Many Ascend operators internally use FP16 precision for computation.
If input data is in FP32, it must first be cast to FP16 before
computation, and then cast back to FP32 after computation, which
introduces unnecessary cast operations. Moreover, FP16 computation
requires significantly less workload compared to FP32, leading to
noticeable efficiency improvements.
In this change, `get_rows`, `rms_norm`, and `flash_attn_ext` are extended
to support multiple data types. Validation on the Qwen2 0.5b model shows
correct accuracy and about 10% performance gain in concurrent scenarios.
Co-authored-by: noemotiovon <757486878@qq.com>
* scaffold to support opt step adamw on metal (not written so far)
* add opt-step-adamw kernel for metal
* pass op->src[4] as a separate buffer to the pipeline
* add bounds check to opt-step-adamw kernel
* complete scaffold for GGML_OP_SUM
* naive GGML_OP_SUM kernel
* remove unwanted comment
* change OP_SUM capability gate
* Add has_simdgroup_reduction to both ops to pass CI
* fix/refactor OP argsort, pad
* fix count-equal op
* update SYCL OP list
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
The previous SVE implementation for `ggml_vec_dot_f16_unroll` contained a bug due to a copy-paste error. The wrong variable was used in an FMA instruction, leading to incorrect results. This commit corrects the variable usage and improves the clarity of the code by renaming variables to avoid confusion.
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
* CANN: improve ACL graph matching
Record `ne` and `nb` information for src tensors and include them in the
graph matching check. This enhances the robustness of ACL graph matching
by preventing incorrect matches when src tensors share the same data
address but differ in shape or stride.
* CANN: add op_params match
* refactor to support soft_max_ext
* fix error and support soft_max_back
* rm unused functions
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* metal : better unroll in the FA kernels
* metal : index FA blocks
* tests : restore [no ci]
* metal : prevent division by zero in FA kernels
* metal : fix -INF detection logic
* Add profiling
* More detailed profiling
* Rework command submission to avoid global locks
* Update wait handling
* try new method of waiting on futures
* Add serializing of command submission in some cases
* Add new pool for timestamp queries and clean up logging
* Serialize command submission in CI and leave a TODO note
* Update webgpu CI
* Add myself as WebGPU codeowner
* Deadlock avoidance
* Leave WebGPU/Vulkan CI serialized
* Fix divide by 0
* Fix logic in division by inflight_threads
* Update CODEOWNERS and remove serialize submit option
* metal : pad K, V and Mask when needed
* cont : simplify
* cuda : add TODO about KV padding requirement
* metal : add comments
* metal : remove mask padding requirement
* tests : add -INF blocks to the KQ mask in the FA tests
* cont : bump -INF block size to 64
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* ggml : prevent division by zero in FA CPU op
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* metal : ssm_scan minor opts
* metal : get_rows optimize
* metal : cpy optimize
* metal : ssm_conv opt
* metal : ssm_scan simplify
* metal : ssm_Scan opt
This commit updates the leftover handling in ggml_vec_scale_f32.
The motivation for this is that the code currently incorrectly assumes
there would be fewer than ggml_f32_epr leftover elements. However,
since the main loop processes 2*ggml_f32_epr elements per iteration
, there can be up to (2*ggml_f32_epr - 1) leftover elements.
The original single-pass leftover code could only process ggml_f32_epr
elements, leaving some elements unscaled.
Example scenario with 256-bit SVE:
```
ggml_f32_epr = 8 (elements per register)
ggml_f32_step = 16 (two registers per iteration)
n = 25
np = 16
leftovers = 9 elements (16-24)
Original : processes only elements 16-23, misses element 24
This commit : loop processes elements 16-23, then element 24
```
Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630
* rpc : add support for multiple devices
Allow rpc-server to expose multiple devices from a single endpoint.
Change RPC protocol to include device identifier where needed.
closes: #15210
* fixes
* use ggml_backend_reg_t
* address review comments
* fix llama-bench backend report
* address review comments, change device naming
* fix cmd order
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times
* support dep-files so shaders are recompiled if their included files change
* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled
* vulkan : only write embedded shader .hpp/.cpp when they change
* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier
* fix hang in vulkan-shaders-gen when there are compilation errors
* early out did not decrement compile_count
* clean up
* fix glslc integer dot product test
* unconditionally write the embedded shader cpp output
* replace output filepath in generated dep-files to match output in CMakeLists
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE
Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.
For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.
Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.
