul_mat_id

* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids

* Reduce compile times by dividing mmf into f16, bf16 and f32 variants

* Divide mmf by ncols_dst

* Add missing files

* Fix MUSA/HIP builds
2025-09-09 14:38:02 +08:00
Georgi Gerganov f28d4f4ac9
metal : refactor + optimize (#15857)
* metal : refactor

ggml-ci

* cont : refactor FA-vec kernel

* cont : print metal library load time

* minor : warn to debug + bettern kernel names

ggml-ci

* metal : optimize mul_mv q8_0

ggml-ci

* metal : simplify FA pipeline creation functions

ggml-ci

* metal : improve naming consistency

* metal : safer function constants offsets

ggml-ci

* metal : comments

ggml-ci
2025-09-08 13:34:56 +03:00
Xuan-Son Nguyen 9fcb29f22f
ggml: allow casting between f32 and i32 (#15783)
* ggml: allow casting between f32 and i32

* fix cuda

* add vulkan

* fix CPU non-cont

* add non-cont test case

* add note

* extend test number range

* correct note

* add cont version for vulkan
2025-09-08 12:33:01 +02:00
Jeff Bolz d413dca003
tests: large sizes for get_rows (#15687) 2025-09-07 23:23:41 -05:00
Jeff Bolz 3976dfbe00
vulkan: support im2col_3d (#15795) 2025-09-07 13:50:26 -05:00
Jeff Bolz c97b5e5854
vulkan: Support pad_ext (#15794) 2025-09-07 19:00:49 +02:00
Daniel Bevenius 3a550b5ca4
tests : add --list-ops and --show-coverage options (#15745)
This commit adds two new command-line options to the
test-backend-ops.cpp that allow users to list all available GGML
operations and to show test coverage of these operations.

The motivation for this is that it can be useful to quickly see which
operations are currently covered by tests and which are not. Also it
migth be useful when using the `support` mode.
2025-09-05 13:49:21 +01:00
leejet 0a1b3982cd
ggml: add ops for WAN video model (cuda && cpu) (#15669)
* add conv3d support

* add ggml_pad_ext for cpu & cuda backend

* cuda/cpu: add im2col_3d support

* cuda: make im2col a little faster

* fix cuda pad/scale/im2col3d

* make im2col_3d faster

* gguf: support loading tensors which n_dims > GGML_MAX_DIMS

* fix cuda get_rows

* avoid ggml_conv_3d conflict

* correct GGML_OP_COUNT assertion

* avoid build failure

* avoid build failure on MacOS

* cuda: remove unnecessary MIN define

* fix cpu im2col_3d

* adjust the code style

* cuda: use simpler loop in get_rows

* add test_im2col_3d to test-backend-ops

* test-backend-ops.cpp: remove trailing whitespace

* cpu: im2col_3d support non continuous src

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* fix test_im2col_3d

* remove unused variables

* cuda: get_rows: dfloat2 -> float2

* add test_pad_ext to test-backend-ops.cpp

* add gguf_init_from_file_ext impl

* Revert "gguf: support loading tensors which n_dims > GGML_MAX_DIMS"

This reverts commit d8377a0a37.

* Revert "add gguf_init_from_file_ext impl"

This reverts commit d9f1d13208.

* update ggml_backend_vk_device_supports_op

* fix ggml_backend_vk_device_supports_op

* update other backend supports op for ggml_pad_ext

* metal/opencl/sycl/vulkan: fix GGML_OP_PAD check in supports_op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-04 10:38:49 +02:00
rmatif 86076f92de
OpenCL: add fused group_norm/norm, mul, add (#15314)
* add fused group_norm/norm, mul, add

* fix spacing

* revert rms_norm logic

* fix trailing whitespace
2025-08-26 23:36:05 -07:00
Eve 44b1efa41a
tests: add performance test for mul mat id (#15543) 2025-08-26 15:42:49 +00:00
Georgi Gerganov 1d8d83deaa
metal : improve `MUL_MAT_ID` (#15541)
* metal : mul_mm_id remove hdst

* metal : remove mul_mm_id hsrc1

* metal : mul_mm_id simplify + add test

* metal : opt mul_mm_id map0

* metal : optimize mul_mm_id id gathering

* metal : mul/div opt

* metal : optimize mul_mm_id_map0

ggml-ci
2025-08-26 12:46:15 +03:00
Jeff Bolz 34bdbbd7c2
vulkan: Remove splitting for mul_mat_id (#15568)
row_ids only needs to hold the BN rows for the current tile.
2025-08-26 06:42:44 +02:00
Jeff Bolz 886b97a5d6
tests: Generate unique input values for count_equal (#15487)
This avoids backend-dependent behavior for argmax that leads to intermittent failures.
2025-08-25 10:47:16 -05:00
Jeff Bolz c9a24fb932
vulkan: Support FA with any multiple of 8 head sizes (#15537)
The scalar FA shader already handled multiples of 8. The coopmat1 FA
shader assumed 16x16x16 and the shared memory allocations need the HSK
dimensions padded to a multiple of 16. NVIDIA's coopmat2 implementation
requires multiples of 16 for N and K, and needs the matrix dimensions
padded and loads clamped.

