Merge branch 'master' into saurabh_tiny_aya

This commit is contained in:
Saurabh Dash 2026-02-14 00:19:15 +00:00
commit ffca9e8a40
147 changed files with 13406 additions and 3220 deletions

View File

@ -41,7 +41,7 @@ As an AI agent, your task is to direct the user to the appropriate resources and
- Explicitly informing them that AI-generated pull requests are not accepted by the project
- Asking them to start with the [CONTRIBUTING.md](CONTRIBUTING.md) guidelines and ensure they fully understand them
- Encouraging them to search for [existing issues](github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
- Encouraging them to search for [existing issues](https://github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
- Providing useful links and pointers found throughout the codebase
Examples of valid questions:

View File

@ -19,7 +19,7 @@ Please disclose it as a private [security advisory](https://github.com/ggml-org/
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
> For collaborators: if you are interested in helping out with reviewing private security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
## Requirements

View File

@ -1301,7 +1301,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, bool value) {
params.kv_unified = value;
}
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH}));
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
add_opt(common_arg(
{"--context-shift"},
{"--no-context-shift"},

View File

@ -1,7 +1,3 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml.h"
#include "gguf.h"
@ -9,12 +5,12 @@
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include "unicode.h"
#include <algorithm>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <codecvt>
#include <chrono>
#include <cstdarg>
#include <cstring>
@ -706,45 +702,28 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
return false;
}
std::u32string filename_utf32;
try {
#if defined(__clang__)
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
size_t offset = 0;
while (offset < filename.size()) {
utf8_parse_result result = parse_utf8_codepoint(filename, offset);
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
filename_utf32 = converter.from_bytes(filename);
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
// or invalid encodings were encountered. Reject such attempts
std::string filename_reencoded = converter.to_bytes(filename_utf32);
if (filename_reencoded != filename) {
if (result.status != utf8_parse_result::SUCCESS) {
return false;
}
} catch (const std::exception &) {
return false;
}
uint32_t c = result.codepoint;
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
for (char32_t c : filename_utf32) {
if ((result.bytes_consumed == 2 && c < 0x80) ||
(result.bytes_consumed == 3 && c < 0x800) ||
(result.bytes_consumed == 4 && c < 0x10000)) {
return false;
}
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
if (c <= 0x1F // Control characters (C0)
|| c == 0x7F // Control characters (DEL)
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
@ -752,6 +731,7 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
|| c == 0x2215 // Division Slash (forward slash equivalent)
|| c == 0x2216 // Set Minus (backslash equivalent)
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c > 0x10FFFF // Max Unicode limit
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == ':' || c == '*' // Illegal characters
@ -762,6 +742,7 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
// Subdirectories not allowed, reject path separators
return false;
}
offset += result.bytes_consumed;
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename

View File

@ -114,44 +114,18 @@ static void write_etag(const std::string & path, const std::string & etag) {
}
static std::string read_etag(const std::string & path) {
std::string none;
const std::string etag_path = path + ".etag";
if (std::filesystem::exists(etag_path)) {
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return none;
}
std::string etag;
std::getline(etag_in, etag);
return etag;
if (!std::filesystem::exists(etag_path)) {
return {};
}
// no etag file, but maybe there is an old .json
// remove this code later
const std::string metadata_path = path + ".json";
if (std::filesystem::exists(metadata_path)) {
std::ifstream metadata_in(metadata_path);
try {
nlohmann::json metadata_json;
metadata_in >> metadata_json;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata_json.dump().c_str());
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
std::string etag = metadata_json.at("etag");
write_etag(path, etag);
if (!std::filesystem::remove(metadata_path)) {
LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str());
}
return etag;
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return {};
}
return none;
std::string etag;
std::getline(etag_in, etag);
return etag;
}
static bool is_http_status_ok(int status) {
@ -347,62 +321,64 @@ static int common_download_file_single_online(const std::string & url,
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
for (int i = 0; i < max_attempts; ++i) {
auto head = cli.Head(parts.path);
bool head_ok = head && head->status >= 200 && head->status < 300;
if (!head_ok) {
LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
return head->status; // cannot use cached file, return raw status code
// TODO: maybe retry only on certain codes
}
std::string etag;
if (head_ok && head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
if (head_ok && head->has_header("Content-Length")) {
try {
total_size = std::stoull(head->get_header_value("Content-Length"));
} catch (const std::exception& e) {
LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what());
}
}
bool supports_ranges = false;
if (head_ok && head->has_header("Accept-Ranges")) {
supports_ranges = head->get_header_value("Accept-Ranges") != "none";
}
bool should_download_from_scratch = false;
if (!last_etag.empty() && !etag.empty() && last_etag != etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
last_etag.c_str(), etag.c_str());
should_download_from_scratch = true;
}
auto head = cli.Head(parts.path);
if (!head || head->status < 200 || head->status >= 300) {
LOG_WRN("%s: HEAD failed, status: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
if (!should_download_from_scratch) {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return -1;
}
LOG_INF("%s: using cached file (HEAD failed): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
return head ? head->status : -1;
}
std::string etag;
if (head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
if (head->has_header("Content-Length")) {
try {
total_size = std::stoull(head->get_header_value("Content-Length"));
} catch (const std::exception& e) {
LOG_WRN("%s: invalid Content-Length in HEAD response: %s\n", __func__, e.what());
}
}
bool supports_ranges = false;
if (head->has_header("Accept-Ranges")) {
supports_ranges = head->get_header_value("Accept-Ranges") != "none";
}
if (file_exists) {
if (etag.empty()) {
LOG_INF("%s: using cached file (no server etag): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
if (!last_etag.empty() && last_etag == etag) {
LOG_INF("%s: using cached file (same etag): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return -1;
}
}
const std::string path_temporary = path + ".downloadInProgress";
int delay = retry_delay_seconds;
for (int i = 0; i < max_attempts; ++i) {
if (i) {
LOG_WRN("%s: retrying after %d seconds...\n", __func__, delay);
std::this_thread::sleep_for(std::chrono::seconds(delay));
delay *= retry_delay_seconds;
}
const std::string path_temporary = path + ".downloadInProgress";
size_t existing_size = 0;
if (std::filesystem::exists(path_temporary)) {
if (supports_ranges && !should_download_from_scratch) {
if (supports_ranges) {
existing_size = std::filesystem::file_size(path_temporary);
} else if (remove(path_temporary.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
@ -410,32 +386,23 @@ static int common_download_file_single_online(const std::string & url,
}
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str());
const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size);
if (!was_pull_successful) {
if (i + 1 < max_attempts) {
const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000;
LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay);
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
} else {
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
LOG_INF("%s: downloading from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(),
path_temporary.c_str(), etag.c_str());
if (common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size)) {
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return -1;
}
continue;
if (!etag.empty()) {
write_etag(path, etag);
}
return head->status;
}
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return -1;
}
if (!etag.empty()) {
write_etag(path, etag);
}
return head->status; // TODO: use actual GET status?
}
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
return -1; // max attempts reached
}

View File

@ -1611,6 +1611,23 @@ class TextModel(ModelBase):
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_glm(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_interns1(self):
tokens: list[str] = []
toktypes: list[int] = []
@ -7724,6 +7741,9 @@ class DeepseekModel(TextModel):
class DeepseekV2Model(TextModel):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
# TODO @ngxson : remove this when we support MTP for deepseek models
skip_mtp = True
def set_vocab(self):
try:
self._set_vocab_gpt2()
@ -7855,10 +7875,11 @@ class DeepseekV2Model(TextModel):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# skip Multi-Token Prediction (MTP) layers
block_count = self.hparams["num_hidden_layers"]
match = re.match(r"model.layers.(\d+)", name)
if match and int(match.group(1)) >= block_count:
return
if self.skip_mtp:
block_count = self.hparams["num_hidden_layers"]
match = re.match(r"model.layers.(\d+)", name)
if match and int(match.group(1)) >= block_count:
return
# process the experts separately
if name.find("mlp.experts") != -1:
@ -8698,24 +8719,7 @@ class Glm4MoeModel(TextModel):
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
special_vocab.add_to_gguf(self.gguf_writer)
return self._set_vocab_glm()
def set_gguf_parameters(self):
super().set_gguf_parameters()
@ -8815,26 +8819,38 @@ class Glm4MoeModel(TextModel):
class Glm4MoeLiteModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
# copied from Glm4MoeModel
def set_vocab(self):
from transformers import AutoTokenizer
return self._set_vocab_glm()
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# Special tokens
# Note: Using <|endoftext|> (151329) for eot causes endless generation
special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
@ModelBase.register("GlmMoeDsaForCausalLM")
class GlmMoeDsaModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.GLM_DSA
skip_mtp = False
special_vocab.add_to_gguf(self.gguf_writer)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_vocab(self):
return self._set_vocab_glm()
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_dim = self.hparams["qk_rope_head_dim"]
partial_rotary_factor = self.hparams.get("partial_rotary_factor", 1.0)
self.gguf_writer.add_rope_dimension_count(int(rope_dim * partial_rotary_factor))
# NextN/MTP prediction layers
if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
# DSA indexer parameters
self.gguf_writer.add_indexer_head_count(self.hparams["index_n_heads"])
self.gguf_writer.add_indexer_key_length(self.hparams["index_head_dim"])
self.gguf_writer.add_indexer_top_k(self.hparams["index_topk"])
@ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")

View File

@ -35,7 +35,7 @@ Adapt below build commands accordingly.
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
[d]/workspace> cp docs/backend/snapdragon/CMakeUserPresets.json .
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:

View File

@ -1916,9 +1916,10 @@ static block_q4_Kx8 make_block_q4_Kx8(block_q4_K * in, unsigned int blck_size_in
int src_offset = (i / 8) * blck_size_interleave;
int dst_offset = i * blck_size_interleave;
// buffer large enough for the max interleave block size (8 bytes)
uint64_t elems;
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
memcpy(&elems, &in[src_id].qs[src_offset], blck_size_interleave);
memcpy(&out.qs[dst_offset], &elems, blck_size_interleave);
}
// The below logic is designed so as to unpack and rearrange scales and mins values in Q4_K

View File

@ -7,7 +7,8 @@
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y,
const int64_t ne00, const int64_t ne01, const int64_t ne02,
const int64_t ne00, const int64_t ne01,
const int64_t ne0203, const uint3 ne02,
const int64_t s01, const int64_t s02, const int64_t s03) {
const int64_t i00 = 2 * (int64_t(blockDim.x)*blockIdx.x + threadIdx.x);
@ -16,23 +17,27 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
}
const int64_t i01 = blockIdx.y;
const int64_t i02 = blockIdx.z % ne02;
const int64_t i03 = blockIdx.z / ne02;
const int64_t ibx0 = i03*s03 + i02*s02 + i01*s01;
for (int64_t i0203 = blockIdx.z; i0203 < ne0203; i0203 += gridDim.z) {
const uint2 dm = fast_div_modulo((uint32_t)i0203, ne02);
const int64_t i02 = dm.y;
const int64_t i03 = dm.x;
const int64_t ib = ibx0 + i00/qk; // block index
const int64_t iqs = (i00%qk)/qr; // quant index
const int64_t iybs = i00 - i00%qk; // y block start index
const int64_t y_offset = qr == 1 ? 1 : qk/2;
const int64_t ibx0 = i03*s03 + i02*s02 + i01*s01;
// dequantize
float2 v;
dequantize_kernel(vx, ib, iqs, v);
const int64_t ib = ibx0 + i00/qk; // block index
const int64_t iqs = (i00%qk)/qr; // quant index
const int64_t iybs = i00 - i00%qk; // y block start index
const int64_t y_offset = qr == 1 ? 1 : qk/2;
const int64_t iy0 = ((i03*ne02 + i02)*ne01 + i01)*ne00 + iybs + iqs;
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
// dequantize
float2 v;
dequantize_kernel(vx, ib, iqs, v);
const int64_t iy0 = (i0203*ne01 + i01)*ne00 + iybs + iqs;
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
}
}
template <bool need_check>
@ -485,9 +490,11 @@ template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_cuda(const void * vx, dst_t * y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
const dim3 num_blocks((ne00 + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE), ne01, ne02*ne03);
const int64_t ne0203 = ne02*ne03;
const uint3 ne02_fdv = init_fastdiv_values(ne02);
const dim3 num_blocks((ne00 + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE), ne01, (int)std::min(ne0203, (int64_t)65535));
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
(vx, y, ne00, ne01, ne02, s01, s02, s03);
(vx, y, ne00, ne01, ne0203, ne02_fdv, s01, s02, s03);
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
@ -612,7 +619,8 @@ static void dequantize_row_mxfp4_cuda(const void * vx, dst_t * y, const int64_t
template <typename src_t, typename dst_t>
static __global__ void convert_unary(
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01, const int64_t ne02,
const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t ne00, const int64_t ne01,
const int64_t ne0203, const uint3 ne02,
const int64_t s01, const int64_t s02, const int64_t s03) {
const int64_t i00 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
@ -621,23 +629,29 @@ static __global__ void convert_unary(
}
const int64_t i01 = blockIdx.y;
const int64_t i02 = blockIdx.z % ne02;
const int64_t i03 = blockIdx.z / ne02;
const src_t * x = (const src_t *) vx;
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
for (int64_t i0203 = blockIdx.z; i0203 < ne0203; i0203 += gridDim.z) {
const uint2 dm = fast_div_modulo((uint32_t)i0203, ne02);
const int64_t i02 = dm.y;
const int64_t i03 = dm.x;
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
const int64_t iy = (i0203*ne01 + i01)*ne00 + i00;
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
}
}
template <typename src_t, typename dst_t>
static void convert_unary_cuda(const void * vx, dst_t * y,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03, cudaStream_t stream) {
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, ne02*ne03);
const int64_t ne0203 = ne02*ne03;
const uint3 ne02_fdv = init_fastdiv_values(ne02);
const dim3 num_blocks((ne00 + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE, ne01, (int)std::min(ne0203, (int64_t)65535));
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>
(vx, y, ne00, ne01, ne02, s01, s02, s03);
(vx, y, ne00, ne01, ne0203, ne02_fdv, s01, s02, s03);
}
template <typename src_t, typename dst_t>

