Commit Graph

1798 Commits

Author SHA1 Message Date
Oliver Simons 07b809bbc0
Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-12 15:07:28 +01:00
Georgi Gerganov 4d10b78e23
Merge branch 'master' into HEAD 2025-12-11 14:42:56 +02:00
Georgi Gerganov c6f6e4f96a
ggml-alloc : fix reuse-parent logic for misaligned sizes (#17884) 2025-12-11 14:30:10 +02:00
nullname 34ce48d97a
ggml-hexagon: fix `rope` failure at `test-backend-ops` (#17565)
* fix test failure

* fix: correct scaling calculations in rope_cache_init

* fix: optimize element copying in rope_hex_f32 using memcpy

* fix: optimize loop boundaries in rope_hex_f32 for better performance

* feat: add profiling macros for performance measurement in operations
2025-12-10 14:45:43 -08:00
Johannes Gäßler 42cf5c01e5 HIP/MUSA: fix build for backend sampling 2025-12-10 22:19:28 +01:00
Max Krasnyansky e1f4921980
Fix race conditions in threadpool when dealing with dynamic/frequent n_threads changes (#17748)
* tests: update barrier test to check for race condition in active threads

* cpu: combine n_graph and n_threads into a single atomic update

* tests: add multi-graph test for test_barrier
2025-12-10 12:32:23 -08:00
Georgi Gerganov 4dff236a52
ggml : remove GGML_KQ_MASK_PAD constant (#17910)
* ggml : remove GGML_KQ_MASK_PAD constant

* cont : remove comment
2025-12-10 20:53:16 +02:00
Sigbjørn Skjæret 4df6e859e9
cuda : add missing support check for xielu (#17895) 2025-12-10 16:16:20 +01:00
Georgi Gerganov 38882247d3
Merge branch 'master' into HEAD 2025-12-10 17:07:21 +02:00
Georgi Gerganov 81cb5783c8
Merge branch 'master' into HEAD 2025-12-10 13:41:32 +02:00
Johannes Gäßler 17f7f4baad
CUDA: fix unpadded strides in MMA FA kernel (#17891) 2025-12-10 12:39:56 +01:00
Neo Zhang Jianyu 2e9eab80c2
fix softmax for iGPU (#17838) 2025-12-10 16:59:57 +08:00
Gabe Goodhart 086a63e3a5
metal: SSM kernel improvements (#17876)
* feat: Add a batched version of ssm_conv

This was done using Claude Code. It found a number of optimizations around
how the threads were organized, resulting in a huge performance boost!

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Optimized SSM_SCAN kernel for metal

This used Claude Code and resulted in a modest performance improvement
while maintaining correctness.

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Add test-backend-ops perf tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Real representitive tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use function constant for ssm_conv batch size

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: backend op tests for ssm_scan from granite4 1b-h

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: remove commented out templates

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: float4 version of ssm_conv_batched

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add missing ggml_metal_cv_free

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-09 21:30:02 +02:00
Piotr Wilkin (ilintar) b63509262a
Add DIAG for CUDA (#17873)
* Add DIAG for CUDA

* Refactor parameters
2025-12-09 20:28:57 +01:00
Oliver Simons 6dc6614bf0 Disable cooperative groups for musa
Didn't find any doc online, so I don't even know if they support this
2025-12-09 19:09:52 +01:00
Oliver Simons a25fda5290 Fix launch logic when supports_cooperative_launch=false 2025-12-09 19:03:47 +01:00
Oliver Simons 3f0594ad0b Try fixing HIP build errors by adding corresponding #defines
Will likely have to disable for MUSA as I didn't find any docs online
2025-12-09 18:51:28 +01:00
Gabe Goodhart 02e409a5be
ggml : Provide macos-specific backtrace printing to avoid terminal death (#17869)
* fix: Provide macos-specific backtrace printing to avoid terminal death

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add GGML_BACKTRACE_LLDB env var to enable using lldb for backtrace