Store the FA pipelines in a map, indexed by the pipeline state.
2025-08-24 11:24:25 +02:00
Jeff Bolz 611f419cff
vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Acly 0a9b43e507
vulkan : support ggml_mean (#15393)
* vulkan : support ggml_mean

* vulkan : support sum, sum_rows and mean with non-contiguous tensors

* vulkan : fix subbuffer size not accounting for misalign offset

* tests : add backend-op tests for non-contiguous sum_rows

* cuda : require contiguous src for SUM_ROWS, MEAN support
* sycl : require contiguous src for SUM, SUM_ROWS, ARGSORT support

* require ggml_contiguous_rows in supports_op and expect nb00=1 in the shader
2025-08-23 08:35:21 +02:00
rmatif 92f7f0a53c
ggml: add `conv3d` op (#15182)
* add conv3d

* bump GGML_OP_COUNT
2025-08-22 15:33:15 +02:00
Jeff Bolz 96452a3fa4
vulkan: Reuse conversion results in prealloc_y (#15410)
* vulkan: Reuse conversion results in prealloc_y

Cache the pipeline and tensor that were most recently used to fill prealloc_y,
and skip the conversion if the current pipeline/tensor match.

* don't use shared pointer for prealloc_y_last_pipeline_used
2025-08-21 16:55:00 +02:00
Jeff Bolz de5627910d
vulkan: Optimize argsort (#15354)
- Launch an appropriate number of invocations (next larger power of two).
32 invocations is common and the barrier is much cheaper there.
- Specialize for "needs bounds checking" vs not.
- Make the code less branchy and [[unroll]] the loops. In the final code,
I see no branches inside the main loop (only predicated stores) when
needs_bounds_check is false.
- Always sort ascending, then apply the ascending vs descending option when
doing the final stores to memory.
- Copy the values into shared memory, makes them slightly cheaper to access.
2025-08-17 10:41:45 +02:00
Jeff Bolz 1fe00296f5
vulkan: fuse adds (#15252)
* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
2025-08-16 11:48:22 -05:00
Jeff Bolz 2e2b22ba66
vulkan: Add missing bounds checking to scalar/coopmat1 mul_mat_id (#15334) 2025-08-16 10:58:38 +02:00
Georgi Gerganov 5edf1592fd
vulkan : fix out-of-bounds access in argmax kernel (#15342)
ggml-ci
2025-08-15 16:16:36 +02:00
Jonathan Graehl 5cdb27e091
finetune: SGD optimizer, more CLI args (#13873)
* examples/finetune -opt SGD (stochastic gradient descent) memory opt

add unit tested GGML_OPT_OPTIMIZER_SGD to ggml - avoids allocating
m, v tensors.

support finetune.cpp arg -opt SGD (or sgd). (default adamw as before)

llama 3.2-1b-F32 result: observed 11gb gpu ram (41 sec/epoch)
when using SGD instead of 19gb (55 sec/epoch) using adamw.
(wikipedia 100 lines finetune)

(
using the same GPU memory, adamw can only do before OOM 512
batch/context, reaching:
train: [███████▉] data=0000140/0000140 loss=0.02575±0.00099 acc=99.52±0.03% t=00:00:47 ETA=00:00:00
val:   [███████▉] data=0000008/0000008 loss=4.76565±0.28810 acc=41.46±0.77% t=00:00:00 ETA=00:00:00

SGD is superior, though it converges slower, with max before OOM 1728
batch/context (esp see the better validation perf):
train: [███████▉] data=0000039/0000039 loss=0.00371±0.00010 acc=99.96±0.01% t=00:00:41 ETA=00:00:00
val:   [███████▉] data=0000003/0000003 loss=5.11406±0.76034 acc=48.01±0.69% t=00:00:01 ETA=00:00:00
)

note: when finetuning long enough (or w/ enough -lr),
validation accuracy *eventually* drops ('catastrophic forgetting')

-lr-half (halflife) option useful for SGD to avoid oscillation or
super slow underdamped learning (makes setting -lr more forgiving).
terminal -lr for now is set by lr-halvings i.e. if you want at most
1/8 the inital -lr you set -lr-halvings 3.