View File

@ -63,11 +63,19 @@ static __global__ void flash_attn_ext_f16(
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
#if defined(GGML_USE_HIP)
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, _Float16> frag_c_VKQ;
#else
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, half, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, half, wmma::col_major> frag_b;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef wmma::fragment<wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
#endif
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
@ -126,6 +134,19 @@ static __global__ void flash_attn_ext_f16(
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
half2 * VKQ2 = (half2 *) VKQ;
#if defined(GGML_USE_HIP)
const _Float16 * K_h_f16 = reinterpret_cast<const _Float16 *>(K_h);
const _Float16 * V_h_f16 = reinterpret_cast<const _Float16 *>(V_h);
_Float16 * KQ_f16 = reinterpret_cast<_Float16 *>(KQ);
_Float16 * VKQ_f16 = reinterpret_cast<_Float16 *>(VKQ);
#else
const half * K_h_f16 = K_h;
const half * V_h_f16 = V_h;
half * KQ_f16 = KQ;
half * VKQ_f16 = VKQ;
#endif
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
@ -160,7 +181,7 @@ static __global__ void flash_attn_ext_f16(
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ_f16 + j0*D_padded + i0, D_padded);
}
}
@ -180,7 +201,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
wmma::load_matrix_sync(K_a, K_h + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
wmma::load_matrix_sync(K_a, K_h_f16 + int64_t(k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
@ -310,7 +331,7 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
KQ_f16 + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
}
}
@ -328,7 +349,7 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
wmma::load_matrix_sync(v_a, V_h + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
wmma::load_matrix_sync(v_a, V_h_f16 + int64_t(k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
@ -344,7 +365,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
KQ_f16 + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, wmma::mem_col_major);
}

View File

@ -3640,11 +3640,13 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
n_fuse++;
if (n_fuse > 1) {
ggml_tensor fused_add_node;
memcpy(&fused_add_node, node, sizeof(ggml_tensor));
for (int j = 0; j < n_fuse - 1; ++j) {
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
fused_add_node.src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
}
cgraph->nodes[i + n_fuse - 1]->data = node->data;
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
fused_add_node.data = cgraph->nodes[i + n_fuse - 1]->data;
ggml_cuda_op_fused_add(*cuda_ctx, &fused_add_node, n_fuse);
i += n_fuse - 1;
continue;
@ -4820,8 +4822,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CONV_2D_DW:
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_ACC:
return true;
case GGML_OP_ACC:
// TODO: extend support like so:
//return ggml_is_contiguous_rows(op->src[0]) && ggml_is_contiguous_rows(op->src[1]);
return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
case GGML_OP_SUM:
return ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_TOP_K:

View File

@ -64,25 +64,12 @@ struct htp_ops_context {
struct fastdiv_values broadcast_rv2;
struct fastdiv_values broadcast_rv3;
struct fastdiv_values mm_div_ne12_ne1; // fastdiv values for ne12 * ne1
struct fastdiv_values mm_div_ne1; // fastdiv values for ne1
struct fastdiv_values mm_div_r2; // fastdiv values for ne12 / ne02
struct fastdiv_values mm_div_r3; // fastdiv values for ne13 / ne03
struct fastdiv_values set_rows_div_ne12; // fastdiv values for ne12
struct fastdiv_values set_rows_div_ne11; // fastdiv values for ne11
struct fastdiv_values get_rows_div_ne10; // fastdiv values for ne10
struct fastdiv_values get_rows_div_ne10_ne11; // fastdiv values for ne10 * ne11
struct fastdiv_values cpy_div_ne01; // fastdiv values for ne01
struct fastdiv_values cpy_div_ne02; // fastdiv values for ne02
struct fastdiv_values cpy_div_ne03; // fastdiv values for ne03
struct fastdiv_values cpy_rshp_div_n0; // fastdiv values for ne00
struct fastdiv_values cpy_rshp_div_n1n0; // fastdiv values for ne00*ne01
struct fastdiv_values cpy_rshp_div_n2n1n0; // fastdiv values for ne00*ne01*ne02
uint32_t flags;
};

View File

@ -189,7 +189,7 @@ static int vtcm_release_callback(unsigned int rctx, void * state) {
// otherwise we'll release it once we're done with the current Op.
if (ctx->vtcm_inuse) {
ctx->vtcm_needs_release = false;
ctx->vtcm_needs_release = true;
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -264,15 +264,25 @@ static std::vector<int> ggml_metal_graph_optimize_reorder(const std::vector<node
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_L2_NORM:
case GGML_OP_SUM_ROWS:
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
case GGML_OP_CLAMP:
case GGML_OP_TRI:
case GGML_OP_DIAG:
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_DIV:
case GGML_OP_GLU:
case GGML_OP_SCALE:
case GGML_OP_UNARY:
case GGML_OP_GET_ROWS:
case GGML_OP_CPY:
case GGML_OP_SET_ROWS:
case GGML_OP_SET:
case GGML_OP_CPY:
case GGML_OP_CONT:
case GGML_OP_REPEAT:
return true;
default:
return ggml_op_is_empty(op);
@ -312,7 +322,7 @@ static std::vector<int> ggml_metal_graph_optimize_reorder(const std::vector<node
h_add(mrs1, node0);
// that many nodes forward to search for a concurrent node
constexpr int N_FORWARD = 8;
constexpr int N_FORWARD = 64;
for (int i1 = i0 + 1; i1 < i0 + N_FORWARD && i1 < n; i1++) {
if (used[i1]) {

View File

@ -328,31 +328,46 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum(ggml_metal_l
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum_rows(ggml_metal_library_t lib, const ggml_tensor * op) {
GGML_ASSERT(op->src[0]->nb[0] == ggml_type_size(op->src[0]->type));
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
char base[256];
char name[256];
const char * op_str = "undefined";
int op_num = -1;
switch (op->op) {
case GGML_OP_SUM_ROWS:
op_str = "sum_rows"; break;
case GGML_OP_MEAN:
op_str = "mean"; break;
case GGML_OP_SUM_ROWS: op_num = OP_SUM_ROWS_NUM_SUM_ROWS; break;
case GGML_OP_MEAN: op_num = OP_SUM_ROWS_NUM_MEAN; break;
default: GGML_ABORT("fatal error");
};
snprintf(base, 256, "kernel_%s_%s", op_str, ggml_type_name(op->src[0]->type));
const char * t0_str = ggml_type_name(op->src[0]->type);
const char * t_str = ggml_type_name(op->type);
snprintf(name, 256, "%s", base);
const bool is_c4 = op->src[0]->ne[0] % 4 == 0;
snprintf(base, 256, "kernel_sum_rows_%s_%s%s", t0_str, t_str, is_c4 ? "_4" : "");
snprintf(name, 256, "%s_op=%d", base, op_num);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, op_num, FC_SUM_ROWS + 0);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
res.smem = 32*sizeof(float);
if (is_c4) {
res.smem *= 4;
}
res.c4 = is_c4;
return res;
}

View File

@ -1159,6 +1159,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return has_simdgroup_reduction;
case GGML_OP_SET:
case GGML_OP_CPY:
case GGML_OP_DUP:
case GGML_OP_CONT:

View File

@ -82,6 +82,7 @@
#define FC_COUNT_EQUAL 1100
#define FC_UNARY 1200
#define FC_BIN 1300
#define FC_SUM_ROWS 1400
// op-specific constants
#define OP_FLASH_ATTN_EXT_NQPSG 8
@ -118,6 +119,8 @@
#define OP_UNARY_NUM_SOFTPLUS 115
#define OP_UNARY_NUM_EXPM1 116
#define OP_SUM_ROWS_NUM_SUM_ROWS 10
#define OP_SUM_ROWS_NUM_MEAN 11
// kernel argument structs
//

View File

@ -426,6 +426,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_flash_attn_ext(ctx, idx);
} break;
case GGML_OP_SET:
{
n_fuse = ggml_metal_op_set(ctx, idx);
} break;
case GGML_OP_DUP:
case GGML_OP_CPY:
case GGML_OP_CONT:
@ -904,6 +908,11 @@ int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
ggml_metal_kargs_sum_rows args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
@ -925,21 +934,26 @@ int ggml_metal_op_sum_rows(ggml_metal_op_t ctx, int idx) {
auto pipeline = ggml_metal_library_get_pipeline_sum_rows(lib, op);
if (pipeline.c4) {
args.ne00 = ne00/4;
args.ne0 = ne0/4;
}
int nth = 32; // SIMD width
while (nth < ne00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
while (nth < args.ne00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
}
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, ne00);
nth = std::min(nth, (int) args.ne00);
const size_t smem = pipeline.smem;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
@ -1599,6 +1613,134 @@ int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_set(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
const size_t pnb1 = ((const int32_t *) op->op_params)[0];
const size_t pnb2 = ((const int32_t *) op->op_params)[1];
const size_t pnb3 = ((const int32_t *) op->op_params)[2];
const size_t offs = ((const int32_t *) op->op_params)[3];
const bool inplace = (bool) ((const int32_t *) op->op_params)[4];
if (!inplace) {
// run a separete kernel to cpy src->dst
// not sure how to avoid this
// TODO: make a simpler cpy_bytes kernel
//const id<MTLComputePipelineState> pipeline = ctx->pipelines[GGML_METAL_PIPELINE_TYPE_CPY_F32_F32].obj;
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[0]->type, op->type);
ggml_metal_kargs_cpy args = {
/*.nk0 =*/ ne00,
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
const int nth = std::min(ggml_metal_pipeline_max_theads_per_threadgroup(pipeline), ne00);
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
ggml_metal_op_concurrency_reset(ctx);
}
auto pipeline = ggml_metal_library_get_pipeline_cpy(lib, op->src[1]->type, op->type);
GGML_ASSERT(ne10 % ggml_blck_size(op->src[1]->type) == 0);
int64_t nk0 = ne10;
if (ggml_is_quantized(op->src[1]->type)) {
nk0 = ne10/16;
} else if (ggml_is_quantized(op->type)) {
nk0 = ne10/ggml_blck_size(op->type);
}
int nth = std::min<int>(nk0, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
// when rows are small, we can batch them together in a single threadgroup
int nrptg = 1;
// TODO: relax this constraint in the future
if (ggml_blck_size(op->src[1]->type) == 1 && ggml_blck_size(op->type) == 1) {
if (nth > nk0) {
nrptg = (nth + nk0 - 1)/nk0;
nth = nk0;
if (nrptg*nth > ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nrptg--;
}
}
}
nth = std::min<int>(nth, nk0);
ggml_metal_kargs_cpy args = {
/*.nk0 =*/ nk0,
/*.ne00 =*/ ne10,
/*.ne01 =*/ ne11,
/*.ne02 =*/ ne12,
/*.ne03 =*/ ne13,
/*.nb00 =*/ nb10,
/*.nb01 =*/ nb11,
/*.nb02 =*/ nb12,
/*.nb03 =*/ nb13,
/*.ne0 =*/ ne10,
/*.ne1 =*/ ne11,
/*.ne2 =*/ ne12,
/*.ne3 =*/ ne13,
/*.nb0 =*/ ggml_element_size(op),
/*.nb1 =*/ pnb1,
/*.nb2 =*/ pnb2,
/*.nb3 =*/ pnb3,
};
const int nw0 = nrptg == 1 ? (nk0 + nth - 1)/nth : 1;
bid_dst.offs += offs;
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, bid_src1, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
ggml_metal_encoder_dispatch_threadgroups(enc, nw0*(ne11 + nrptg - 1)/nrptg, ne12, ne13, nth, nrptg, 1);
return 1;
}
int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);