With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.
* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
* First attempt
* No permute during convert (fixes qk tensors), proper norm application.
* RoPE = NeoX
* Coherence!
* Migrate xielu params from tensors to hyperparameters
* Simple CUDA kernel
* Revert stupid LLM refactorings
* Chat template support
* configchecker / flake8 errors
* Reorder unary.cu
* I do conclude that LLMs are, in fact, stupid.
* Fix after merge
* Final newline
* Make xIELU an UNARY_OP
* Final newline
* Correctly account for parameter shift
* Argh.
* Update ggml/src/ggml-cpu/unary-ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Refactor: remove unused methods, inline and factorize softplus, add const modifiers
* Revert CUDA changes, implement xIELU as a separate OP
* Pesky newline
* Add float2half / half2float for F16 inputs/outputs
* CUDA variants, attempt 2
* Actually, attempt 3
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Missing convert header
* Proper formula and reference for xIELU in the comments.
* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Add tensor mappings for Apertus to global list instead
* Fix lazy on scalars
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add comment about the constraints on positive/negative alpha
* Change `softplus` to `ggml_softplus`
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0
rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA
* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
* Work on rope
* Simplify inplace operation generation and combine mul/add generation
* Work on rope variants
* implement neox rope
* rope complete
* Add sub,div,glu operators
* implement scale op
* Update cpy shader to handle cont/more types
* formatting
* Update test vars printing for rope,rms_norm
* Avoid ROPE hardcoded constants
* Add TODO to change ROPE constants to enum
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix TODO comment
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
* vulkan: 64-bit im2col
Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.
* fix validation error for large im2col
* metal : support mul_mm with src1->type == GGML_TYPE_F16
* metal : support mul_mm_id with src1->type == GGML_TYPE_F16
[no ci]
* metal : mul_mm support ne00 % 32 != 0
* metal : support mul_mm_id with ne00 % 32 != 0
* cont : remove unnecessary unrolls
* cont : simplify data loading
* metal : optimize mul_mm when output bounds checks are not needed
* vulkan: handle mat_mul with A matrix > 4GB
This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.
Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.
* build fixes
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32
This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.
My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32
* Review: refactor if statement
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
* devops: move s390x and ppc64le ci build
we have access to ubuntu-24.04-s390x and ppc64le images now
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le for now since they have compiler errors
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: stop warnings as errors
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: switch to non-macro flag
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: going the llama macro route
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add big-endian gguf test models
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le to test s390x, check test build
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dup .gguf.inp files for big-endian tests
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dup .gguf.out files for big-endian too
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add python setup and endian byteswap
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: pooring thing does not have s390x python3
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add missing rust compiler for s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: try rust actions runner
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Revert "devops: try rust actions runner"
This reverts commit 3f8db04356033d6c1d7eccc75ca396bc5298250c.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: try a different path for rust
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dump home directory and user info
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: install gguf-py only
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: missed relative path
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: remove big-endian files since local swapping is working
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: revert test-tokenizer-0 cmakelists
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix unicode flags conversion from and to uint16_t
Bitfields are allocated in different order on s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Simplify byteswap command
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Add byteswapping and git-lfs for test-tokenizers-ggml-vocabs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix endianness detection in vocab loader
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Disable test-thread-safety on s390x
In this test a model is downloaded,
then immediately loaded to check if more downloads are needed,
and then used for test.
There is no clean way to separate all those steps
to add byteswapping between them, so just skip this test.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix q8_0 test in test-quantize-fns
vec_signed uses unexpected rounding mode.
Explicitly use different rounding function.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add big-endian stories260K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add s390x test-eval-callback
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: fix test does not exist
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: fix model not found llama-eval-callback
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix q3_K dot product error in test-quantize-fns on s390x
Array q8bytes had only 4 elements allocated, but 8 elements accessed.
This lead to write out of bounds and later read of overwritten values out of bounds
and incorrect result.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: re-enable ppc64le for testing
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: activate test-thread-safety for s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le tests
for some reason it keeps failing test-thread-safety tests and I do not
have a machine that is able to replicate the tests.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: LLAMA_FATAL_WARNINGS=ON
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Correct repository URL for s390x for test-thread-safety model
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix fs_get_cache_directory
Ensure it works even if both XDG_CACHE_HOME and HOME are unset.