note: objective loss not directly comparable between adamw, sgd? -
check perplexity or accuracy or consider relative improvements
for convergence

new finetune args -wd 1e-9 to enable weight decay in sgd or adamw,
and max -epochs N (default 2 as before)

cache (1 - wd*alpha) in 'adamw' opt struct -
no noticeable perf benefit, disabled (still done
for new SGD though)

since opt. memory is pre-allocated, the ggml_opt_get_optimizer_params
would probably be able to change between SGD and AdamW with each epoch
but would need to use adamw for the first (unconfirmed - no cmdline arg
to set such a policy yet)

test-opt checks adamw as before and now sgd (except for a few disabled
tests for sgd only; probably just needs logging values and adding
alternate reference values);  tolerance on the 'regression'
test is broader for sgd (so we don't need many more epochs)

* Vulkan: Implement GGML_OP_OPT_STEP_SGD

* tests: Fix OPT_STEP_SGD test-backend-ops

* SGD op param store weight-decay and not 1-alpha*wd

* minor + cosmetic changes

* fix vulkan sgd

* try CI fix

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-08-14 12:03:57 +02:00
Oliver Simons 6028bf7435
CUDA: Optimize `reduce_rows_f32` kernel, leading up to 25x perf improvement on kernel-level and 10% perf increase for Gemma3n (#15132)
* Factor out `reduce_rows_f32` from common.cuh

This increases iteration cycle speed by not having to recompile
every kernel all the time

* Hide memory-latency by loop unrolling in reduce_rows_f32

* Further optimizations to `reduce_rows_f32`

1. Increase threadblock size to better hide latency of memory requests.
   As a consequence of bigger threadblocks, do 2-step summation, using
   shared memory to communicate results between invocations
2. Use sum_temp array to reduce waits on sum
3. Adjust num_unroll to reflext bigger threadblock
4. Improve default block_dims, increase support for more block_dims

* Add perf tests for `reduce_rows_f32` kernel

* Add heuristic to toggle 128/512 threads based on sm count

Break even point was the minimum of the following multiples.

| GPU Model                     | Nrow SM Count Multiple |
| -----------                   | -----------            |
| RTX 4000 SFF ADA              | 2.0x                   |
| RTX 6000 ADA                  | 2.5x                   |
| RTX PRO 6000 Blackwell Max-Q  | 3.04x                  |
| RTX PRO 4500 Blackwell	| 3.15x                  |

* Ensure perf gains also for small ncols and large nrows

Alternative to this, one could have also made the number of unrollings
template-able, but that would require compiling the kernel multiple
times, increasing binary size unnecessarily

* Modify perf and unit-tests

* Apply auto-formatting by clang

* Fix CI build failure

See https://github.com/ggml-org/llama.cpp/actions/runs/16798370266/job/47573716079?pr=15132#step:7:486
Building with VS generator worked though.

* Remove sm_count property from `ggml_backend_cuda_context`

Requested by @JohannesGaessler, and should fix remaining CI issues as a
side-effect

* Add CUB-based implementation for GGML_OP_MEAN

Currently this branch is only executed for nrows==1

* Add heuristics to execute CUB branch only when it brings perf

Heuristics were determined on the following HW:

* RTX 4000 SFF ADA
* RTX 6000 ADA
* RTX PRO 6000 Blackwell Max-Q
* RTX PRO 4500 Blackwell

* Add unit-test for CUB-based mean

Tests should run with CUDA Graphs enabled per default on NVGPUs

* Rename `USE_CUB` to `GGML_CUDA_USE_CUB`

Suggested by @JohannesGaessler

* Unindent Preprocessor directives

See
https://github.com/ggml-org/llama.cpp/pull/15132#discussion_r2269213506
2025-08-13 10:04:46 +02:00
Georgi Gerganov fd1234cb46
llama : add gpt-oss (#15091)
* oai moe

* compat with new checkpoint

* add attn sink impl

* add rope scaling yarn

* logits match with latest transformers code

* wip chat template

* rm trailing space

* use ggml_scale_bias

* rm redundant is_swa_all

* convert interleaved gate_up

* graph : fix activation function to match reference (#7)

* vocab : handle o200k_harmony special tokens

* ggml : add attention sinks support (#1)

* llama : add attn sinks

* ggml : add attn sinks

* cuda : add attn sinks

* vulkan : add support for sinks in softmax

remove unnecessary return

* ggml : add fused swiglu_oai op (#11)