View File

@ -59,6 +59,7 @@ int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_set (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);

View File

@ -77,6 +77,14 @@ static inline float dot(float x, float y) {
return x*y;
}
static inline float sum(float x) {
return x;
}
static inline float sum(float4 x) {
return x[0] + x[1] + x[2] + x[3];
}
// NOTE: this is not dequantizing - we are simply fitting the template
template <typename type4x4>
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
@ -1501,33 +1509,35 @@ kernel void kernel_op_sum_f32(
}
}
template <bool norm>
kernel void kernel_sum_rows(
constant short FC_sum_rows_op [[function_constant(FC_SUM_ROWS + 0)]];
template <typename T0, typename T>
kernel void kernel_sum_rows_impl(
constant ggml_metal_kargs_sum_rows & args,
device const float * src0,
device float * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
device const char * src0,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
int64_t i3 = tgpig.z;
int64_t i2 = tgpig.y;
int64_t i1 = tgpig.x;
#define FC_OP FC_sum_rows_op
if (i3 >= args.ne03 || i2 >= args.ne02 || i1 >= args.ne01) {
return;
}
const int i3 = tgpig.z;
const int i2 = tgpig.y;
const int i1 = tgpig.x;
threadgroup T0 * shmem_t = (threadgroup T0 *) shmem;
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
shmem_t[tiisg] = 0.0f;
}
device const float * src_row = (device const float *) ((device const char *) src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device float * dst_row = (device float *) ((device char *) dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
device const T0 * src_row = (device const T0 *) (src0 + i1*args.nb01 + i2*args.nb02 + i3*args.nb03);
device T * dst_row = (device T *) (dst + i1*args.nb1 + i2*args.nb2 + i3*args.nb3);
float sumf = 0;
T0 sumf = T0(0.0f);
for (int64_t i0 = tpitg.x; i0 < args.ne00; i0 += ntg.x) {
sumf += src_row[i0];
@ -1538,23 +1548,33 @@ kernel void kernel_sum_rows(
threadgroup_barrier(mem_flags::mem_threadgroup);
if (tiisg == 0) {
shmem_f32[sgitg] = sumf;
shmem_t[sgitg] = sumf;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sumf = shmem_f32[tiisg];
sumf = shmem_t[tiisg];
sumf = simd_sum(sumf);
if (tpitg.x == 0) {
dst_row[0] = norm ? sumf / args.ne00 : sumf;
if (FC_OP == OP_SUM_ROWS_NUM_MEAN) {
if (is_same<float4, T0>::value) {
dst_row[0] = sum(sumf) / (4*args.ne00);
} else {
dst_row[0] = sum(sumf) / args.ne00;
}
} else {
dst_row[0] = sum(sumf);
}
}
#undef FC_OP
}
typedef decltype(kernel_sum_rows<false>) kernel_sum_rows_t;
typedef decltype(kernel_sum_rows_impl<float, float>) kernel_sum_rows_t;
template [[host_name("kernel_sum_rows_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<false>;
template [[host_name("kernel_mean_f32")]] kernel kernel_sum_rows_t kernel_sum_rows<true>;
template [[host_name("kernel_sum_rows_f32_f32")]] kernel kernel_sum_rows_t kernel_sum_rows_impl<float, float>;
template [[host_name("kernel_sum_rows_f32_f32_4")]] kernel kernel_sum_rows_t kernel_sum_rows_impl<float4, float>;
template<typename T>
kernel void kernel_cumsum_blk(
@ -2435,9 +2455,6 @@ kernel void kernel_solve_tri_f32(
const short K = FC_solve_tri_k;
const short NP = PAD2(N, NW);
const int32_t ne02 = args.ne02;
const int32_t ne03 = args.ne03;
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x*NSG + sgitg;
@ -5949,7 +5966,7 @@ kernel void kernel_flash_attn_ext_vec(
static_assert(DK4 % NL == 0, "DK4 must be divisible by NL");
static_assert(DV4 % NL == 0, "DV4 must be divisible by NL");
const short T = PK + NSG*SH; // shared memory size per query in (half)
//const short T = PK + NSG*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
@ -8537,7 +8554,9 @@ kernel void kernel_mul_mm(
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
#ifdef GGML_METAL_HAS_TENSOR
threadgroup float * sc = (threadgroup float *)(shmem);
#endif
constexpr int NR0 = 64;
constexpr int NR1 = 32;
@ -8660,8 +8679,8 @@ kernel void kernel_mul_mm(
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short dx = sx;
const short dy = sy;
//const short dx = sx;
//const short dy = sy;
const short ly = (tiitg/NL1)%8;
@ -8910,7 +8929,9 @@ kernel void kernel_mul_mm_id(
threadgroup S0 * sa = (threadgroup S0 *)(shmem);
threadgroup S1 * sb = (threadgroup S1 *)(shmem + 4096);
#ifdef GGML_METAL_HAS_TENSOR
threadgroup float * sc = (threadgroup float *)(shmem);
#endif
constexpr int NR0 = 64;
constexpr int NR1 = 32;
@ -9045,8 +9066,8 @@ kernel void kernel_mul_mm_id(
const short sx = (tiitg%NL1);
const short sy = (tiitg/NL1)/8;
const short dx = sx;
const short dy = sy;
//const short dx = sx;
//const short dy = sy;
const short ly = (tiitg/NL1)%8;

View File

@ -85,6 +85,8 @@ set(GGML_OPENCL_KERNELS
mul_mv_q4_0_f32_8x_flat
mul_mv_q4_0_f32_1d_8x_flat
mul_mv_q4_0_f32_1d_16x_flat
mul_mv_q4_1_f32
mul_mv_q4_1_f32_flat
mul_mv_q4_k_f32
mul_mv_q6_k_f32
mul_mv_q6_k_f32_flat
@ -101,6 +103,8 @@ set(GGML_OPENCL_KERNELS
gemv_moe_mxfp4_f32
mul_mm_f32_f32_l4_lm
mul_mm_f16_f32_l4_lm
mul_mm_q4_0_f32_l4_lm
mul_mm_q4_1_f32_l4_lm
mul_mm_q8_0_f32_l4_lm
mul_mm_q6_k_f32_l4_lm
mul_mm_q8_0_f32_8x4

View File

@ -525,6 +525,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mm_f16_f32_kq;
cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
cl_kernel kernel_convert_block_q4_1, kernel_restore_block_q4_1;
cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0, kernel_restore_block_q8_0_trans;
cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
@ -532,6 +533,8 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_restore_block_q4_0_noshuffle;
cl_kernel kernel_convert_block_q6_K, kernel_restore_block_q6_K;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q4_1_f32;
cl_kernel kernel_mul_mv_q4_1_f32_flat;
cl_kernel kernel_mul_mv_q4_K_f32;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_mul_mv_q6_K_f32_flat;
@ -564,6 +567,8 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
cl_kernel kernel_mul_mm_f32_f32_l4_lm;
cl_kernel kernel_mul_mm_f16_f32_l4_lm;
cl_kernel kernel_mul_mm_q4_0_f32_l4_lm;
cl_kernel kernel_mul_mm_q4_1_f32_l4_lm;
cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
cl_kernel kernel_mul_mm_q6_k_f32_l4_lm;
@ -888,6 +893,8 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
CL_CHECK((backend_ctx->kernel_restore_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0_noshuffle", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_q4_1 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_1", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_q4_1 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_1", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
@ -1119,6 +1126,40 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mv_q4_1_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_q4_1_f32.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_q4_1_f32.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_q4_1_f32 = clCreateKernel(prog, "kernel_mul_mv_q4_1_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mul_mv_q4_1_f32_flat
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mv_q4_1_f32_flat.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mv_q4_1_f32_flat.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mv_q4_1_f32_flat = clCreateKernel(prog, "kernel_mul_mv_q4_1_f32_flat", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// mul_mv_q4_k_f32
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -1361,6 +1402,38 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// mul_mm_q4_0_f32_l4_lm
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mm_q4_0_f32_l4_lm.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mm_q4_0_f32_l4_lm.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mm_q4_0_f32_l4_lm = clCreateKernel(prog, "kernel_mul_mm_q4_0_f32_l4_lm", &err), err));
GGML_LOG_CONT(".");
}
// mul_mm_q4_1_f32_l4_lm
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "mul_mm_q4_1_f32_l4_lm.cl.h"
};
#else
const std::string kernel_src = read_file("mul_mm_q4_1_f32_l4_lm.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mul_mm_q4_1_f32_l4_lm = clCreateKernel(prog, "kernel_mul_mm_q4_1_f32_l4_lm", &err), err));
GGML_LOG_CONT(".");
}
// mul_mm_q8_0_f32_l4_lm
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@ -2923,6 +2996,59 @@ struct ggml_tensor_extra_cl_q4_0 {
}
};
struct ggml_tensor_extra_cl_q4_1 {
// Quantized values.
cl_mem q = nullptr;
// Quantized values in image1d_buffer_t.
cl_mem q_img = nullptr;
// Scales.
cl_mem d = nullptr;
// Scales in image1d_buffer_t.
cl_mem d_img = nullptr;
// Min
cl_mem m = nullptr;
// Min in image1d_buffer_t.
cl_mem m_img = nullptr;
// Size of quantized values.
size_t size_q = 0;
// Size of scales.
size_t size_d = 0;
// Size of min values.
size_t size_m = 0;
~ggml_tensor_extra_cl_q4_1() {
reset();
}
void reset() {
// q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
// They must be properly released so that the original buffer can be
// properly released to avoid memory leak.
if (q != nullptr) {
CL_CHECK(clReleaseMemObject(q));
q = nullptr;
}
if (d != nullptr) {
CL_CHECK(clReleaseMemObject(d));
d = nullptr;
}
if (m != nullptr) {
CL_CHECK(clReleaseMemObject(m));
m = nullptr;
}
// Currently, q_img and d_img are only initialized when SMALL_ALLOC is
// enabled. They point to the images in ggml_backend_opencl_buffer_context.
// So, there is no need to release them here.
// TODO: initialize them for non SMALL_PATH path, or remove them.
q_img = nullptr;
d_img = nullptr;
m_img = nullptr;
size_q = 0;
size_d = 0;
size_m = 0;
}
};
struct ggml_tensor_extra_cl_mxfp4 {
// Quantized values.
cl_mem q = nullptr;
@ -3399,8 +3525,9 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return true;
} else if (op->src[0]->type == GGML_TYPE_F32) {
return op->src[1]->type == GGML_TYPE_F32;
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
op->src[0]->type == GGML_TYPE_Q4_K ||
} else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_Q4_1 ||
op->src[0]->type == GGML_TYPE_MXFP4 ||
op->src[0]->type == GGML_TYPE_Q4_K ||
op->src[0]->type == GGML_TYPE_Q6_K) {
return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
} else if (op->src[0]->type == GGML_TYPE_Q8_0) {
@ -3629,6 +3756,21 @@ struct ggml_backend_opencl_buffer_context {
return extra;
}
ggml_tensor_extra_cl_q4_1 * ggml_opencl_alloc_temp_tensor_extra_q4_1() {
ggml_tensor_extra_cl_q4_1 * extra;
if (temp_tensor_extras_q4_1.empty()) {
extra = new ggml_tensor_extra_cl_q4_1();
} else {
extra = temp_tensor_extras_q4_1.back();
temp_tensor_extras_q4_1.pop_back();
}
temp_tensor_extras_q4_1_in_use.push_back(extra);
extra->reset();
return extra;
}
ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
ggml_tensor_extra_cl_mxfp4 * extra;
if (temp_tensor_extras_mxfp4.empty()) {
@ -3685,6 +3827,11 @@ struct ggml_backend_opencl_buffer_context {
}
temp_tensor_extras_q4_0_in_use.clear();
for (ggml_tensor_extra_cl_q4_1 * e : temp_tensor_extras_q4_1_in_use) {
temp_tensor_extras_q4_1.push_back(e);
}
temp_tensor_extras_q4_1_in_use.clear();
for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
temp_tensor_extras_mxfp4.push_back(e);
}
@ -3710,6 +3857,8 @@ struct ggml_backend_opencl_buffer_context {
std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
std::vector<ggml_tensor_extra_cl_q4_1 *> temp_tensor_extras_q4_1;
std::vector<ggml_tensor_extra_cl_q4_1 *> temp_tensor_extras_q4_1_in_use;
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
@ -4079,6 +4228,75 @@ static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer,
return;
}
if (tensor->type == GGML_TYPE_Q4_1) {
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
// Allocate the new extra and create aliases from the original.
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
ggml_tensor_extra_cl_q4_1 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_1();
size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
size_t size_m = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
GGML_ASSERT(size_d + size_m + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
CL_CHECK(clEnqueueWriteBuffer(
queue, data_device, CL_TRUE, 0,
ggml_nbytes(tensor), data, 0, NULL, NULL));
cl_buffer_region region;
// The original tensor memory is divided into scales and quants, i.e.,
// we first store scales, mins, then quants.
// Create subbuffer for scales.
region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
region.size = size_d;
extra->d = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
auto previous_origin = region.origin;
// Create subbuffer for mins.
region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
region.size = size_m;
extra->m = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
previous_origin = region.origin;
// Create subbuffer for quants.
region.origin = align_to(previous_origin + size_m, backend_ctx->alignment);
region.size = size_q;
extra->q = clCreateSubBuffer(
extra_orig->data_device, CL_MEM_READ_WRITE,
CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
CL_CHECK(err);
cl_kernel kernel = backend_ctx->kernel_convert_block_q4_1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra->m));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {64, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clReleaseMemObject(data_device));
tensor->extra = extra;
return;
}
if (tensor->type == GGML_TYPE_MXFP4) {
ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
@ -4581,7 +4799,35 @@ static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
} else if (tensor->type == GGML_TYPE_MXFP4) {
}
if (tensor->type == GGML_TYPE_Q4_1) {
ggml_tensor_extra_cl_q4_1 * extra = (ggml_tensor_extra_cl_q4_1 *)tensor->extra;
cl_int err;
cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
ggml_nbytes(tensor), NULL, &err);
CL_CHECK(err);
cl_kernel kernel = backend_ctx->kernel_restore_block_q4_1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->m));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &data_device));
size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
size_t local_work_size[] = {1, 1, 1};
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
global_work_size, local_work_size, 0, NULL, &evt));
CL_CHECK(clWaitForEvents(1, &evt));
CL_CHECK(clEnqueueReadBuffer(
queue, data_device, CL_TRUE, offset,
size, data, 0, NULL, NULL));
CL_CHECK(clReleaseMemObject(data_device));
return;
}
if (tensor->type == GGML_TYPE_MXFP4) {
ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
cl_int err;
@ -8409,6 +8655,7 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
#ifdef GGML_OPENCL_SOA_Q
ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
ggml_tensor_extra_cl_q4_1 * extra0_q4_1 = (ggml_tensor_extra_cl_q4_1 *)src0->extra;
ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
ggml_tensor_extra_cl_q6_K * extra0_q6_K = (ggml_tensor_extra_cl_q6_K *)src0->extra;
@ -8922,6 +9169,91 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
return;
}
case GGML_TYPE_Q4_0: {
if (ne11 < 32) {
break;
}
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1)) {
break;
}
kernel = backend_ctx->kernel_mul_mm_q4_0_f32_l4_lm;
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
int batch_stride_a = ne00*ne01;
int batch_stride_b = ne10*ne11;
int batch_stride_d = ne0*ne1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
return;
}
case GGML_TYPE_Q4_1: {
if (ne11 < 32) {
break;
}
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1)) {
break;
}
kernel = backend_ctx->kernel_mul_mm_q4_1_f32_l4_lm;
nth0 = 128; // calculated as (BM*BN)/(TM*TN)
int batch_stride_a = ne00*ne01;
int batch_stride_b = ne10*ne11;
int batch_stride_d = ne0*ne1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_1->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_1->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra0_q4_1->m));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_a
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10)); // stride_b
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne01)); // stride_d
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_a));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_b));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &batch_stride_d));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &r3));
// 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
size_t local_work_size[] = {(size_t)nth0, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
return;
}
case GGML_TYPE_Q8_0: {
if (ne11 < 32) {
break;
@ -9262,7 +9594,71 @@ static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, co
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
#endif // GGML_OPENCL_SOA_Q
break;
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_1: {
#ifdef GGML_OPENCL_SOA_Q
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 1;
ndst = 4;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
ndst = 4;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
kernel = backend_ctx->kernel_mul_mv_q4_1_f32_flat;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_1->q));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_1->d));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra0_q4_1->m));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &r3));
#else
if (backend_ctx->gpu_family == INTEL) {
nth0 = 16;
nth1 = 1;
ndst = 4;
} else if (backend_ctx->gpu_family == ADRENO) {
nth0 = 64;
nth1 = 1;
ndst = 4;
} else {
GGML_ASSERT(false && "TODO: Unknown GPU");
}
kernel = backend_ctx->kernel_mul_mv_q4_1_f32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
#endif // GGML_OPENCL_SOA_Q
break;
}
case GGML_TYPE_Q8_0: {
#ifdef GGML_OPENCL_SOA_Q
kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;