This might happen in containers.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Re-enable CI for ppc64le
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fortify ggml_rope_impl
Only memcpy data from sections argument if it's non-NULL.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Add TODO in struct unicode_cpt_flags to reimplement it in endian-independent way
* Update URL for big-endian model
* Update .github/workflows/build.yml
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update remaining mentions of BE models to ggml-org/models repo
---------
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@linux.ibm.com>
Co-authored-by: Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* vendor : update httplib
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* common : use cpp-httplib as a cURL alternative for downloads
The existing cURL implementation is intentionally left untouched to
prevent any regressions and to allow for safe, side-by-side testing by
toggling the `LLAMA_CURL` CMake option.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* ggml : Bump to Windows 10
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
---------
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* CUDA: add a fused top-K MoE kernel
This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
* Refactor into ggml_cuda_should_use_topk_moe
* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before
* Review: format + micro-optimizations
* Fix bug: fix tie breakers
* Add optional norm + clean-up code
* Use smem for final write
* Add bounds check
* Use better memory pattern for writeback
Use RPC_DEBUG environment variable to enable debug messages.
Add helper macro LOG_DBG() which does an early
check of the env var before calling GGML_LOG_DEBUG().
Make sure we log a debug message for every server function.
* ggml : make gallocr respect the backend's max buffer size
* if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers
* vulkan: report the actual max allocation size in buffer type interface
* fix missing newline, apple-clang warning
* track size of individual chunks in ggml_dyn_tallocr and raise max chunks.
revert to use suballocation_block_size as max chunk size for vulkan.
* track (chunk, offset) pairs instead of "global" offsets through gallocr.
* simpler, don't need loops to map between local/global offsets
* touches more code
* fix dyn_tallocr_max_size and initialization
* fix memory leak when buffers are reused due to same buffer type appearing multiple times
* make vbuffer allocation follow the same logic as backend_buffer did before
* continue to use leftover unallocated space of previous chunks after a new one has been created
* treat free blocks of each chunk as separate list
* they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges
* exhaust freed blocks of all chunks before considering their last blocks with unallocated space
* start with 0 chunks/blocks and create chunks as needed
* allow the last chunk to grow beyond max size
* refactor: move adding new free block and new chunk into separate functions
* allocate chunks individually with a separate free-blocks list for each one
* needs a bit more memory/allocations/indirections, but code is simpler
* fix warnings (missing static) & debug checks
* implement set_rows with i32 index
* template fix
* test quantized path
warnings--
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* forgotten name change
* deduplicate cuda/sycl and test-fix
* indent++
* vulkan: support set_rows with i32 index type (#16162)
* disable i32 index for webgpu for now
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* Vulkan: add conv_transpose_2d operation
* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)
* Vulkan: fix incorrect indentation in conv_transpose_2d shader
* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation
* Vulkan: revert the order of the index calculation and bound check in conv_2d shader
* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.
* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
* vulkan: optimize UMA buffer operations and fix driver hangs
The previous implementation was blocking the GPU for extended periods,
causing the i915 driver to reset the context due to the hangcheck
protection.
[32628.443070] i915 0000:00:02.0: [drm] GPU HANG: ecode 12:1:85dffffb, in llama-server [194114]
[32628.443091] i915 0000:00:02.0: [drm] llama-server[194114] context reset due to GPU hang
* vulkan: implement deferred_memset on UMA
---------
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* ggml : introduce semantic versioning
This commit introduces semantic versioning for the GGML library.
The motivation for this is that the current versioning, using build
numbers, makes it difficult to track changes and releases for projects
that use ggml.
The release steps are the following:
1. Sync the changes from llama.cpp using sync-llama-am.sh and after the
PR has been approved and merged move to step 2.
2. Run scripts/release.sh and specify the type of release, major, minor,
or patch. This script will handle incrementing the version
(major|minor|patch), create a new commit with the version change,
create a tag for the version, and prepare for the next development
iteration.
3. Inspect the commits/tag and push to master. This will trigger the
github release workflow which is triggered for new tags which will
then publish a new release on github.
Example usage:
```console
$ ./scripts/release.sh major --dry-run
[dry-run] - No changes will be made
Step 1: Reading current version...
Current version: 0.9.0-dev
New release version: 1.0.0
Step 2: Updating version in ggml/CMakeLists.txt...
[dry-run] Would update GGML_VERSION_MAJOR to 1
[dry-run] Would update GGML_VERSION_MINOR to 0
[dry-run] Would update GGML_VERSION_PATCH to 0
[dry-run] Would remove -dev suffix
Step 3: Committing version bump...