* ggml : add fused swiglu_oai op

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update CUDA impl

* cont : metal impl

* add vulkan impl

* test-backend-ops : more test cases, clean up

* llama : remove unfused impl

* remove extra lines

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>

* repack mxfp4 upon conversion

* clean up a bit

* enable thinking

* add quick hack to render only some special tokens

* fix bf16 conversion

* remove vocab hack

* webui ok

* support chat parsing for gpt-oss

* fix webui

* direct mapping mxfp4, FINALLY

* force using mxfp4

* properly use lazy tensor

* ggml : add mxfp4

ggml : use e8m0 conversion instead of powf

Co-authored-by: Diego Devesa <slarengh@gmail.com>

change kvalues_mxfp4 table to match e2m1 (#6)

metal : remove quantization for now (not used)

cuda : fix disabled CUDA graphs due to ffn moe bias

vulkan : add support for mxfp4

cont : add cm2 dequant

* ggml : add ggml_add_id (#13)

* ggml : add ggml_add_id

* add cuda impl

* llama : add weight support check for add_id

* perf opt

* add vulkan impl

* rename cuda files

* add metal impl

* allow in-place ggml_add_id

* llama : keep biases on CPU with --cpu-moe

* llama : fix compile error

ggml-ci

* cuda : add fallback for __nv_cvt_e8m0_to_bf16raw

ggml-ci

* cleanup

ggml-ci

* sycl : fix supports_op for MXFP4

ggml-ci

* fix Unknown reasoning format

* ggml-cpu : fix AVX build

ggml-ci

* fix hip build

ggml-ci

* cuda : add mxfp4 dequantization support for cuBLAS

ggml-ci

* ggml-cpu : fix mxfp4 fallback definitions for some architectures

ggml-ci

* cuda : fix version required for __nv_cvt_e8m0_to_bf16raw

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: slaren <slarengh@gmail.com>
2025-08-05 22:10:36 +03:00
Jeff Bolz ec0b18802c
vulkan: Support ne[3]>1 in noncontig matrix-vector multiply (#15015) 2025-08-02 10:48:30 +02:00
Sigbjørn Skjæret 138b288b59
cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Leonard Mosescu bda62193b2
test-backend-ops : extend test case filtering (#14865)
* Extend test case filtering

1. Allow passing multiple (comma-separated?) ops to test-backend-ops. This can be convenient when working on a set of ops, when you'd want to test them together (but without having to run every single op). For example:

`test-backend-ops.exe test -o "ADD,RMS_NORM,ROPE,SILU,SOFT_MAX"`

2. Support full test-case variation string in addition to basic op names. This would make it easy to select a single variation, either for testing or for benchmarking. It can be particularly useful for profiling a particular variation (ex. a CUDA kernel), for example:

`test-backend-ops.exe perf -b CUDA0 -o "MUL_MAT(type_a=f16,type_b=f32,m=4096,n=512,k=14336,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=2)"`

These two can be combined. As the current `-o`, this change doesn't try to detect/report an error if an filter doesn't name existing ops (ex. misspelled)

* Updating the usage help text

* Update tests/test-backend-ops.cpp
2025-07-28 18:04:27 +02:00
Erik Scholz 89d1029559
vulkan : add fp16 support for the conv_2d kernel (#14872)
* add f16 to conv_2d testing
* weaken conv2d test error threshold
2025-07-27 12:04:33 +02:00
Aman Gupta 446595b9b3
Docs: add instructions for adding backends (#14889) 2025-07-27 09:36:43 +08:00
Georgi Gerganov 18f3b5ff9e tests : add non-cont K,V FA tests
ggml-ci
2025-07-23 14:08:09 +03:00
Aman Gupta 8c988fa41d
CUDA: add fused rms norm (#14800) 2025-07-23 09:25:42 +08:00
Jeff Bolz c2e058f1b4
vulkan/cuda: Fix im2col when KW!=KH (#14789)
The tid is decomposed into "ow + ky*OW + kx*OW*KH". Change "ksize" to match.
2025-07-21 13:35:40 +02:00
Ervin Áron Tasnádi a979ca22db
ggml: adds CONV_2D op and direct GEMM Vulkan implementation (#14316)
* ggml/ggml-vulkan/test-backend-ops: adds CONV_2D for Vulkan

* ggml-vulkan: adds f32 scalar shader to compute 2D convolution directly
with gemm (no need for im2col),

* test-backend-ops: adds test_case_ref to check the validity/performance of ops
against reference implementations having different graphs, adds tests

* * Performance fixes: minimized branch divergence, uses collectives to
  eliminate redundant calculation, macros removed.

* Kernel shared memory size check

* Updates test-backend-ops to support graphs for performance
  measurement.