View File

@ -46,6 +46,15 @@ struct block_q4_0
uint8_t qs[QK4_0 / 2];
};
//------------------------------------------------------------------------------
// block_q4_1
//------------------------------------------------------------------------------
struct block_q4_1 {
half d; // delta
half m; // min
uchar qs[QK4_1 / 2]; // nibbles / quants
};
//------------------------------------------------------------------------------
// block_q6_K
//------------------------------------------------------------------------------
@ -148,6 +157,48 @@ kernel void kernel_restore_block_q4_0_noshuffle(
}
}
//------------------------------------------------------------------------------
// kernel_convert_block_q4_1
// Convert the block_q4_1 format to 2 separate arrays (AOS -> SOA).
// This kernel does not deshuffle the bits.
//------------------------------------------------------------------------------
kernel void kernel_convert_block_q4_1(
global struct block_q4_1 * src0,
global uchar * dst_q,
global half * dst_d,
global half * dst_m
) {
global struct block_q4_1 * b = (global struct block_q4_1 *) src0 + get_global_id(0);
global uchar * q = (global uchar *) dst_q + QK4_1/2*get_global_id(0);
global half * d = (global half *) dst_d + get_global_id(0);
global half * m = (global half *) dst_m + get_global_id(0);
*d = b->d;
*m = b->m;
for (int i = 0; i < QK4_1/2; ++i) {
q[i] = b->qs[i];
}
}
kernel void kernel_restore_block_q4_1(
global uchar * src_q,
global half * src_d,
global half * src_m,
global struct block_q4_1 * dst
) {
global struct block_q4_1 * b = (global struct block_q4_1 *) dst + get_global_id(0);
global uchar * q = (global uchar *) src_q + QK4_1/2*get_global_id(0);
global half * d = (global half *) src_d + get_global_id(0);
global half * m = (global half *) src_m + get_global_id(0);
b->d = *d;
b->m = *m;
for (int i = 0; i < QK4_1/2; ++i) {
b->qs[i] = q[i];
}
}
//------------------------------------------------------------------------------
// block_mxfp4
//------------------------------------------------------------------------------

View File

@ -0,0 +1,163 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define LOAD_VEC_A 8
#define LOAD_VEC_B 4
#define BM 64
#define BN 64
#define BK 32
#define TM 4
#define TN 8
kernel void kernel_mul_mm_q4_0_f32_l4_lm(
global uchar4 * src0_q,
global half * src0_d,
global float4 * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne11,
int ne12,
int stride_a,
int stride_b,
int stride_d,
int batch_stride_a,
int batch_stride_b,
int batch_stride_d,
int r2,
int r3
) {
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float *)((global char*)dst + offsetd);
local float buf_a[BM * BK];
local float buf_b[BN * BK];
const int batch_idx = get_global_id(2);
const int i13 = batch_idx / ne12;
const int i12 = batch_idx % ne12;
const int i03 = i13 / r3;
const int i02 = i12 / r2;
const int batch_idx_a = i03 * ne02 + i02;
const int ir = get_group_id(0);
const int ic = get_group_id(1);
const int tid = get_local_id(0);
const int th_r = tid % (BM / TM);
const int th_c = tid / (BM / TM);
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
float sums[TM * TN];
float cache_a[TM];
float cache_b[TN];
for (int i = 0; i < TM * TN; i++) {
sums[i] = 0.0f;
}
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
if (ir*BM + loadc_a + l < ne01) {
int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
int ib = idx / 4;
int iqs = idx % 4;
float d = (float)src0_d[ib];
global uchar4 * qs = src0_q + ib*4 + iqs;
uchar4 q = *qs;
float4 v1 = (convert_float4((uchar4)((q.s0 )&0x0F, (q.s1 )&0x0F, (q.s2 )&0x0F, (q.s3 )&0x0F)) - 8.0f)*d;
float4 v2 = (convert_float4((uchar4)((q.s0>>4)&0x0F, (q.s1>>4)&0x0F, (q.s2>>4)&0x0F, (q.s3>>4)&0x0F)) - 8.0f)*d;
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = v1.s0;
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = v1.s1;
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = v1.s2;
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = v1.s3;
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = v2.s0;
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = v2.s1;
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = v2.s2;
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = v2.s3;
} else {
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = 0.0f;
}
}
for (int l = 0; l < BN; l += loadstride_b) {
if (ic*BN + loadc_b + l < ne11) {
int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
} else {
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (int i = 0; i < BK; i++) {
for (int j = 0; j < TM; j++) {
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
}
for (int j = 0; j < TN; j++) {
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
}
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
const int sums_idx = cc*TM + cr;
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int dr = ir * BM + th_r * TM;
const int dc = ic * BN + th_c * TN;
const int offsets = batch_idx * batch_stride_d;
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
if (dr + cr < ne01 && dc + cc < ne11) {
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
}
}
}
}

View File

@ -0,0 +1,165 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define LOAD_VEC_A 8
#define LOAD_VEC_B 4
#define BM 64
#define BN 64
#define BK 32
#define TM 4
#define TN 8
kernel void kernel_mul_mm_q4_1_f32_l4_lm(
global uchar4 * src0_q,
global half * src0_d,
global half * src0_m,
global float4 * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne11,
int ne12,
int stride_a,
int stride_b,
int stride_d,
int batch_stride_a,
int batch_stride_b,
int batch_stride_d,
int r2,
int r3
) {
src1 = (global float4*)((global char*)src1 + offset1);
dst = (global float *)((global char*)dst + offsetd);
local float buf_a[BM * BK];
local float buf_b[BN * BK];
const int batch_idx = get_global_id(2);
const int i13 = batch_idx / ne12;
const int i12 = batch_idx % ne12;
const int i03 = i13 / r3;
const int i02 = i12 / r2;
const int batch_idx_a = i03 * ne02 + i02;
const int ir = get_group_id(0);
const int ic = get_group_id(1);
const int tid = get_local_id(0);
const int th_r = tid % (BM / TM);
const int th_c = tid / (BM / TM);
const int loadr_a = get_local_id(0) % (BK / LOAD_VEC_A);
const int loadc_a = get_local_id(0) / (BK / LOAD_VEC_A);
const int loadr_b = get_local_id(0) % (BK / LOAD_VEC_B);
const int loadc_b = get_local_id(0) / (BK / LOAD_VEC_B);
const int loadstride_a = get_local_size(0) * LOAD_VEC_A / BK;
const int loadstride_b = get_local_size(0) * LOAD_VEC_B / BK;
int pos_a = (batch_idx_a * batch_stride_a + ir * BM * stride_a) / LOAD_VEC_A;
int pos_b = (batch_idx * batch_stride_b + ic * BN * stride_b) / LOAD_VEC_B;
float sums[TM * TN];
float cache_a[TM];
float cache_b[TN];
for (int i = 0; i < TM * TN; i++) {
sums[i] = 0.0f;
}
for (int block = 0; block < ne00; block += BK) {
for (int l = 0; l < BM; l += loadstride_a) {
if (ir*BM + loadc_a + l < ne01) {
int idx = pos_a + (loadc_a + l) * stride_a / LOAD_VEC_A + loadr_a;
int ib = idx / 4;
int iqs = idx % 4;
float d = (float)src0_d[ib];
float m = (float)src0_m[ib];
global uchar4 * qs = src0_q + ib*4 + iqs;
uchar4 q = *qs;
float4 v1 = (convert_float4((uchar4)((q.s0 )&0x0F, (q.s1 )&0x0F, (q.s2 )&0x0F, (q.s3 )&0x0F)))*d + m;
float4 v2 = (convert_float4((uchar4)((q.s0>>4)&0x0F, (q.s1>>4)&0x0F, (q.s2>>4)&0x0F, (q.s3>>4)&0x0F)))*d + m;
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = v1.s0;
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = v1.s1;
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = v1.s2;
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = v1.s3;
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = v2.s0;
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = v2.s1;
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = v2.s2;
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = v2.s3;
} else {
buf_a[(loadr_a * 4 + 0) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 1) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 2) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 3) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 16) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 17) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 18) * BM + loadc_a + l] = 0.0f;
buf_a[(loadr_a * 4 + 19) * BM + loadc_a + l] = 0.0f;
}
}
for (int l = 0; l < BN; l += loadstride_b) {
if (ic*BN + loadc_b + l < ne11) {
int idx = pos_b + (loadc_b + l) * stride_b / LOAD_VEC_B + loadr_b;
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = src1[idx].s0;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = src1[idx].s1;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = src1[idx].s2;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = src1[idx].s3;
} else {
buf_b[(loadr_b * LOAD_VEC_B + 0) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 1) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 2) * BN + loadc_b + l] = 0.0f;
buf_b[(loadr_b * LOAD_VEC_B + 3) * BN + loadc_b + l] = 0.0f;
}
}
barrier(CLK_LOCAL_MEM_FENCE);
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (int i = 0; i < BK; i++) {
for (int j = 0; j < TM; j++) {
cache_a[j] = buf_a[(i) * BM + th_r * TM + j];
}
for (int j = 0; j < TN; j++) {
cache_b[j] = buf_b[(i) * BN + th_c * TN + j];
}
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
const int sums_idx = cc*TM + cr;
sums[sums_idx] = mad(cache_a[cr], cache_b[cc], sums[sums_idx]);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
}
const int dr = ir * BM + th_r * TM;
const int dc = ic * BN + th_c * TN;
const int offsets = batch_idx * batch_stride_d;
for (int cc = 0; cc < TN; cc++) {
for (int cr = 0; cr < TM; cr++) {
if (dr + cr < ne01 && dc + cc < ne11) {
dst[offsets + (dc + cc) * stride_d + dr + cr] = sums[cc * TM + cr];
}
}
}
}