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-09 18:29:07 +02:00
Georgi Gerganov 6b82eb7883
metal : print node names for debugging (#17882) 2025-12-09 15:25:49 +02:00
Oliver Simons 07003f1ffb Fix compiler warnings by casting `const` away 2025-12-09 13:05:43 +01:00
Oliver Simons 886c3668b5 Add TODOs to and adjust heuristics of row-wise soft_max in CUDA
Heuristics were selected based on the following numbers:

```
-- Before
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.34 us/run -   655360 kB/run - 1401.20 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.80 us/run -   128880 kB/run - 2168.19 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.57 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.45 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.20 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.99 us/run -      640 kB/run -  101.84 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     5.97 us/run -      770 kB/run -  123.02 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.00 us/run -       64 kB/run -   10.16 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.91 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.88 us/run -     1024 kB/run -  141.92 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.87 us/run -      512 kB/run -   55.06 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    21.37 us/run -      256 kB/run -   11.43 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.92 us/run -     4096 kB/run -  163.32 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 32764 runs -    38.94 us/run -      512 kB/run -   12.54 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 24573 runs -    41.94 us/run -     2048 kB/run -   46.57 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.09 us/run -     8192 kB/run -  181.32 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    74.56 us/run -     1024 kB/run -   13.10 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                16382 runs -    79.85 us/run -     4096 kB/run -   48.92 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.41 us/run -    16384 kB/run -  189.64 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   145.16 us/run -     2048 kB/run -   13.46 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8194 runs -   155.46 us/run -     8192 kB/run -   50.26 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                7175 runs -   160.70 us/run -    32768 kB/run -  194.56 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 8191 runs -   285.81 us/run -     4096 kB/run -   13.67 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 4098 runs -   306.91 us/run -    16384 kB/run -   50.92 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                3591 runs -   317.06 us/run -    65536 kB/run -  197.32 GB/s

-- After
Backend 1/2: CUDA0
  Device description: NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition
  Device memory: 97250 MB (96691 MB free)

  SOFT_MAX(type=f32,ne=[4096,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                2236 runs -   450.67 us/run -   655360 kB/run - 1400.15 GB/s
  SOFT_MAX(type=f32,ne=[12888,256,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               17748 runs -    56.97 us/run -   128880 kB/run - 2161.50 GB/s
  SOFT_MAX(type=f32,ne=[77,4096,5,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 57204 runs -    18.35 us/run -    12320 kB/run -  640.36 GB/s
  SOFT_MAX(type=f32,ne=[1024,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               9840 runs -   102.46 us/run -    81920 kB/run -  763.42 GB/s
  SOFT_MAX(type=f32,ne=[77,1024,10,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98064 runs -    10.25 us/run -     6160 kB/run -  573.43 GB/s
  SOFT_MAX(type=f32,ne=[256,256,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98310 runs -    10.25 us/run -    10240 kB/run -  953.21 GB/s
  SOFT_MAX(type=f32,ne=[64,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     7.00 us/run -      640 kB/run -   87.26 GB/s