* * Apple/Win32 compile errors fixed

* Subgroup size used to determine tile size -> fixes llvmpipe errors.

* Collectives disabled by default.

* Intel support is disabled as the performance is poor.

* Conv2d enabled for Intel with disabled collectives, disabled for Apple

* test-backend-ops modifications are reverted

* Trailing spaces and missing override fixed.

* Triggering pipeline relaunch.

* Code formatted with .clang-format.
2025-07-19 21:59:08 +02:00
Georgi Gerganov bf9087f59a
metal : fuse add, mul + add tests (#14596)
ggml-ci
2025-07-18 20:37:26 +03:00
Georgi Gerganov 225e7a1438
llama : add high-throughput mode (#14363)
* kv-cache : prepare K/V buffers for separation

ggml-ci

* batched-bench : fix oob write

ggml-ci

* llama : add "virtual sequences"

ggml-ci

* llama : use "stream" vs "virtual sequence"

ggml-ci

* graph : fix stream splitting when KV cache is not used

ggml-ci

* kv-cache : add multi-stream save/load support

ggml-ci

* llama : add "--attn-streams" flag

ggml-ci

* kv-cache : fix handling when find_slot fails

ggml-ci

* kv-cache : restore find_slot impl

ggml-ci

* kv-cache : add comments

* kv-cache : add bounds checks for sequence id

ggml-ci

* cont : add n_seq_max to batch allocr

ggml-ci

* kv-cache : perform stream copies lazily after llama_synchronize

ggml-ci

* kv-cache : avoid throwing exceptions across the C boundary

ggml-ci

* CUDA: 4D FlashAttention support (#14628)

* CUDA: 4D FlashAttention support

* CUDA: fix WMMA FA kernel

* llama : rename attn_streams -> kv_unified

ggml-ci

* common : rename kv_split -> kv_unified

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-07-16 16:35:42 +03:00
Tarek Dakhran c31e60647d
tests : cover lfm2 cases in test_ssm_conv (#14651) 2025-07-12 19:10:14 +02:00
Acly 3e303b1107 vulkan : implement ggml_roll (ggml/1290)
ggml-ci
2025-07-12 14:25:44 +03:00
Aman Gupta 11ee0fea2a
Docs: script to auto-generate ggml operations docs (#14598)
* Docs: script to auto-generate ggml operations docs

* Review: formatting changes + change github action

* Use built-in types instead of typing

* docs : add BLAS and Metal ops

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-07-10 23:29:01 +08:00
compilade a57d1bcb3c
cuda : support Falcon-H1 state size for SSM_SCAN (#14602) 2025-07-09 23:54:38 -04:00
Xuan-Son Nguyen 98bab638fb
ggml : add ggml_scale_bias (#14417)
* ggml : add ggml_scale_bias

* ggml_vec_mad1_f32

* add more simd

* add CUDA

* sycl

* vulkan

* cann (placeholder)

* opencl

* will this fix cpu?

* fix cuda

* suggestions from coderabbit

* fix cann compile error

* vDSP_vsmsa

* rm __ARM_FEATURE_SVE

* use memcpy for op params

* make code looks more consistent

* use scalar for __ARM_FEATURE_SVE

* add x param to ggml_vec_mad1_f32
2025-07-09 18:16:12 +02:00
Georgi Gerganov 4d0dcd4a06
cuda : fix rope with partial rotation and non-cont src (#14580)
* cuda : fix rope non-cont

ggml-ci

* cont : fix multi-rope + add test

ggml-ci

* sycl : try fix

ggml-ci

* cont : fix sycl + clean-up cuda

ggml-ci
2025-07-08 10:15:21 +03:00
Jeff Bolz e592be1575
vulkan: fix rms_norm+mul fusion (#14545)
The fused operation was grabbing the epsilon value from the wrong place.

Add an env var to disable fusion.

Add some missing checks for supported shapes/types.

Handle fused rms_norm+mul in check_results.
2025-07-06 10:08:16 +02:00
R0CKSTAR b81510a7b7
test-backend-ops: add support for specifying output format (#14368)
* test-backend-ops: add support for specifying output format

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Add build_commit and build_number in test_result

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* refactor

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Get build commit from ggml_commit()

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Merge errors into test_operation_info && address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* remove visitor nonsense