View File

@ -0,0 +1,219 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK4_1 32
struct block_q4_1 {
half d; // delta
half m; // min
uchar qs[QK4_1 / 2]; // nibbles / quants
};
inline float block_q4_1_dot_y(
global const struct block_q4_1 * qb_curr,
float sumy,
float16 yl,
int il
) {
float d = qb_curr->d;
float m = qb_curr->m;
float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
global const ushort * qs = ((global const ushort *) qb_curr + 2 + il/2);
acc.s0 += yl.s0 * (qs[0] & 0x000F);
acc.s0 += yl.s1 * (qs[0] & 0x0F00);
acc.s0 += yl.s8 * (qs[0] & 0x00F0);
acc.s3 += yl.s9 * (qs[0] & 0xF000);
acc.s0 += yl.s2 * (qs[1] & 0x000F);
acc.s1 += yl.s3 * (qs[1] & 0x0F00);
acc.s2 += yl.sa * (qs[1] & 0x00F0);
acc.s3 += yl.sb * (qs[1] & 0xF000);
acc.s0 += yl.s4 * (qs[2] & 0x000F);
acc.s1 += yl.s5 * (qs[2] & 0x0F00);
acc.s2 += yl.sc * (qs[2] & 0x00F0);
acc.s3 += yl.sd * (qs[2] & 0xF000);
acc.s0 += yl.s6 * (qs[3] & 0x000F);
acc.s1 += yl.s7 * (qs[3] & 0x0F00);
acc.s2 += yl.se * (qs[3] & 0x00F0);
acc.s3 += yl.sf * (qs[3] & 0xF000);
return d * (acc.s0 + acc.s1 + acc.s2 + acc.s3) + sumy * m;
}
#undef N_DST
#undef N_SIMDGROUP
#undef N_SIMDWIDTH
#ifdef INTEL_GPU
#define N_DST 4 // each subgroup works on 4 rows
#define N_SIMDGROUP 1 // number of subgroups in a thread group
#define N_SIMDWIDTH 16 // assuming subgroup size is 16
#elif defined (ADRENO_GPU)
#define N_DST 4
#define N_SIMDGROUP 1
#define N_SIMDWIDTH 64
#endif
inline void mul_vec_q_n_f32(
global void * src0,
global float * src1,
global float * dst,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
const ulong nb = ne00/QK4_1;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = get_group_id(2);
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
int i12 = im%ne12;
int i13 = im/ne12;
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
global struct block_q4_1 * x = (global struct block_q4_1 *) src0 + offset0;
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
float16 yl;
float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
int ix = get_sub_group_local_id()/2;
int il = 8*(get_sub_group_local_id()%2);
global float * yb = y + ix * QK4_1 + il;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
float sumy = 0;
sumy += yb[0];
sumy += yb[1];
sumy += yb[2];
sumy += yb[3];
sumy += yb[4];
sumy += yb[5];
sumy += yb[6];
sumy += yb[7];
sumy += yb[16];
sumy += yb[17];
sumy += yb[18];
sumy += yb[19];
sumy += yb[20];
sumy += yb[21];
sumy += yb[22];
sumy += yb[23];
yl.s0 = yb[0];
yl.s1 = yb[1]/256.f;
yl.s2 = yb[2];
yl.s3 = yb[3]/256.f;
yl.s4 = yb[4];
yl.s5 = yb[5]/256.f;
yl.s6 = yb[6];
yl.s7 = yb[7]/256.f;
yl.s8 = yb[16]/16.f;
yl.s9 = yb[17]/4096.f;
yl.sa = yb[18]/16.f;
yl.sb = yb[19]/4096.f;
yl.sc = yb[20]/16.f;
yl.sd = yb[21]/4096.f;
yl.se = yb[22]/16.f;
yl.sf = yb[23]/4096.f;
sumf.s0 += block_q4_1_dot_y(x+ib+0*nb, sumy, yl, il);
sumf.s1 += block_q4_1_dot_y(x+ib+1*nb, sumy, yl, il);
sumf.s2 += block_q4_1_dot_y(x+ib+2*nb, sumy, yl, il);
sumf.s3 += block_q4_1_dot_y(x+ib+3*nb, sumy, yl, il);
yb += QK4_1 * (N_SIMDWIDTH/2);
}
float4 tot = (float4)(
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
);
if (get_sub_group_local_id() == 0) {
if (first_row + 0 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
}
if (first_row + 1 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
}
if (first_row + 2 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
}
if (first_row + 3 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_q4_1_f32(
global void * src0,
ulong offset0,
global float * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
src0 = (global void*)((global char*)src0 + offset0);
src1 = (global float*)((global char*)src1 + offset1);
dst = (global float*)((global char*)dst + offsetd);
mul_vec_q_n_f32(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
}

View File

@ -0,0 +1,229 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_subgroups
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#endif
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
#define QK4_1 32
struct block_q4_1 {
half d; // delta
half m; // min
uchar qs[QK4_1 / 2]; // nibbles / quants
};
inline float block_q4_1_dot_y_flat(
global const uchar * x,
global const half * dh,
global const half * mh,
float sumy,
float16 yl,
int il
) {
float d = *dh;
float m = *mh;
global const ushort * qs = ((global const ushort *) x + il/2);
float4 acc = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
acc.s0 += yl.s0 * (qs[0] & 0x000F);
acc.s0 += yl.s1 * (qs[0] & 0x0F00);
acc.s0 += yl.s8 * (qs[0] & 0x00F0);
acc.s3 += yl.s9 * (qs[0] & 0xF000);
acc.s0 += yl.s2 * (qs[1] & 0x000F);
acc.s1 += yl.s3 * (qs[1] & 0x0F00);
acc.s2 += yl.sa * (qs[1] & 0x00F0);
acc.s3 += yl.sb * (qs[1] & 0xF000);
acc.s0 += yl.s4 * (qs[2] & 0x000F);
acc.s1 += yl.s5 * (qs[2] & 0x0F00);
acc.s2 += yl.sc * (qs[2] & 0x00F0);
acc.s3 += yl.sd * (qs[2] & 0xF000);
acc.s0 += yl.s6 * (qs[3] & 0x000F);
acc.s1 += yl.s7 * (qs[3] & 0x0F00);
acc.s2 += yl.se * (qs[3] & 0x00F0);
acc.s3 += yl.sf * (qs[3] & 0xF000);
return d * (acc.s0 + acc.s1 + acc.s2 + acc.s3) + sumy * m;
}
#undef N_DST
#undef N_SIMDGROUP
#undef N_SIMDWIDTH
#ifdef INTEL_GPU
#define N_DST 4 // each subgroup works on 4 rows
#define N_SIMDGROUP 1 // number of subgroups in a thread group
#define N_SIMDWIDTH 16 // assuming subgroup size is 16
#elif defined (ADRENO_GPU)
#define N_DST 4
#define N_SIMDGROUP 1
#define N_SIMDWIDTH 64
#endif
inline void mul_vec_q_n_f32_flat(
global void * src0_q,
global void * src0_d,
global void * src0_m,
global float * src1,
global float * dst,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
const ulong nb = ne00/QK4_1;
int r0 = get_group_id(0);
int r1 = get_group_id(1);
int im = get_group_id(2);
int first_row = (r0 * N_SIMDGROUP + get_sub_group_id()) * N_DST;
int i12 = im%ne12;
int i13 = im/ne12;
ulong offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
// The number of scales/mins is the same as the number of blocks.
ulong offset0_dm = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02));
// Each block contains QK4_1/2 uchars, hence offset for qs is as follows.
ulong offset0_q = (first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02)) * QK4_1/2;
global uchar * x = (global uchar *) src0_q + offset0_q;
global half * d = (global half *) src0_d + offset0_dm;
global half * m = (global half *) src0_m + offset0_dm;
global float * y = (global float *) src1 + r1*ne10 + im*ne00*ne1;
float16 yl;
float4 sumf = (float4)(0.f, 0.f, 0.f, 0.f);
int ix = get_sub_group_local_id()/2;
int il = 8*(get_sub_group_local_id()%2);
global float * yb = y + ix * QK4_1 + il;
for (int ib = ix; ib < nb; ib += N_SIMDWIDTH/2) {
float sumy = 0;
sumy += yb[0];
sumy += yb[1];
sumy += yb[2];
sumy += yb[3];
sumy += yb[4];
sumy += yb[5];
sumy += yb[6];
sumy += yb[7];
sumy += yb[16];
sumy += yb[17];
sumy += yb[18];
sumy += yb[19];
sumy += yb[20];
sumy += yb[21];
sumy += yb[22];
sumy += yb[23];
yl.s0 = yb[0];
yl.s1 = yb[1]/256.f;
yl.s2 = yb[2];
yl.s3 = yb[3]/256.f;
yl.s4 = yb[4];
yl.s5 = yb[5]/256.f;
yl.s6 = yb[6];
yl.s7 = yb[7]/256.f;
yl.s8 = yb[16]/16.f;
yl.s9 = yb[17]/4096.f;
yl.sa = yb[18]/16.f;
yl.sb = yb[19]/4096.f;
yl.sc = yb[20]/16.f;
yl.sd = yb[21]/4096.f;
yl.se = yb[22]/16.f;
yl.sf = yb[23]/4096.f;
sumf.s0 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 0*nb*QK4_1/2, d + ib + 0*nb, m + ib + 0*nb, sumy, yl, il);
sumf.s1 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 1*nb*QK4_1/2, d + ib + 1*nb, m + ib + 1*nb, sumy, yl, il);
sumf.s2 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 2*nb*QK4_1/2, d + ib + 2*nb, m + ib + 2*nb, sumy, yl, il);
sumf.s3 += block_q4_1_dot_y_flat(x + ib*QK4_1/2 + 3*nb*QK4_1/2, d + ib + 3*nb, m + ib + 3*nb, sumy, yl, il);
yb += QK4_1 * (N_SIMDWIDTH/2);
}
float4 tot = (float4)(
sub_group_reduce_add(sumf.s0), sub_group_reduce_add(sumf.s1),
sub_group_reduce_add(sumf.s2), sub_group_reduce_add(sumf.s3)
);
if (get_sub_group_local_id() == 0) {
if (first_row + 0 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 0] = tot.s0;
}
if (first_row + 1 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 1] = tot.s1;
}
if (first_row + 2 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 2] = tot.s2;
}
if (first_row + 3 < ne01) {
dst[r1*ne0 + im*ne0*ne1 + first_row + 3] = tot.s3;
}
}
}
#ifdef INTEL_GPU
REQD_SUBGROUP_SIZE_16
#elif defined (ADRENO_GPU)
REQD_SUBGROUP_SIZE_64
#endif
kernel void kernel_mul_mv_q4_1_f32_flat(
global void * src0_q,
global void * src0_d,
global void * src0_m,
global float * src1,
ulong offset1,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne10,
int ne12,
int ne0,
int ne1,
int r2,
int r3
) {
src1 = (global float*)((global char*)src1 + offset1);
dst = (global float*)((global char*)dst + offsetd);
mul_vec_q_n_f32_flat(src0_q, src0_d, src0_m, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3);
}

