Commit Graph

5 Commits

Author SHA1 Message Date
Jeff Bolz 5d8bb900bc
vulkan: Fix multi_add invalid descriptor usage (#16899) 2025-11-01 06:52:14 +01:00
Acly e29acf74fe
vulkan : incremental shader builds (#16341)
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times

* support dep-files so shaders are recompiled if their included files change

* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled

* vulkan : only write embedded shader .hpp/.cpp when they change

* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier

* fix hang in vulkan-shaders-gen when there are compilation errors

* early out did not decrement compile_count

* clean up

* fix glslc integer dot product test

* unconditionally write the embedded shader cpp output

* replace output filepath in generated dep-files to match output in CMakeLists

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-04 11:42:56 +02:00
Jeff Bolz e78cf0d4b1
vulkan: workaround MoltenVK compile failure in multi_add (#15506)
* vulkan: workaround MoltenVK compile failure in multi_add

* Update ggml/src/ggml-vulkan/vulkan-shaders/multi_add.comp

Co-authored-by: 0cc4m <picard12@live.de>
2025-08-24 10:48:21 +02:00
Jeff Bolz 611f419cff
vulkan: optimize rms_norm, and allow the work to spread across multiple SMs (#15281)
* vulkan: optimize rms_norm, and allow the work to spread across multiple SMs

There are really two parts to this change:
(1) Some optimizations similar to what we have in soft_max, to unroll with
different numbers of iterations.
(2) A fusion optimization where we detect add followed by rms_norm, and make
the add shader atomically accumulate the values^2 into memory. Then the
rms_norm shader can just load that sum. This allows the rms_norm to be
parallelized across multiple workgroups, it just becomes a simple per-element
multiply.

The fusion optimization is currently only applied when the rms_norm is on a
single vector. This previously always ran on a single SM. It could apply more
broadly, but when there are other dimensions the work can already spread across
SMs, and there would be some complexity to tracking multiple atomic sums.

* Change add+rms_norm optimization to write out an array of partial sums
rather than using atomic add, to make it deterministic. The rms_norm
shader fetches a subgroup's worth in parallel and uses subgroupAdd to
add them up.

* complete rebase against fused adds - multi_add shader can also compute partial sums

* fix validation errors

* disable add_rms_fusion for Intel due to possible driver bug

* resolve against #15489, sync after clearing partial sums
2025-08-23 13:16:17 -05:00
Jeff Bolz 1fe00296f5
vulkan: fuse adds (#15252)
* vulkan: fuse adds

Fuse adds that have the same shape, which are common in MoE models.
It will currently fuse up to 6 adds, because we assume no more than
8 descriptors per dispatch. But this could be changed.

* check runtimeDescriptorArray feature

* disable multi_add for Intel due to likely driver bug
2025-08-16 11:48:22 -05:00