  SOFT_MAX(type=f32,ne=[77,64,20,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 147438 runs -     6.99 us/run -      770 kB/run -  105.05 GB/s
  SOFT_MAX(type=f32,ne=[8192,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 172011 runs -     6.02 us/run -       64 kB/run -   10.13 GB/s
  SOFT_MAX(type=f32,ne=[8192,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 163820 runs -     6.12 us/run -      256 kB/run -   39.87 GB/s
  SOFT_MAX(type=f32,ne=[8192,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                147438 runs -     6.91 us/run -     1024 kB/run -  141.40 GB/s
  SOFT_MAX(type=f32,ne=[16384,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.20 us/run -      128 kB/run -   14.89 GB/s
  SOFT_MAX(type=f32,ne=[16384,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                114674 runs -     8.79 us/run -      512 kB/run -   55.54 GB/s
  SOFT_MAX(type=f32,ne=[16384,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     2048 kB/run -  190.82 GB/s
  SOFT_MAX(type=f32,ne=[32768,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                131056 runs -     8.11 us/run -      256 kB/run -   30.12 GB/s
  SOFT_MAX(type=f32,ne=[32768,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 49146 runs -    22.54 us/run -     1024 kB/run -   43.33 GB/s
  SOFT_MAX(type=f32,ne=[32768,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                49146 runs -    23.32 us/run -     4096 kB/run -  167.50 GB/s
  SOFT_MAX(type=f32,ne=[65536,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                122865 runs -     8.19 us/run -      512 kB/run -   59.63 GB/s
  SOFT_MAX(type=f32,ne=[65536,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                 40955 runs -    24.59 us/run -     2048 kB/run -   79.43 GB/s
  SOFT_MAX(type=f32,ne=[65536,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                24582 runs -    43.21 us/run -     8192 kB/run -  180.84 GB/s
  SOFT_MAX(type=f32,ne=[131072,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.19 us/run -     1024 kB/run -  119.25 GB/s
  SOFT_MAX(type=f32,ne=[131072,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                40955 runs -    24.59 us/run -     4096 kB/run -  158.87 GB/s
  SOFT_MAX(type=f32,ne=[131072,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               12294 runs -    82.37 us/run -    16384 kB/run -  189.74 GB/s
  SOFT_MAX(type=f32,ne=[262144,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):               122865 runs -     8.20 us/run -     2048 kB/run -  238.28 GB/s
  SOFT_MAX(type=f32,ne=[262144,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                36873 runs -    28.66 us/run -     8192 kB/run -  272.61 GB/s
  SOFT_MAX(type=f32,ne=[262144,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                9225 runs -   108.51 us/run -    32768 kB/run -  288.13 GB/s
  SOFT_MAX(type=f32,ne=[524288,1,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                98292 runs -    10.24 us/run -     4096 kB/run -  381.65 GB/s
  SOFT_MAX(type=f32,ne=[524288,4,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                32784 runs -    31.74 us/run -    16384 kB/run -  492.43 GB/s
  SOFT_MAX(type=f32,ne=[524288,16,1,1],mask=0,sinks=0,m_prec=f32,nr23=[1,1],scale=1.000000,max_bias=0.000000,inplace=0):                8721 runs -   121.20 us/run -    65536 kB/run -  516.19 GB/s
```
2025-12-09 12:58:56 +01:00
Oliver Simons a84dfd3e10 CUDA: Add Cooperative-Groups-based parallelization of ncols in softmax
Old implementation parallelizes rows across SMs, which does not fit the
needs of backend-sampling (where we have ncols >> nrows and thus want to
parallelize ncols across SMs)
2025-12-09 12:58:56 +01:00
Sigbjørn Skjæret 86a3f0fad8
ggml : allow fill node alloc inplace (#17870) 2025-12-09 12:23:47 +01:00
Georgi Gerganov 7ab6f51b97
Revert "ggml : remove redundant src in ggml_cast"
This reverts commit 62d1b0082d.
2025-12-09 12:52:59 +02:00
Chenguang Li ca709e427b
CANN: add support for partial RoPE and Vision mode (#17543)
* cann: add support for partial RoPE and Vision mode