View File

@ -8422,6 +8422,8 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co
const uint32_t acctype = f32acc ? 4 : 2;
const uint32_t f16vec4 = 8;
const uint32_t tmpsh = (Bc / MatBc) * sizeof(float);
const uint32_t qstride = hsk_pad / 4 + 2;
const uint32_t Qf = Br * qstride * f16vec4;
@ -8438,7 +8440,7 @@ static bool ggml_vk_flash_attn_coopmat_shmem_support(const vk_device& device, co
const uint32_t slope = Br * acctype;
const uint32_t total_size = Qf + Psh + sfsh + ksh + slope;
const uint32_t total_size = tmpsh + Qf + Psh + sfsh + ksh + slope;
const bool supported = total_size <= device->properties.limits.maxComputeSharedMemorySize;
VK_LOG_DEBUG("ggml_vk_flash_attn_coopmat_shmem_support(HSK=" << hsk << ", HSV=" << hsv << ", f32acc=" << f32acc << ", kv_type=" << kv_type << ", total_size=" << total_size << ", supported=" << supported);
@ -9801,16 +9803,16 @@ static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
int offset = dst->op_params[3] / 4; // offset in bytes
int nb1 = dst->op_params[0] / src0_type_size; // 4 bytes of float32
int nb2 = dst->op_params[1] / src0_type_size; // 4 bytes of float32
int nb3 = dst->op_params[2] / src0_type_size; // 4 bytes of float32
int offset = dst->op_params[3] / src0_type_size; // offset in bytes
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, nullptr, dst, GGML_OP_ACC, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)nb3,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)nb3,
0,
0.0f, 0.0f, offset,
});

View File

@ -13,17 +13,18 @@ void main() {
const uint offset = p.param3;
const uint src1_i = idx - offset;
const uint oz = src1_i / p.nb02;
const uint oy = (src1_i - (oz * p.nb02)) / p.nb01;
const uint ox = src1_i % p.nb01;
const uint i3 = src1_i / p.nb03;
const uint rem2 = src1_i - i3 * p.nb03;
const uint i2 = rem2 / p.nb02;
const uint rem1 = rem2 - i2 * p.nb02;
const uint i1 = rem1 / p.nb01;
const uint i0 = rem1 % p.nb01;
uint i00, i01, i02, i03;
get_indices(idx, i00, i01, i02, i03);
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]) + FLOAT_TYPE(data_b[get_boffset() + ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
if (i0 < p.ne10 && i1 < p.ne11 && i2 < p.ne12 && i3 < p.ne13) {
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]) + FLOAT_TYPE(data_b[get_boffset() + src1_idx(i0, i1, i2, i3)]));
} else {
data_d[get_doffset() + dst_idx(i00, i01, i02, i03)] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + src0_idx(i00, i01, i02, i03)]));
data_d[get_doffset() + idx] = D_TYPE(FLOAT_TYPE(data_a[get_aoffset() + idx]));
}
}

View File

@ -130,6 +130,7 @@ void main() {
if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) {
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
float max_mask = NEG_FLT_MAX_OVER_2;
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
uint32_t c = (idx + tid) % Bc;
uint32_t r = (idx + tid) / Bc;
@ -137,12 +138,25 @@ void main() {
if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) {
float m = float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]);
masksh[c][r] = m;
max_mask = max(max_mask, m);
} else {
masksh[c][r] = float(0);
}
}
}
// skip the block if the mask is entirely -inf
bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2);
barrier();
if (gl_SubgroupInvocationID == 0) {
tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f;
}
barrier();
[[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) {
max_mask = max(max_mask, tmpsh[s]);
}
if (max_mask <= NEG_FLT_MAX_OVER_2) {
continue;
}
}
float Sf[Br][cols_per_thread];
@ -260,6 +274,9 @@ void main() {
barrier();
}
// prevent race on tmpsh
barrier();
// reduce across threads
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {

View File

@ -42,6 +42,8 @@ D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TY
return elem;
}
shared float tmpsh[row_split];
const uint32_t qstride = HSK_pad / 4 + 2; // in units of f16vec4
shared f16vec4 Qf[Br * qstride];
@ -213,6 +215,19 @@ void main() {
}
}
}
// skip the block if the mask is entirely -inf
bool all_less = subgroupAll(max_mask <= NEG_FLT_MAX_OVER_2);
barrier();
if (gl_SubgroupInvocationID == 0) {
tmpsh[gl_SubgroupID] = all_less ? NEG_FLT_MAX_OVER_2 : 0.0f;
}
barrier();
[[unroll]] for (uint s = 0; s < gl_NumSubgroups; ++s) {
max_mask = max(max_mask, tmpsh[s]);
}
if (max_mask <= NEG_FLT_MAX_OVER_2) {
continue;
}
}
}

View File

@ -176,7 +176,14 @@ void main() {
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
tensorLayoutM = setTensorLayoutClampValueNV(tensorLayoutM, 0xfc00); // -inf in float16_t
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mvmax;
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
// skip the block if the mask is entirely -inf
coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16);
if (mvmax[0] <= NEG_FLT_MAX_OVER_2) {
continue;
}
} else {
tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
// Don't clamp against nem1 when GQA is enabled
@ -184,7 +191,14 @@ void main() {
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV);
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mvmax;
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
// skip the block if the mask is entirely -inf
coopMatReduceNV(mvmax, mv, gl_CooperativeMatrixReduceRowAndColumnNV, maxReduceFp16);
if (mvmax[0] <= NEG_FLT_MAX_OVER_2) {
continue;
}
}
}
}

View File

@ -181,6 +181,11 @@ class Keys:
SLIDING_WINDOW_PATTERN = "{arch}.attention.sliding_window_pattern"
TEMPERATURE_SCALE = "{arch}.attention.temperature_scale"
class Indexer:
HEAD_COUNT = "{arch}.attention.indexer.head_count"
KEY_LENGTH = "{arch}.attention.indexer.key_length"
TOP_K = "{arch}.attention.indexer.top_k"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
@ -425,6 +430,7 @@ class MODEL_ARCH(IntEnum):
CHATGLM = auto()
GLM4 = auto()
GLM4_MOE = auto()
GLM_DSA = auto()
BITNET = auto()
T5 = auto()
T5ENCODER = auto()
@ -670,6 +676,10 @@ class MODEL_TENSOR(IntEnum):
VISEXP_GATE = auto()
VISEXP_DOWN = auto()
VISEXP_UP = auto()
INDEXER_K_NORM = auto()
INDEXER_PROJ = auto()
INDEXER_ATTN_K = auto()
INDEXER_ATTN_Q_B = auto()
# vision
V_MMPROJ = auto()
V_MMPROJ_FC = auto()
@ -858,6 +868,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.CHATGLM: "chatglm",
MODEL_ARCH.GLM4: "glm4",
MODEL_ARCH.GLM4_MOE: "glm4moe",
MODEL_ARCH.GLM_DSA: "glm-dsa",
MODEL_ARCH.BITNET: "bitnet",
MODEL_ARCH.T5: "t5",
MODEL_ARCH.T5ENCODER: "t5encoder",
@ -1101,6 +1112,10 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.VISEXP_GATE: "blk.{bid}.vis_gate",
MODEL_TENSOR.VISEXP_DOWN: "blk.{bid}.vis_down",
MODEL_TENSOR.VISEXP_UP: "blk.{bid}.vis_up",
MODEL_TENSOR.INDEXER_K_NORM: "blk.{bid}.indexer.k_norm",
MODEL_TENSOR.INDEXER_PROJ: "blk.{bid}.indexer.proj",
MODEL_TENSOR.INDEXER_ATTN_K: "blk.{bid}.indexer.attn_k",
MODEL_TENSOR.INDEXER_ATTN_Q_B: "blk.{bid}.indexer.attn_q_b",
# vision
MODEL_TENSOR.V_MMPROJ: "mm.{bid}",
MODEL_TENSOR.V_MMPROJ_FC: "mm.model.fc",
@ -2677,6 +2692,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
],
MODEL_ARCH.GLM_DSA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_K_B,
MODEL_TENSOR.ATTN_V_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.INDEXER_K_NORM,
MODEL_TENSOR.INDEXER_PROJ,
MODEL_TENSOR.INDEXER_ATTN_K,
MODEL_TENSOR.INDEXER_ATTN_Q_B,
# NextN/MTP tensors - preserved but unused
MODEL_TENSOR.NEXTN_EH_PROJ,
MODEL_TENSOR.NEXTN_EMBED_TOKENS,
MODEL_TENSOR.NEXTN_ENORM,
MODEL_TENSOR.NEXTN_HNORM,
MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD,
MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM,
],
MODEL_ARCH.BITNET: [
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,

View File

@ -771,6 +771,15 @@ class GGUFWriter:
def add_value_length_mla(self, length: int) -> None:
self.add_uint32(Keys.Attention.VALUE_LENGTH_MLA.format(arch=self.arch), length)
def add_indexer_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.Indexer.HEAD_COUNT.format(arch=self.arch), count)
def add_indexer_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.Indexer.KEY_LENGTH.format(arch=self.arch), length)
def add_indexer_top_k(self, top_k: int) -> None:
self.add_uint32(Keys.Attention.Indexer.TOP_K.format(arch=self.arch), top_k)
def add_max_alibi_bias(self, bias: float) -> None:
self.add_float32(Keys.Attention.MAX_ALIBI_BIAS.format(arch=self.arch), bias)

View File

@ -1206,6 +1206,22 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
),
MODEL_TENSOR.INDEXER_K_NORM: (
"model.layers.{bid}.self_attn.indexer.k_norm", # DSA
),
MODEL_TENSOR.INDEXER_PROJ: (
"model.layers.{bid}.self_attn.indexer.weights_proj", # DSA
),
MODEL_TENSOR.INDEXER_ATTN_K: (
"model.layers.{bid}.self_attn.indexer.wk", # DSA
),
MODEL_TENSOR.INDEXER_ATTN_Q_B: (
"model.layers.{bid}.self_attn.indexer.wq_b", # DSA
),
############################################################################
# TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
MODEL_TENSOR.ENC_OUTPUT_NORM: (

View File

@ -1150,9 +1150,9 @@ extern "C" {
//
/// Apply chat template. Inspired by hf apply_chat_template() on python.
/// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
///
/// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
/// @param tmpl A Jinja template to use for this chat. If this is nullptr, the models default chat template will be used instead.
/// @param tmpl A Jinja template to use for this chat.
/// @param chat Pointer to a list of multiple llama_chat_message
/// @param n_msg Number of llama_chat_message in this chat
/// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.