[dry-run] Would commit: 'ggml : bump version to 1.0.0'
Step 4: Creating git tag...
[dry-run] Would create tag: v1.0.0 with message 'Release version 1.0.0'
Step 5: Preparing for next development cycle...
[dry-run] Would update GGML_VERSION_MINOR to 1
[dry-run] Would add -dev suffix back
Step 6: Committing development version...
[dry-run] Would commit: 'ggml : prepare for development of 1.1.0-dev'
[dry-run] Summary (no changes were made):
• Would have released version: 1.0.0
• Would have created tag: v1.0.0
• Would have set next development version: 1.1.0-dev
```
Refs: https://github.com/ggml-org/ggml/issues/1333
* ggml: create branch for release candidate and check master
* ggml : sign the git tag
* vulkan: Change the mul_mm shared memory and register caching system to use vec2 instead of scalars, to enable using dot2 instructions
* use fma instead of dot to fix Nvidia and Apple performance issues
Generalize Linux check to `__linux__` to support non-glibc systems (like musl).
Also, return `false` on unknown/untested OS.
Without this commit, the code compiles (with warnings) but fails:
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (Intel(R) Xeon(R) Platinum 8488C)
build: 6487 (51c4cac6) with x86_64-linux-musl-gcc (GCC) 15.1.0 for x86_64-linux-musl (debug)
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
....
print_info: n_ctx_orig_yarn = 262144
print_info: rope_finetuned = unknown
print_info: model type = 4B
Illegal instruction (core dumped)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
When compiling with GGML_STATIC=ON, the build process would produce a
binary that was still dynamically linked to OpenMP. This defeats the
purpose of a static build:
$ cmake -B build \
-DBUILD_SHARED_LIBS=OFF \
-DLLAMA_CURL=OFF \
-DGGML_CCACHE=OFF \
-DGGML_NATIVE=OFF \
-DGGML_STATIC=ON
$ ldd llama-server
linux-vdso.so.1 (0x0000e1a434e3b000)
libgomp.so.1 => /lib/aarch64-linux-gnu/libgomp.so.1 (0x0000e1a4345a0000)
libstdc++.so.6 => /lib/aarch64-linux-gnu/libstdc++.so.6 (0x0000e1a434300000)
libm.so.6 => /lib/aarch64-linux-gnu/libm.so.6 (0x0000e1a434240000)
libgcc_s.so.1 => /lib/aarch64-linux-gnu/libgcc_s.so.1 (0x0000e1a434200000)
libc.so.6 => /lib/aarch64-linux-gnu/libc.so.6 (0x0000e1a434030000)
/lib/ld-linux-aarch64.so.1 (0x0000e1a434df0000)
This commit resolves the issue by modifying `CMAKE_FIND_LIBRARY_SUFFIXES`
to prioritize `.a` files, forcing CMake to link the static version of
the library.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
- flatten mxfp4 and packed fp4->fp16 bit-wise convert function (replace lut)
- MoE kernel optimizations
---------
Co-authored-by: Li He <lih@qti.qualcomm.com>
* CUDA: Optimize PAD_REFLECT_1D
feat: add more test cases for PAD_REFLECT_1D
* use fast_div to improve performance
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* optimize
* use a concise expression to further speedup the cuda kernel
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add paramater buffer pool, batching of submissions, refactor command building/submission
* Add header for linux builds
* Free staged parameter buffers at once
* Format with clang-format
* Fix thread-safe implementation
* Use device implicit synchronization
* Update workflow to use custom release
* Remove testing branch workflow
* some f32 tests passing
* Disable set_rows until it's implemented
* f32 add all tests passing
* Begin work on set_rows
* Work on set rows
* Add error buffers for reporting unsupported SET_ROWS indices
* Remove extra comments
* Add templated addition, clean up code
* Get addition and multiplication working
* Implement rms_norm
* Add get_rows implementation
* Add new get_rows files
* Refactor use of wg size entry
* Fix compilation
* Try manually unrolled q4_0 quant
* Revert "Try manually unrolled q4_0 quant"
This reverts commit 77f8b96515.