Add support for two important RoPE variants: partial rotation (rope_dims < ne0)
and Vision mode rotation.

1. Support for partial RoPE (rope_dims < ne0):
   - Split tensor into head (first rope_dims dimensions) and tail portions
   - Apply rotation only to head portion using RotaryPositionEmbedding operator
   - Copy unrotated tail portion directly from source to destination
   - Handle both contiguous and non-contiguous tensor layouts

2. Support for Vision mode (GGML_ROPE_TYPE_VISION):
   - Set rope_dims = ne0 for Vision mode to rotate entire tensor
   - Vision mode pairs dimension i with dimension i+n_dims (where n_dims = ne0/2)
   - No tail handling needed since entire tensor is rotated

Implementation details:
   - Use has_tail flag to determine execution path: head/tail splitting when
     rope_dims < ne0, or full tensor rotation when rope_dims == ne0
   - Support both F32 and F16 data types with intermediate F32 conversion
   - Copy non-contiguous tensors to contiguous buffers before calling
     RotaryPositionEmbedding operator for compatibility
   - Improve cache invalidation logic to include rope_dims and indep_sects
     parameters

These enhancements enable CANN backend to handle various RoPE configurations
used in modern vision-language models and models with partial rotation.

* cann: fix review comment
2025-12-09 17:53:23 +08:00
Georgi Gerganov 9f6681c3a4
ggml-alloc : fix reuse-parent logic for misaligned sizes 2025-12-09 11:13:44 +02:00
Georgi Gerganov 62d1b0082d
ggml : remove redundant src in ggml_cast 2025-12-09 10:58:06 +02:00
Georgi Gerganov d62b5804e1
metal : print node names for debugging 2025-12-09 10:55:54 +02:00
Johannes Gäßler 0cdce38a97
CUDA: fix FP16 overflow in tile FA kernel (#17875) 2025-12-09 09:34:02 +01:00
Georgi Gerganov 6d38db5dfe
Merge branch 'master' into HEAD 2025-12-08 17:55:24 +02:00
Jay Zenith 51e0c2d917
cuda : add FILL op support (#17851)
* cuda : add FILL op support

* cuda : add missing FILL op files
2025-12-08 21:10:12 +08:00
wsbagnsv1 5814b4dce1
cuda: optimize SOLVE_TRI using registers and FMAF (#17703)
* ggml-cuda: optimize solve_tri_f32_fast and fix stride handling

- Switch from using shared memory for the RHS/solution matrix to a register-based approach (x_low, x_high), reducing shared memory pressure and bank conflicts.
- Implement explicit `fmaf` instructions for the reduction loop.
- Update kernel arguments to pass strides in bytes rather than elements to align with standard ggml tensor arithmetic (casting to `char *` before addition).
- Remove unused `MAX_K_FAST` definition.

* Small cleanup

* Remove comments in solve_tri.cu

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use const for variables in solve_tri.cu

* Replace fmaf with more readable code

* remove last fmaf

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-08 10:41:08 +01:00
ixgbe 79d61896d3
ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support (#17784)
* ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* cmake: enable RISC-V zihintpause extension for Spacemit builds

* readme : add ZIHINTPAUSE support for RISC-V

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-12-08 10:41:34 +02:00
lovedheart 08f9d3cc1d
Vulkan: improve mul_mat_vec_iq1_m (#16907)
* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
2025-12-07 18:40:42 +01:00
Georgi Gerganov 8ef5f900db
cont : fixes 2025-12-07 15:45:00 +02:00
Law Po Ying d9e03db1e7
sycl: add missing BF16 conversion support for Intel oneAPI (#17780)
* sycl: add missing BF16 conversion support for Intel oneAPI

* Fix Line 645: Trailing whitespace
2025-12-07 09:18:18 +08:00
Jeff Bolz db97837385
vulkan: perf_logger improvements (#17672)
* vulkan: perf_logger improvements

- Move perf_logger from device to ctx.
- Add an env var to control the frequency we dump the stats. If you set a very
large value, it just dumps when the ctx is destroyed.
- Add a fusion info string to the tracking, only log one item per fused op.
- Fix MUL_MAT_ID flops calculation.