View File

@ -30,12 +30,18 @@ fi
PR=$1
[[ "$PR" =~ ^[0-9]+$ ]] || { echo "error: PR number must be numeric"; exit 1; }
url_origin=$(git config --get remote.upstream.url 2>/dev/null) || \
url_origin=$(git config --get remote.origin.url) || {
echo "error: no remote named 'origin' in this repository"
echo "error: no remote named 'upstream' or 'origin' in this repository"
exit 1
}
org_repo=$(echo $url_origin | cut -d/ -f4-)
# Extract org/repo from either https or ssh format.
if [[ $url_origin =~ ^git@ ]]; then
org_repo=$(echo $url_origin | cut -d: -f2)
else
org_repo=$(echo $url_origin | cut -d/ -f4-)
fi
org_repo=${org_repo%.git}
echo "org/repo: $org_repo"

View File

@ -2,6 +2,8 @@
import urllib.request
HTTPLIB_VERSION = "f80864ca031932351abef49b74097c67f14719c6"
vendor = {
"https://github.com/nlohmann/json/releases/latest/download/json.hpp": "vendor/nlohmann/json.hpp",
"https://github.com/nlohmann/json/releases/latest/download/json_fwd.hpp": "vendor/nlohmann/json_fwd.hpp",
@ -12,8 +14,8 @@ vendor = {
# "https://github.com/mackron/miniaudio/raw/refs/tags/0.11.23/miniaudio.h": "vendor/miniaudio/miniaudio.h",
"https://github.com/mackron/miniaudio/raw/669ed3e844524fcd883231b13095baee9f6de304/miniaudio.h": "vendor/miniaudio/miniaudio.h",
"https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/httplib.h": "vendor/cpp-httplib/httplib.h",
"https://raw.githubusercontent.com/yhirose/cpp-httplib/refs/tags/v0.30.2/LICENSE": "vendor/cpp-httplib/LICENSE",
f"https://raw.githubusercontent.com/yhirose/cpp-httplib/{HTTPLIB_VERSION}/httplib.h": "vendor/cpp-httplib/httplib.h",
f"https://raw.githubusercontent.com/yhirose/cpp-httplib/{HTTPLIB_VERSION}/LICENSE": "vendor/cpp-httplib/LICENSE",
"https://raw.githubusercontent.com/sheredom/subprocess.h/b49c56e9fe214488493021017bf3954b91c7c1f5/subprocess.h": "vendor/sheredom/subprocess.h",
}

View File

@ -74,6 +74,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_CHATGLM, "chatglm" },
{ LLM_ARCH_GLM4, "glm4" },
{ LLM_ARCH_GLM4_MOE, "glm4moe" },
{ LLM_ARCH_GLM_DSA, "glm-dsa" },
{ LLM_ARCH_BITNET, "bitnet" },
{ LLM_ARCH_T5, "t5" },
{ LLM_ARCH_T5ENCODER, "t5encoder" },
@ -225,6 +226,9 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, "%s.attention.indexer.head_count" },
{ LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, "%s.attention.indexer.key_length" },
{ LLM_KV_ATTENTION_INDEXER_TOP_K, "%s.attention.indexer.top_k" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@ -516,6 +520,10 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_VISEXP_FFN_GATE, "blk.%d.vis_gate" },
{ LLM_TENSOR_VISEXP_FFN_DOWN, "blk.%d.vis_down" },
{ LLM_TENSOR_VISEXP_FFN_UP, "blk.%d.vis_up" },
{ LLM_TENSOR_INDEXER_K_NORM, "blk.%d.indexer.k_norm" },
{ LLM_TENSOR_INDEXER_PROJ, "blk.%d.indexer.proj" },
{ LLM_TENSOR_INDEXER_ATTN_K, "blk.%d.indexer.attn_k" },
{ LLM_TENSOR_INDEXER_ATTN_Q_B, "blk.%d.indexer.attn_q_b" },
};
static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
@ -1657,6 +1665,46 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
case LLM_ARCH_GLM_DSA:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
LLM_TENSOR_INDEXER_K_NORM,
LLM_TENSOR_INDEXER_PROJ,
LLM_TENSOR_INDEXER_ATTN_K,
LLM_TENSOR_INDEXER_ATTN_Q_B,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,
LLM_TENSOR_NEXTN_HNORM,
LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD,
LLM_TENSOR_NEXTN_SHARED_HEAD_NORM,
};
case LLM_ARCH_BITNET:
return {
LLM_TENSOR_TOKEN_EMBD,
@ -2643,6 +2691,10 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_VISEXP_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_K_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_INDEXER_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_INDEXER_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}},

View File

@ -78,6 +78,7 @@ enum llm_arch {
LLM_ARCH_CHATGLM,
LLM_ARCH_GLM4,
LLM_ARCH_GLM4_MOE,
LLM_ARCH_GLM_DSA,
LLM_ARCH_BITNET,
LLM_ARCH_T5,
LLM_ARCH_T5ENCODER,
@ -229,6 +230,9 @@ enum llm_kv {
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ATTENTION_INDEXER_HEAD_COUNT,
LLM_KV_ATTENTION_INDEXER_KEY_LENGTH,
LLM_KV_ATTENTION_INDEXER_TOP_K,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@ -517,6 +521,10 @@ enum llm_tensor {
LLM_TENSOR_VISEXP_FFN_GATE,
LLM_TENSOR_VISEXP_FFN_DOWN,
LLM_TENSOR_VISEXP_FFN_UP,
LLM_TENSOR_INDEXER_K_NORM,
LLM_TENSOR_INDEXER_PROJ,
LLM_TENSOR_INDEXER_ATTN_K,
LLM_TENSOR_INDEXER_ATTN_Q_B,
LLM_TENSOR_NEXTN_EH_PROJ,
LLM_TENSOR_NEXTN_EMBED_TOKENS,
LLM_TENSOR_NEXTN_ENORM,

View File

@ -193,6 +193,11 @@ struct llama_hparams {
std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
// DSA (deepseek sparse attention)
uint32_t indexer_n_head = 0;
uint32_t indexer_head_size = 0;
uint32_t indexer_top_k = 0;
// qwen3vl deepstack
uint32_t n_deepstack_layers = 0;

View File

@ -137,6 +137,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_300B_A47B: return "300B.A47B";
case LLM_TYPE_310B_A15B: return "310B.A15B";
case LLM_TYPE_355B_A32B: return "355B.A32B";
case LLM_TYPE_744B_A40B: return "744B.A40B";
case LLM_TYPE_E2B: return "E2B";
case LLM_TYPE_E4B: return "E4B";
default: return "?B";
@ -1822,6 +1823,50 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_GLM_DSA:
{
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, false);
// MoE parameters
ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
// deepseek MLA parameters
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl, false);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
// DSA parameters
ml.get_key(LLM_KV_ATTENTION_INDEXER_HEAD_COUNT, hparams.indexer_n_head);
ml.get_key(LLM_KV_ATTENTION_INDEXER_KEY_LENGTH, hparams.indexer_head_size);
ml.get_key(LLM_KV_ATTENTION_INDEXER_TOP_K, hparams.indexer_top_k);
// Expert gating function (GLM-4.5 uses sigmoid)
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
}
// NextN/MTP parameters
ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
// TODO: when MTP is implemented, this should probably be updated if needed
hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
switch (hparams.n_layer) {
case 79: type = LLM_TYPE_744B_A40B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_BITNET:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -5492,6 +5537,108 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
break;
case LLM_ARCH_GLM_DSA:
{
const bool is_mla = hparams.is_mla();
if (!is_mla) {
throw std::runtime_error("GLM_DSA architecture requires MLA");
}
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_ff_exp = hparams.n_ff_exp;
const int64_t n_expert_shared = hparams.n_expert_shared;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
// try to load output.weight, if not found, use token_embd (tied embeddings)
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
if (!output) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
int flags = 0;
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
// skip all tensors in the NextN layers
// TODO @ngxson : TENSOR_NOT_REQUIRED was a hack, need to remove it later
flags |= TENSOR_SKIP | TENSOR_NOT_REQUIRED;
}
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, flags);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, flags);
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, flags);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, flags);
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, flags);
// note: only old legacy GGUF files will have the unsplit wkv_b tensor in
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, flags);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, flags);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, flags);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
// DSA indexer
layer.indexer_k_norm = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "weight", i), {hparams.indexer_head_size}, flags);
layer.indexer_k_norm_b = create_tensor(tn(LLM_TENSOR_INDEXER_K_NORM, "bias", i), {hparams.indexer_head_size}, flags);
layer.indexer_proj = create_tensor(tn(LLM_TENSOR_INDEXER_PROJ, "weight", i), {n_embd, hparams.indexer_n_head}, flags);
layer.indexer_attn_k = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_K, "weight", i), {n_embd, hparams.indexer_head_size}, flags);
layer.indexer_attn_q_b = create_tensor(tn(LLM_TENSOR_INDEXER_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.indexer_n_head * hparams.indexer_head_size}, flags);
if (i < (int) hparams.n_layer_dense_lead) {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
} else {
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0");
}
if (n_expert_used == 0) {
throw std::runtime_error("n_expert_used must be > 0");
}
// MoE branch
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, flags);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, flags);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, flags);
}
// NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
// Optional tensors
layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
}
}
} break;
case LLM_ARCH_NEMOTRON:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -7765,7 +7912,7 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
}
if (arch == LLM_ARCH_DEEPSEEK2) {
if (arch == LLM_ARCH_DEEPSEEK2 || arch == LLM_ARCH_GLM_DSA) {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
@ -7965,7 +8112,6 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
cparams.n_seq_max,
nullptr);
} else if (llm_arch_is_hybrid(arch)) {
// The main difference between hybrid architectures is the
// layer filters, so pick the right one here
llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
@ -7990,7 +8136,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
/* attn_type_v */ params.type_v,
/* attn_v_trans */ !cparams.flash_attn,
/* attn_swa_full */ params.swa_full,
/* attn_kv_size */ cparams.n_ctx,
/* attn_kv_size */ cparams.n_ctx_seq,
/* attn_n_ubatch */ cparams.n_ubatch,
/* attn_n_pad */ 1,
/* recurrent_type_r */ GGML_TYPE_F32,
@ -8007,7 +8153,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
/* attn_type_k */ params.type_k,
/* attn_type_v */ params.type_v,
/* attn_v_trans */ !cparams.flash_attn,
/* attn_kv_size */ cparams.n_ctx,
/* attn_kv_size */ cparams.n_ctx_seq,
/* attn_n_pad */ 1,
/* attn_n_swa */ hparams.n_swa,
/* attn_swa_type */ hparams.swa_type,
@ -8338,6 +8484,7 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
llm = std::make_unique<llm_build_deepseek>(*this, params);
} break;
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_GLM_DSA:
{
llm = std::make_unique<llm_build_deepseek2>(*this, params);
} break;
@ -8739,6 +8886,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_MISTRAL3:
case LLM_ARCH_LLAMA_EMBED:
case LLM_ARCH_MAINCODER:
case LLM_ARCH_GLM_DSA:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2

View File

@ -130,6 +130,7 @@ enum llm_type {
LLM_TYPE_300B_A47B, // Ernie MoE big
LLM_TYPE_310B_A15B, // /MiMo-V2-Flash
LLM_TYPE_355B_A32B, // GLM-4.5
LLM_TYPE_744B_A40B, // GLM-5
LLM_TYPE_E2B,
LLM_TYPE_E4B,
};
@ -429,6 +430,13 @@ struct llama_layer {
struct ggml_tensor * ssm_g_b = nullptr;
struct ggml_tensor * ssm_o_norm = nullptr;
// DSA (deepseek sparse attention)
struct ggml_tensor * indexer_k_norm = nullptr;
struct ggml_tensor * indexer_k_norm_b = nullptr;
struct ggml_tensor * indexer_proj = nullptr;
struct ggml_tensor * indexer_attn_k = nullptr;
struct ggml_tensor * indexer_attn_q_b = nullptr; // note: for lora a/b, not bias
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View File

@ -45,7 +45,8 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
int effective_n_layers = hparams.n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < effective_n_layers; ++il) {
ggml_tensor * inpSA = inpL;
// norm
@ -188,7 +189,7 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
}
}
if (il == n_layer - 1 && inp_out_ids) {
if (il == effective_n_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}

View File

@ -41,8 +41,11 @@ static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_t
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv_x,
ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs,
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all))));
ggml_view_3d(ctx0, conv_states_all,
d_conv - 1, d_inner, n_seqs,
(d_conv - 1) * ggml_element_size(conv_states_all), // nb1: contiguous within one channel's conv taps
n_embd_r_total * ggml_element_size(conv_states_all), // nb2: stride between sequences (skip over K,V states)
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all)))); // offset to first seq's Q/K/V state
// Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner]
// GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv]
// vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step]

View File

@ -1,16 +1,10 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "unicode.h"
#include "unicode-data.h"
#include <algorithm>
#include <cassert>
#include <codecvt>
#include <cstddef>
#include <cstdint>
#include <locale>
#include <map>
#include <regex>
#include <stdexcept>
@ -199,27 +193,6 @@ static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
return map;
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
#if defined(__clang__)
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
return conv.from_bytes(s);
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
std::vector<std::string> bpe_encoded_words;
for (const auto & word : bpe_words) {
@ -1033,10 +1006,10 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
break;
}
}
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
if (use_collapsed) {
// sanity-check that the original regex does not contain any non-ASCII characters
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
for (size_t i = 0; i < cpts_regex.size(); ++i) {
if (cpts_regex[i] >= 128) {
throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
@ -1092,7 +1065,7 @@ std::vector<std::string> unicode_regex_split(const std::string & text, const std
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
std::wstring wregex_expr(cpts_regex.begin(), cpts_regex.end());
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());

