* fix vulkan ggml_acc only works in 3d but not 4d
* removed clamp in test_acc_block
* use the correct stride and its test case
* cuda : fix "supports op" condition
* change src0 to src1 in ggml_vk_acc. Update acc.comp with jeffbolznv\'s suggestion except to keep the boundary check
* version without boundary check
* revert back to boundary check version
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Write out a 2-bit code per block and avoid loading the mask when it
matches these two common cases.
Apply this optimization when the mask is relatively large (i.e. prompt
processing).
* vulkan: fix GPU deduplication logic.
As reported in https://github.com/ggml-org/llama.cpp/issues/19221, the
(same uuid, same driver) logic is problematic for windows+intel igpu.
Let's just avoid filtering for MoltenVK which is apple-specific, and
keep the logic the same as before 88d23ad5 - just dedup based on UUID.
Verified that MacOS + 4xVega still reports 4 GPUs with this version.
* vulkan: only skip dedup when both drivers are moltenVk
* vulkan: use coopmat for flash attention p*v matrix multiplication
* fix P loading issue
* fix barrier position
* remove reduction that is no longer needed
* move max thread reduction into loop
* remove osh padding
* add bounds checks and padding
* remove unused code
* fix shmem sizes, loop duration and accesses
* don't overwrite Qf, add new shared psh buffer instead
* add missing bounds checks
* use subgroup reductions
* optimize
* move bounds check, reduce barriers
* support other Bc values and other subgroup sizes
* remove D_split
* replace Of register array with shared memory Ofsh array
* parallelize HSV across the rowgroups
* go back to Of in registers, not shmem
* vectorize sfsh
* don't store entire K tile in shmem
* fixes
* load large k tiles to shmem on Nvidia
* adapt shared memory host check function to shader changes
* remove Bc 32 case
* remove unused variable
* fix missing mask reduction tmspsh barrier
* fix mask bounds check
* fix rowmax f16 under/overflow to inf
* fix flash_attn_cm2 BLOCK_SIZE preprocessor directives
Deduplication here relied on the fact that vulkan would return unique
UUID for different physical GPUs. It is at the moment not always the case.
On Mac Pro 2019 running Mac OS, with 2 Vega II Duo cards (so, 4 GPU total),
MotlenVK would assign same UUID to pairs of GPUs, unless they
are connected with Infinity Fabric.
See more details here: KhronosGroup/MoltenVK#2683.
The right way is to fix that in MoltenVK, but until it is fixed,
llama.cpp would only recognize 2 of 4 GPUs in such configuration.
The deduplication logic here is changed to only filter GPUs if UUID is
same but driver is different.
* vulkan: Remove transfer_ctx, do everything in compute_ctx.
We had a bug where a set_tensor_async (using transfer_ctx) didn't get
submitted before the graph_compute (using compute_ctx) that came after
it. To avoid this sort of issue, just do everything in compute_ctx.
Remove transfer_cmd_pool, which was already unused.
* fix crash with perf logger
Change ggml_vk_mul_mat_vec_id_q_f16 to loop over the batch dimension and
update the indexing calculations in get_offsets.
Mat-vec is faster than mat-mat for small values of n. We don't get the same
reuse of the weights as in the non-ID path, but with this the cost is linear
in n rather than n>1 being far slower than n==1.
This fixes incoherent output in Llama-4-Maverick-17B-128E-PAB-Q8_0, which
has a mul_mat_id with an A matrix that's Q8_0 8192 x 5120 x 128.
This should work when the number of blocks in the A matrix is less than 2^32
(for mul_mat_vec or mul_mm_cm2), or for mul_mm I think the limit is like
2^32*LOAD_VEC_A elements.
- Divide batch_stride by QUANT_K earlier, so the block index calculation works in 32b.
- Each vk_pipeline_struct has a linked list of pipelines that will allow it to handle
variants. So far this change just adds a single use case for this, compiling with the
e64BitIndexingEXT flag.
- Use the 64b indexing variant when the A matrix is larger than maxStorageBufferRange.
64-bit indexing has some cost - around 3-5% in MoE models, so it's worth the effort
to avoid enabling it unconditionally.
* vulkan: Enable and optimize large matmul parameter combination for AMD
* limit tuning to AMD GPUs with coopmat support
* use tx_m values instead of _l
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32
* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx
* cann: forward declaration of device context struct
* cann: move offload op check after device context declaration
* cuda: fix whitespace
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* modify warptile tuning for xe3
* intel vendor check w/ coopmat support
* fix back formatting
* fix formatting change 2
* move intel check to chip specific tuning part
* Change to support both windows and linux
* modify m_warptile to l_warptile for intel
* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)
* Code style changes
* Code style changes (2)
* Code style changes (3)