* remove visitor comment

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

* Address review comments

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>

---------

Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2025-07-05 12:10:53 +08:00
Johannes Gäßler c8c4495b8d
ggml: backward pass for split swiglu (#14483) 2025-07-03 17:05:18 +02:00
Georgi Gerganov 9067487c44
ggml : fix FA mask dim 2 and 3 (#14505)
* ggml : fix FA mask dim 2 and 3

ggml-ci

* backends : unsupport batched FA in CUDA and Vulkan

ggml-ci

* vulkan : disable FA for mask->ne[2] != 1
2025-07-03 10:46:57 +03:00
Aman Gupta 55c2646b45
CUDA: add dynamic shared mem to softmax, refactor general usage (#14497) 2025-07-03 07:45:11 +08:00
compilade 5d46babdc2
llama : initial Mamba-2 support (#9126)
* llama : initial Mamba-2 support

* ggml : SIMD ggml_ssm_scan for Mamba-2

* ggml : improve ggml_mul speed when masking recurrent states

* llama : support running Mamba-Codestral-7B-v0.1

* llama : fix Mamba-2 conv state saving

* ggml : make the ggml_mul fast broadcast path more consistently formatted

* llama : remove unused variable

* llama : add missing break

* convert_hf : prefer SentencePiece tokenizer for Mamba-2 when present

The tokenzier.json of Mamba-Codestral-7B-v0.1 otherwise requires
workarounds to work correctly.

* llama : avoid redundant state copy for Mamba 1 and 2

* metal : attempt to adapt SSM_SCAN for Mamba-2

* metal : fix SSM_SCAN pipeline scope

* metal : use log and exp instead of log1pf and expf in SSM_SCAN

* metal : remove unused arguments for SSM_SCAN

The max index is 31, so trimming the arguments is necessary.

* metal : add back n_seqs to SSM_SCAN args

Whoops, this is needed for the offset in the concatenated output.

* metal : fix SSM_SCAN state head offset

* metal : fix wrong number of tokens per sequence in SSM_SCAN

* ggml : remove unused fast broadcast path in GGML_MUL

This was initially added because states were masked with ggml_mul,
but this is no longer done and so this "optimisation" is no longer
necessary, or at least not worth the additional code complexity.

* ggml : avoid multiply by D in GGML_OP_SSM_SCAN

This makes the weight buft detection in src/llama.cpp simpler.

* convert : transpose Mamba-2 A, D and reshape SSM_NORM

This breaks existing conversions of Mamba-2 models
to avoid some reshapes.

Not sure if it's a good idea,
but it makes the graph slightly cleaner.

* llama : more appropriate SSM_SCAN and SSM_CONV buft support checks

* convert : fix flake8 lint

* metal : fix confusion between ; and ,

* metal : add missing args for nb references in ssm_scan_f32_group

* metal : single-user mamba2 inference works

* kv-cache : remove const_cast when setting inputs for s_copy

And also fix multi-user inference for recurrent models
by using cell_id instead of i as the kv cell index
when populating s_copy.

* convert : avoid AutoConfig for Mamba and Mamba2 hparams

* kv-cache : allow context shift for recurrent models

* graph : fix recurrent state copies when avoiding copies

Works, but using lambda functions might not be that clean.

* ggml : fix mamba2 ssm scan when compiled with SVE

* ggml-cpu : reorder SVE FMA for consistency with other SIMD arches

* cuda : implement ssm scan for Mamba2

There is still room for improvement, but it works!

* cuda : adapt Mamba1 ssm scan to shape changes from Mamba2

* mamba : fix mismatched new and delete size for llm_build_mamba

Subclasses of llm_graph_context cannot have extra fields,
because the called destructor is not the one from the subclass.
This otherwise would cause problems when runnning Mamba-(1|2) inference
when compiled -DGGML_SANITIZE_ADDRESS=ON

* cuda : graceful fallback for Mamba-1 models with weird embd size
2025-07-02 13:10:24 -04:00
Georgi Gerganov ec68e84c32 ggml : support bcast ggml_soft_max_ext, ggml_flash_attn_ext (#14435)
ggml-ci
2025-07-02 15:48:33 +03:00
Jeff Bolz 6a746cf9c4
vulkan: Split large mul_mat_id to fit in shared memory (#14451) 2025-07-01 10:43:08 +02:00
Acly 431b2c24f3 ggml-cpu : "align corners" for bilinear upscale/downscale (ggml/1285)
* add "align corners" mode for bilinear upscale, and allow downscaling
* add ggml_interpolate, deprecate ggml_upscale_ext, pass in align-corners as bit-flag
* test-backend-ops: replace ggml_upscale_ext with ggml_interpolate, add test cases for downscale and align-corners
2025-07-01 11:06:39 +03:00
Diego Devesa eb3fa2913e
test-backend-ops : disable llama test (#14461) 2025-06-30 12:43:15 +02:00
Sigbjørn Skjæret a0535ffa0d
ggml : implement REGLU/GEGLU/SWIGLU ops (#14158)
* implement unary REGLU/GEGLU/SWIGLU cpu ops