* fix vector sizes
2025-12-06 18:46:46 +01:00
Vishal Singh 017761daf5
ggml-zendnn : add ZenDNN backend for AMD CPUs (#17690)
* ggml-zennn: add ZenDNN backend support

* ggml-zendnn : address ZenDNN backend review fixes and suggestions

* docs : apply blockquote syntax to ZenDNN docs

---------

Co-authored-by: Manoj Kumar <mkumar@zettabolt.com>
2025-12-07 00:13:33 +08:00
Georgi Gerganov fdac9686f7
Merge branch 'master' into HEAD 2025-12-06 16:55:33 +02:00
Phylliida Dev 09c7c50e64
ggml : add circular tiling support to pad, for Vulkan, CUDA, and CPU (used for making seamless textures) (#16985)
* Feat: Added vulkan circular tiling support

* Feat: Added cpu circular

* Feat: Added cuda kernels

* Added tests

* Added tests

* Removed non-pad operations

* Removed unneded changes

* removed backend non pad tests

* Update test-backend-ops.cpp

* Fixed comment on pad test

* removed trailing whitespace

* Removed unneded test in test-backend-ops

* Removed removed test from calls

* Update ggml/src/ggml-vulkan/vulkan-shaders/pad.comp

Co-authored-by: Ruben Ortlam <picard12@live.de>

* Fixed alignment

* Formatting

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Format pad

* Format

* Clang format

* format

* format

* don't change so much stuff

* clang format and update to bool

* fix duplicates

* don't need to fix the padding

* make circular bool

* duplicate again

* rename vulkan to wrap around

* Don't need indent

* moved to const expr

* removed unneded extra line break

* More readable method calls

* Minor wording changes

* Added final newline

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Added circular pad ext tests

* Gate non circular pad devices

* Cleaned gating of non-circular pad devices

---------

Co-authored-by: Phylliida <phylliidadev@gmail.com>
Co-authored-by: Ruben Ortlam <picard12@live.de>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-06 15:07:02 +01:00
Johannes Gäßler f334b79494
HIP: fix RDNA3 FP16/BF16 matrix multiplication (#17817) 2025-12-06 13:45:36 +01:00
Sky 7b43f55753
ggml : improve error handling for search path existence checks (#17653)
* Improve error handling for search path existence checks

Refactor existence checks for search paths using std::error_code to handle potential errors.

* Improve cache file existence check with error code 

Update fs::exists to use std::error_code for error handling.

* Simplify existence check for search paths

Simplify existence check for search paths

* Fix logging path in error message for posix_stat

* Update ggml/src/ggml-backend-reg.cpp

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Adapt to the coding standard

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-12-06 12:28:16 +01:00
Jeff Bolz 2960eb2975
vulkan: Use one row per workgroup for f32 mmv (#17711)
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
2025-12-06 11:12:26 +01:00
Jeff Bolz c6c5e85979
vulkan: support solve_tri with larger N/K values (#17781)
Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
2025-12-06 08:56:45 +01:00
Georgi Gerganov 8ce774a102
metal : fix build(#17799)
* metal : fix build

* tests : fix context destruction
2025-12-06 09:33:59 +02:00
Masato Nakasaka 67788f6846
vulkan: Replace deprecated VK_EXT_validation_features (#17637)
* replaced deprecated VK_EXT_validation_features

* forgot to remove old code
2025-12-06 06:39:42 +01:00
Masato Nakasaka d8c0a7b085
vulkan: Fix mismatch in TOPK_MOE unit test (#17541)
* Fix shader to support 2D workgroup mapping to a single subgroup

* Set required_subgroup_size

topk_moe shader requires static WARP_SIZE and actual subgroup size to match
2025-12-06 06:23:30 +01:00
Jeff Bolz 933414c0b6
vulkan: add more num_blocks instantiations in rms_norm (#17701) 2025-12-05 22:08:56 +01:00
Jeff Bolz a0f3897d53
vulkan: fix top_k bug when there are ties in the input (#17659)
* vulkan: Reduce temporary memory usage for TOP_K

- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.

* vulkan: fix top_k bug when there are ties in the input

I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).

I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-05 22:03:19 +01:00
Acly e15cd06a94
vulkan : support conv-2d with large output size (#17685) 2025-12-05 21:46:39 +01:00