* Move to constant max wg size
* Check for tensor size in supports_op
* Vectorize f32 and change default workgroup size
* Move f32 get_rows from < 4 to % 4 != 0
* fix linter errors
* Add in-place tests
---------
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
* metal : improve naming
* metal : refactor device
ggml-ci
* cont : props
ggml-ci
* metal : apply ggml_mem_ranges_t
ggml-ci
* metal : remove GGML_METAL_USE_BF16
ggml-ci
* metal : refactor device buffer
ggml-ci
* cont : fix naming
* metal : sync before destroying the backend
ggml-ci
* metal : refactor context
ggml-ci
* metal : migrate ggml-metal.m to ggml-metal.cpp
ggml-ci
* metal : adjust ops API
ggml-ci
* metal : use C++ to store piplienes
ggml-ci
* metal : migrate ops to separate functions
ggml-ci
* metal : add ggml_metal_library_t
ggml-ci
* metal : improve naming
ggml-ci
* metal : cleanp
ggml-ci
* metal : add support for GGML_OP_LOG
ggml-ci
* metal : fix error handling
ggml-ci
* CANN: Fix ggml_cann_set_device to avoid redundant device switches
- Added a check to skip aclrtSetDevice if the current device is already set.
- Prevents unnecessary context switches while keeping thread/device consistency.
* CANN: add device default id
* ggml : remove adding extra dim timestep embedding
This commit updates the ggml_timestep_embedding function to no longer
add an extra dimension when the specified dimension is odd.
The motivation for this change is that this introduces an unnecessary
dimension when the dimension is odd, which caused an issue in the
kernels which were not expecting this extra dimension and it resulted in
uninitialized memory for the second to last dimension.
* ggml-cuda : fix padding in timestep embedding kernel
This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.
* ggml-metal : fix padding in timestep embedding kernel
This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel
* ggml-opencl : fix padding in timestep embedding kernel
This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.
* ggml-sycl : fix padding in timestep embedding kernel
This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.
* ggml-vulkan : fix padding in timestep embedding kernel
This commit fixes the zero padding for odd dimensions in
the timestep embedding kernel.
* ggml-cpu : fix padding in timestep embedding function
This commit removes the zeroing out of the last dimension now that we
are not adding the extra padding dimension.
* fix im2col_3d to respect non-contiguous inputs (views)
The CUDA 3D im2col kernel computed source addresses assuming compact layout (products of dims), ignoring nb[] strides.
This patch switches im2col_3d source indexing to use true strides derived from src1->nb[] (in elements), mirroring the approach used in the 2D CUDA im2col path. Destination indexing is unchanged.
* use ggml_element_size() for src strides
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* SYCL: Add COUNT_EQUAL operator support (rebased on master)
* SYCL: remove duplicate op_count_equal definition
* tests: remove test_count_equal_typed and use test_count_equal for all cases
* tests: keep only I32 case for COUNT_EQUAL as suggested
* tests: keep only I32 case for COUNT_EQUAL as requested
* metal : remove mem pool usage
ggml-ci
* metal : remove mem pool implementation
ggml-ci
* metal : take into account the actual allocated memory of the tensor
ggml-ci
* cont : use ggml_backend_buft_get_alloc_size
ggml-ci
* cont : improve, comments
ggml-ci
* cont : add functions for the extra tensor sizes
* metal : add comments
ggml-ci
* metal : implement .get_alloc_size for the rest of the buffer types
ggml-ci
* metal : remove ggml_metal_heap
ggml-ci
Use this to query register count for shader compiles on NVIDIA. Currently
this is only for performance debug, but it could eventually be used in some
heuristics like split_k.
* metal : refactor bin kernels loading
ggml-ci
* metal : refactor rms kernel loading
ggml-ci
* ci : try to add memory leaks check
ggml-ci
* ci : try to enable memory leak detection for Mac
* cont : seems to be working
* ggml-backend : add GGML_BACKEND_DEVICE_TYPE_IGPU device type
ggml-backend : add device id to device props
llama : only use iGPU devices if there are no GPU devices
llama : do not use multiple devices from different backends with the same device id
This commit adds a check for GGML_MACHINE_SUPPORTS_i8mm when enabling
MATMUL_INT8 features, ensuring that i8mm intrinsics are only used when
the target hardware actually supports them.
The motivation for this is to fix ggml CI build failures where the
feature detection correctly identifies that i8mm is not supported,
adding the +noi8mm flag, but MATMUL_INT8 preprocessor definitions are
still enabled, causing the compiler to attempt to use vmmlaq_s32
intrinsics without i8mm support.