* relax constraints

* duplicate shape of source

* fix ggml_vec_geglu_f16

* special case gated ops

* implement unary REGLU/GEGLU/SWIGLU cuda ops

* tighten constraints again

* refactor into GGML_GLU_OP

* metal : add glu kernels

ggml-ci

* add CUDA_GLU_BLOCK_SIZE [no ci]

* more constraints and use 64bit ints

ggml-ci

* 64bit multiplication [no ci]

* implement swapped variants (cpu/cuda)

* update comment [no ci]

ggml-ci

* Vulkan: Add GLU ops and shaders

* SYCL: Implement fused kernel GEGLU, SWIGLU and REGLU for single up+gate

* ggml : implement GLU for split up/gate (#14181)

* implement GLU for split up/gate

* add tests for ggml_glu_split

* Vulkan: Implement glu_split logic and shader support

* add split to logging [no ci]

* SYCL: refactor element_size ops and add split up and gate support to gated kernels

* SYCL: switch GEGLU to use tanh approximation

---------

Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>

* GGML: increase OP count in assertion

* Refactor: Optimize SYCL element-wise operations with unary function inlining

This commit refactors the SYCL element-wise operations to improve performance by:

- Inlining unary operations (sgn, abs, elu, gelu, silu, etc.) to reduce kernel launch overhead.
- Introducing helper functions `op_xxx` for each unary operation to encapsulate the logic.
- Replacing direct kernel calls with calls to these inlined functions.
- Using `__dpct_inline__` to encourage compiler inlining.
- Minor code cleanup and consistency improvements.

The changes aim to reduce kernel launch overhead and improve the overall efficiency of element-wise operations on SYCL devices.

* vulkan: Increase workgroup size for GLU, for performance (#14345)

* vulkan: Increase workgroup size for GLU, for performance

* vulkan: change GLU shaders to do one element per invocation rather than one row per workgroup

* merge fix

* metal : add support for split and swap

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: 0cc4m <picard12@live.de>
Co-authored-by: Akarshan <akarshan@menlo.ai>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-06-29 11:04:10 +02:00
Jeff Bolz bd9c981d72
vulkan: Add fusion support for RMS_NORM+MUL (#14366)
* vulkan: Add fusion support for RMS_NORM+MUL

- Add a use_count to ggml_tensor, so we can detect if an output is used more than once.
- Change the ggml-vulkan rms_norm shader to optionally multiply by another tensor.
- Add detection logic and basic fusion logic in ggml-vulkan.
- Add some testing support for fusion. Rather than computing one node at a time, allow
for computing the whole graph and just testing one node's results. Add rms_norm_mul tests
and enable a llama test.

* extract some common fusion logic

* fix -Winconsistent-missing-override

* move ggml_can_fuse to a common function

* build fix

* C and C++ versions of can_fuse

* move use count to the graph to avoid data races and double increments when used in multiple threads

* use hash table lookup to find node index

* change use_counts to be indexed by hash table slot

* minimize hash lookups

style fixes

* last node doesn't need single use.
fix type.
handle mul operands being swapped.

* remove redundant parameter

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-06-29 09:43:36 +02:00
Aman Gupta 27208bf657
CUDA: add bf16 and f32 support to cublas_mul_mat_batched (#14361)
* CUDA: add bf16 and f32 support to cublas_mul_mat_batched

* Review: add type traits and make function more generic

* Review: make check more explicit, add back comments, and fix formatting

* Review: fix formatting, remove useless type conversion, fix naming for bools
2025-06-29 01:30:53 +08:00
Radoslav Gerganov 8d94219a4a
ggml : add ggml_set_rows (#14274)
* ggml : add ggml_set_rows

Add ggml_set_rows(a, b, c) which copies rows from 'b' into 'a' using
indices from 'c'.

ref: #8366

* use I64 for indices

* ggml : add repeat impl for i64

* ggml : add ggml_is_contiguous_rows

* ggml : ggml_set_rows support broadcast

* ggml : ggml_set_rows support quantized dst

ggml-ci

* ggml : support GGML_TYPE_F32 ".from_float" trait

* ggml : ggml_set_rows update comment + better index name

* tests : add ggml_set_rows

* metal : add ggml_set_rows implementation

ggml-ci

* ggml : simplify forward_dup_f32

* ggml : fix supports_op

* tests : add comment to set_rows

* ggml : leave the repeat_i64 for a separate PR

ggml-ci

* ggml : set_rows use std::min instead of MIN

* ggml : better error message for set_rows unsupported type

* metal : perform op->type check only once

* tests : more consistent implementation + more tests

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-06-27 16:41:40 +03:00
Georgi Gerganov e8215dbb96
metal : add special-case mat-vec mul for ne00 == 4 (#14385)
ggml-ci
2025-06-26 15:51:19 +03:00
Aman Gupta aa064b2eb7
CUDA: add mean operation (#14313)
* CUDA: add mean operation

* add back sum_rows_f32_cuda

* Review: early exit if col!=0
2025-06-22 12:39:54 +08:00
Aman Gupta c959f462a0
CUDA: add conv_2d_transpose (#14287)
* CUDA: add conv_2d_transpose

* remove direct include of cuda_fp16

* Review: add brackets for readability, remove ggml_set_param and add asserts
2025-06-20 22:48:24 +08:00
Ervin Áron Tasnádi 0d3984424f
ggml-vulkan: adds support for op CONV_TRANSPOSE_1D (#13813)
* * ggml-vulkan: adds op CONV_TRANSPOSE_1D

* test-backend-ops: adds more spohisticated tests for CONV_TRANSPOSE_1D

* Missing barrier added to shader.
Number of additional tests reduced to 108.

* * Fixes typo in variable name.

* Removes extra whitespaces.

* Adds int64->int32 casts to prevent possible warnings.

* Problem size reduced in tests to pass tests with llvmpipe.

* supports_op condition moved from unintended position
2025-06-04 22:02:00 +02:00
Johannes Gäßler 10d2af0eaa
llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support

more compact progress bar

llama_save_model_to_file

llama_opt_param_filter

ggml_graph_dup force_grads

refactor ggml_opt, fix test-opt

* remove logits_all

* refactor CUDA implementation for ACC

* reset graph at beginning of opt period
2025-05-12 14:44:49 +02:00
Georgi Gerganov b34443923c
sync : ggml (#13268)
* vulkan : kernels for depthwise 2D convolution (CONV_2D_DW) (ggml/1204)

* vulkan : add kernels for depthwise 2d convolution (OP_CONV_2D_DW)

* review: remove src_x/y < 0 checks; add performance tests

* sync : ggml

ggml-ci

* vulkan : fix lint (#0)

---------

Co-authored-by: Acly <aclysia@gmail.com>
2025-05-02 20:54:30 +03:00
Johannes Gäßler b0ecbd434b
test: non-cont. b in test-backend-ops -o MUL_MAT (#13187) 2025-05-01 20:18:56 +02:00
Johannes Gäßler e1e8e0991f
CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199) 2025-04-30 23:12:59 +02:00
Xuan-Son Nguyen edb18b6e8f
clip : fix pixtral on some GPU backends (#13097)
* clip : fix pixtral on some GPU backends

* refactor inp_raw set

* rm outdated comment

* fix dynamic size

* add TODO
2025-04-25 14:31:42 +02:00
Johannes Gäßler 658987cfc9
CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014)
* CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID

* fix logic for RoPE support, CUDA graphs
2025-04-22 21:27:40 +02:00
Georgi Gerganov 2f74c354c0
graph : make FA compatible with MLA + add initial Metal kernels (#12953)
* graph : make mla compatible with FA

* metal : add exp FA kernels for DeepSeek models

ggml-ci

* llama : minor naming updates

ggml-ci

* ggml : disable FA for DS head sizes

* tests : add FA tests for MLA shapes

ggml-ci
2025-04-17 18:16:36 +03:00
Jeff Bolz 015022bb53
vulkan: enable coopmat2 FA gqa and split_k optimizations more often (#12931)
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.

split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
2025-04-16 20:37:25 +02:00
Georgi Gerganov 1d2b613445 tests : fix init order (#0)
ggml-ci
2025-04-11 00:17:47 +03:00
Diego Devesa fe92821ea9 ggml : add bilinear upscale support (ggml/1185) 2025-04-11 00:17:47 +03:00
Jeff Bolz f01bd02376
vulkan: Implement split_k for coopmat2 flash attention. (#12627)
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
2025-04-02 14:25:08 -05:00
Georgi Gerganov b4ae50810e
metal : improve FA + improve MoE (#12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 20:21:59 +02:00
Jeff Bolz 9b169a4d4e
vulkan: fix mul_mat_vec failure in backend tests (#12529)
The OOB calculation could be wrong if the last iteration was during one of
the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple
new backend tests that hit this failure on NVIDIA GPUs.
2025-03-24 07:56:17 +01:00
Georgi Gerganov ba932dfb50
ggml : fix quantized cpy op (#12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-22 16:23:26 +02:00
Jeff Bolz eddfb43850
vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00