Refs: https://github.com/ggml-org/ggml/actions/runs/17525174120/job/49909199499
Since the prefill length is not fixed, graphs constructed for the
prefill stage cannot be reused. For this reason, ACL graph
execution is disabled by default during prefill.
* Add fastdiv and fastmodulo to k_bin_bcast kernel
* Address review comments
* `prod_` instead of `prod` suffix
* Add test case for `k_bin_bcast_unravel` in CUDA backend
This commit fixes the zero padding for odd dimensions in
ggml_compute_forward_timestep_embedding_f32.
The motivation for this is that currently if an odd dimension is used,
the padding check incorrectly uses the dimension value for indexing.
For example, with dim=15:
Elements 0-6 are set to cosine values
Elements 7-13 are set to sine values
Element 14 is left uninitialized (contains garbage)
Element 15 is correctly set to zero
This fix changes embed_data[dim] to embed_data[2 * half] so that
element 14 (the first unused element) is properly set to zero as well
as the last element.
Resolves: https://github.com/ggml-org/ggml/issues/1324
* metal : make the backend async
ggml-ci
* cont : add comments, extend op offload, clean up
ggml-ci
* metal : fix batch size for MUL_MAT_ID
* metal : remove deprecated ggml_backend_metal_buffer_from_ptr
* metal : create only metal buffers, no wrapping of host memory
ggml-ci
* metal : restore .alloc_buffer for buffer_from_ptr_type
ggml-ci
* metal : remove broken implementation of GGML_OP_SET
ggml-ci
* metal : clean-up loose ends, ready for tests
ggml-ci
* metal : support both private and shared buffers
ggml-ci
* metal : enable private buffers + add global device queue
* metal : disable host buffer to prevent races
ggml-ci
* metal : avoid extra copy during set_tensor
ggml-ci
* metal : use separate buffer types for shread and private Metal buffers
ggml-ci
* metal : simplify synchronization logic
ggml-ci
* metal : fix build
ggml-ci
* metal : do not implement cpy_tensor
ggml-ci
* metal : separate implementations for shared and private buffers
ggml-ci
* CANN: Add ROPE sin/cos cache for reuse
Introduce sin/cos caching mechanism in ROPE to avoid redundant
computation across layers. The cache is built on the first layer
per device and reused by subsequent layers if parameters match.
- Added sin_cache / cos_cache pointers and position_length tracking
- Introduced cache validity flags and properties:
(ext_factor, theta_scale, freq_scale, attn_factor, is_neox)
- Accelerates ROPE by eliminating repeated sin/cos generation
This change reduces overhead in multi-layer scenarios while
preserving correctness by verifying parameter consistency.
Co-authored-by: hipudding <huafengchun@gmail.com>
* fix typo
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
* CANN: implement LRU cache for ACL graphs in CANN backend
- Introduce ggml_cann_graph_lru_cache to store multiple ggml_cann_graph objects.
- Graphs are loaded on demand and evicted using LRU policy when capacity is exceeded.
- Updated push, move_to_front, and clear methods to manage cached graphs efficiently.
- Ensures reuse of graphs, reducing graph reconstruction overhead in CANN backend.
* fix typo
* The LRU cache capacity can be configured via an env variable
Signed-off-by: noemotiovon <757486878@qq.com>
* refactory acl graph
* refactory && fix review comments
Signed-off-by: noemotiovon <757486878@qq.com>
---------
Signed-off-by: noemotiovon <757486878@qq.com>
* CUDA: Add mul_mat_id support the mmf
Add support for mul_mat_id for bs < 16
* Review: use warp_size, fix should_use_mmf condition
* Launch one block per expert, stride along n_expert_used
* templatize mul_mat_id
* Pad shmem to 16 bytes, add helper function mul_mat_f_switch_ids
* Reduce compile times by dividing mmf into f16, bf16 and f32 variants
* Divide mmf by ncols_dst
* Add missing files
* Fix MUSA/HIP builds
* vulkan: sort graph to allow more parallel execution
Add a backend proc to allow the backend to modify the graph. The
vulkan implementation looks at which nodes depend on each other
and greedily reorders them to group together nodes that don't
depend on each other. It only reorders the nodes, doesn't change
the contents of any of them.
With #15489, this reduces the number of synchronizations needed.
* call optimize_graph per-split
* cuda : fix supports_op condition for get_rows when src1->ne2 > 1
ggml-ci
* ggml : add comment about ggml_get_rows
ggml-ci
* cuda : add FIXME [no ci]
* cuda : update support condition
ggml-ci