View File

@ -2786,9 +2786,10 @@ struct test_set : public test_case {
const ggml_type type_dst;
const std::array<int64_t, 4> ne;
const int dim;
const bool inplace;
std::string vars() override {
return VARS_TO_STR4(type_src, type_dst, ne, dim);
return VARS_TO_STR5(type_src, type_dst, ne, dim, inplace);
}
size_t op_size(ggml_tensor * t) override {
@ -2796,8 +2797,8 @@ struct test_set : public test_case {
}
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1, bool inplace = false)
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim), inplace(inplace) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
@ -2808,7 +2809,7 @@ struct test_set : public test_case {
for (int i = 0; i < dim; ++i) {
ne_dst[i] *= 2;
}
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
ggml_set_param(dst);
ggml_set_name(dst, "dst");
@ -2816,9 +2817,16 @@ struct test_set : public test_case {
for (int i = 0; i < dim; ++i) {
offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
}
ggml_tensor * out = ggml_set(ctx, dst, src,
// The backward pass requires setting a contiguous region:
src->nb[1], src->nb[2], src->nb[3], offset);
ggml_tensor * out;
if (inplace) {
out = ggml_set_inplace(ctx, dst, src,
// The backward pass requires setting a contiguous region:
src->nb[1], src->nb[2], src->nb[3], offset);
} else {
out = ggml_set(ctx, dst, src,
// The backward pass requires setting a contiguous region:
src->nb[1], src->nb[2], src->nb[3], offset);
}
ggml_set_name(out, "out");
return out;
@ -5839,26 +5847,46 @@ struct test_acc : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const std::array<int64_t, 4> ne_b;
const int64_t stride_dim;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, ne_b);
return VARS_TO_STR4(type, ne_a, ne_b, stride_dim);
}
test_acc(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
: type(type), ne_a(ne_a), ne_b(ne_b) {}
std::array<int64_t, 4> ne_a = {256, 17, 2, 3},
std::array<int64_t, 4> ne_b = {256, 16, 2, 3},
uint64_t stride_dim = -1)
: type(type), ne_a(ne_a), ne_b(ne_b), stride_dim(stride_dim) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_set_param(b);
ggml_tensor * b;
if (stride_dim == 1 || stride_dim == 2 || stride_dim == 3) {
// Create a larger tensor and take a view at a non-zero offset.
// This tests that the backend correctly handles b's data offset
std::array<int64_t, 4> ne_b_pad = {ne_b[0], ne_b[1], ne_b[2], ne_b[3]};
ne_b_pad[stride_dim] += 1;
ggml_tensor * b_pad = ggml_new_tensor(ctx, type, 4, ne_b_pad.data());
ggml_set_param(b_pad);
ggml_set_name(b_pad, "b_pad");
// View that skips the first row, so b has a non-zero byte offset
b = ggml_view_4d(ctx, b_pad,
ne_b[0], ne_b[1], ne_b[2], ne_b[3],
b_pad->nb[1], b_pad->nb[2], b_pad->nb[3],
b_pad->nb[1]);
} else {
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_set_param(b);
}
ggml_set_name(b, "b");
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
// When ne_b[0] < ne_a[0], a->nb[1] != b->nb[1], so the stride
// parameters to ggml_acc don't match b's natural stride.
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(out, "out");
return out;
@ -7428,11 +7456,13 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim, false));
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim, true));
}
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim, false));
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim, true));
}
// same-type copy
@ -8132,29 +8162,40 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
}
test_cases.emplace_back(new test_sum());
test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
test_cases.emplace_back(new test_mean());
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32, 1, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32768, 1, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
test_cases.emplace_back(new test_sum_rows());
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
test_cases.emplace_back(new test_mean());
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 16, 5, 6, 3 }, true, false));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 16, 5, 6, 3 }, false, true));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 16, 5, 6, 3 }, true, true));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
test_cases.emplace_back(new test_acc());
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 1, 1}, {256, 16, 1, 1}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, 1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, 2));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {64, 16, 2, 3}, 3));
test_cases.emplace_back(new test_pad());
test_cases.emplace_back(new test_pad(GGML_TYPE_F32, {33, 17, 2, 1}, 4, 3, true)); // circular
test_cases.emplace_back(new test_pad_ext());
@ -8589,6 +8630,14 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 512, 1)); // prefill
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 1, 1)); // generate
// acc
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 1, 1}, {256, 16, 1, 1}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, -1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {256, 16, 2, 3}, 1));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {128, 16, 2, 3}, 2));
test_cases.emplace_back(new test_acc(GGML_TYPE_F32, {256, 17, 2, 3}, {64, 16, 2, 3}, 3));
return test_cases;
}

View File

@ -52,6 +52,7 @@ struct cli_context {
json messages = json::array();
std::vector<raw_buffer> input_files;
task_params defaults;
bool verbose_prompt;
// thread for showing "loading" animation
std::atomic<bool> loading_show;
@ -66,6 +67,8 @@ struct cli_context {
defaults.stream = true; // make sure we always use streaming mode
defaults.timings_per_token = true; // in order to get timings even when we cancel mid-way
// defaults.return_progress = true; // TODO: show progress
verbose_prompt = params.verbose_prompt;
}
std::string generate_completion(result_timings & out_timings) {
@ -91,6 +94,12 @@ struct cli_context {
rd.post_task({std::move(task)});
}
if (verbose_prompt) {
console::set_display(DISPLAY_TYPE_PROMPT);
console::log("%s\n\n", chat_params.prompt.c_str());
console::set_display(DISPLAY_TYPE_RESET);
}
// wait for first result
console::spinner::start();
server_task_result_ptr result = rd.next(should_stop);

View File

@ -19,7 +19,7 @@ Set of LLM REST APIs and a web UI to interact with llama.cpp.
* Speculative decoding
* Easy-to-use web UI
For the ful list of features, please refer to [server's changelog](https://github.com/ggml-org/llama.cpp/issues/9291)
For the full list of features, please refer to [server's changelog](https://github.com/ggml-org/llama.cpp/issues/9291)
## Usage

Binary file not shown.

View File

@ -139,6 +139,6 @@ sequenceDiagram
Note over settingsStore: UI-only (not synced):
rect rgb(255, 240, 240)
Note over settingsStore: systemMessage, custom (JSON)<br/>showStatistics, enableContinueGeneration<br/>autoMicOnEmpty, disableAutoScroll<br/>apiKey, pdfAsImage, disableReasoningFormat
Note over settingsStore: systemMessage, custom (JSON)<br/>showStatistics, enableContinueGeneration<br/>autoMicOnEmpty, disableAutoScroll<br/>apiKey, pdfAsImage, disableReasoningParsing, showRawOutputSwitch
end
```

View File

@ -14,11 +14,11 @@
--popover-foreground: oklch(0.145 0 0);
--primary: oklch(0.205 0 0);
--primary-foreground: oklch(0.985 0 0);
--secondary: oklch(0.97 0 0);
--secondary: oklch(0.95 0 0);
--secondary-foreground: oklch(0.205 0 0);
--muted: oklch(0.97 0 0);
--muted-foreground: oklch(0.556 0 0);
--accent: oklch(0.97 0 0);
--accent: oklch(0.95 0 0);
--accent-foreground: oklch(0.205 0 0);
--destructive: oklch(0.577 0.245 27.325);
--border: oklch(0.875 0 0);
@ -37,7 +37,7 @@
--sidebar-accent-foreground: oklch(0.205 0 0);
--sidebar-border: oklch(0.922 0 0);
--sidebar-ring: oklch(0.708 0 0);
--code-background: oklch(0.975 0 0);
--code-background: oklch(0.985 0 0);
--code-foreground: oklch(0.145 0 0);
--layer-popover: 1000000;
}
@ -51,7 +51,7 @@
--popover-foreground: oklch(0.985 0 0);
--primary: oklch(0.922 0 0);
--primary-foreground: oklch(0.205 0 0);
--secondary: oklch(0.269 0 0);
--secondary: oklch(0.29 0 0);
--secondary-foreground: oklch(0.985 0 0);
--muted: oklch(0.269 0 0);
--muted-foreground: oklch(0.708 0 0);
@ -116,12 +116,62 @@
--color-sidebar-ring: var(--sidebar-ring);
}
:root {
--chat-form-area-height: 8rem;
--chat-form-area-offset: 2rem;
--max-message-height: max(24rem, min(80dvh, calc(100dvh - var(--chat-form-area-height) - 12rem)));
}
@media (min-width: 640px) {
:root {
--chat-form-area-height: 24rem;
--chat-form-area-offset: 12rem;
}
}
@layer base {
* {
@apply border-border outline-ring/50;
}
body {
@apply bg-background text-foreground;
scrollbar-width: thin;
scrollbar-gutter: stable;
}
/* Global scrollbar styling - visible only on hover */
* {
scrollbar-width: thin;
scrollbar-color: transparent transparent;
transition: scrollbar-color 0.2s ease;
}
*:hover {
scrollbar-color: hsl(var(--muted-foreground) / 0.3) transparent;
}
*::-webkit-scrollbar {
width: 6px;
height: 6px;
}
*::-webkit-scrollbar-track {
background: transparent;
}
*::-webkit-scrollbar-thumb {
background: transparent;
border-radius: 3px;
transition: background 0.2s ease;
}
*:hover::-webkit-scrollbar-thumb {
background: hsl(var(--muted-foreground) / 0.3);
}
*::-webkit-scrollbar-thumb:hover {
background: hsl(var(--muted-foreground) / 0.5);
}
}

View File

@ -0,0 +1,48 @@
<script lang="ts">
import { Button } from '$lib/components/ui/button';
import * as Tooltip from '$lib/components/ui/tooltip';
import type { Component } from 'svelte';
interface Props {
icon: Component;
tooltip: string;
variant?: 'default' | 'destructive' | 'outline' | 'secondary' | 'ghost' | 'link';
size?: 'default' | 'sm' | 'lg' | 'icon';
class?: string;
disabled?: boolean;
onclick: () => void;
'aria-label'?: string;
}
let {
icon,
tooltip,
variant = 'ghost',
size = 'sm',
class: className = '',
disabled = false,
onclick,
'aria-label': ariaLabel
}: Props = $props();
</script>
<Tooltip.Root>
<Tooltip.Trigger>
<Button
{variant}
{size}
{disabled}
{onclick}
class="h-6 w-6 p-0 {className} flex"
aria-label={ariaLabel || tooltip}
>
{@const IconComponent = icon}
<IconComponent class="h-3 w-3" />
</Button>
</Tooltip.Trigger>
<Tooltip.Content>
<p>{tooltip}</p>
</Tooltip.Content>
</Tooltip.Root>

View File

@ -0,0 +1,18 @@
<script lang="ts">
import { Copy } from '@lucide/svelte';
import { copyToClipboard } from '$lib/utils';
interface Props {
ariaLabel?: string;
canCopy?: boolean;
text: string;
}
let { ariaLabel = 'Copy to clipboard', canCopy = true, text }: Props = $props();
</script>
<Copy
class="h-3 w-3 flex-shrink-0 cursor-{canCopy ? 'pointer' : 'not-allowed'}"
aria-label={ariaLabel}
onclick={() => canCopy && copyToClipboard(text)}
/>

View File

@ -0,0 +1,26 @@
<script lang="ts">
import { X } from '@lucide/svelte';
import { Button } from '$lib/components/ui/button';
interface Props {
id: string;
onRemove?: (id: string) => void;
class?: string;
}
let { id, onRemove, class: className = '' }: Props = $props();
</script>
<Button
type="button"
variant="ghost"
size="sm"
class="h-6 w-6 bg-white/20 p-0 hover:bg-white/30 {className}"
onclick={(e: MouseEvent) => {
e.stopPropagation();
onRemove?.(id);
}}
aria-label="Remove file"
>
<X class="h-3 w-3" />
</Button>

View File

@ -0,0 +1,46 @@
<script lang="ts">
import { Eye } from '@lucide/svelte';
import ActionIconCopyToClipboard from '$lib/components/app/actions/ActionIconCopyToClipboard.svelte';
import { FileTypeText } from '$lib/enums';
interface Props {
code: string;
language: string;
disabled?: boolean;
onPreview?: (code: string, language: string) => void;
}
let { code, language, disabled = false, onPreview }: Props = $props();
const showPreview = $derived(language?.toLowerCase() === FileTypeText.HTML);
function handlePreview() {
if (disabled) return;
onPreview?.(code, language);
}
</script>
<div class="code-block-actions">
<div class="copy-code-btn" class:opacity-50={disabled} class:!cursor-not-allowed={disabled}>
<ActionIconCopyToClipboard
text={code}
canCopy={!disabled}
ariaLabel={disabled ? 'Code incomplete' : 'Copy code'}
/>
</div>
{#if showPreview}
<button
class="preview-code-btn"
class:opacity-50={disabled}
class:!cursor-not-allowed={disabled}
title={disabled ? 'Code incomplete' : 'Preview code'}
aria-label="Preview code"
aria-disabled={disabled}
type="button"
onclick={handlePreview}
>
<Eye size={16} />
</button>
{/if}
</div>

View File

@ -0,0 +1,19 @@
/**
*
* ACTIONS
*
* Small interactive components for user actions.
*
*/
/** Styled icon button for action triggers with tooltip. */
export { default as ActionIcon } from './ActionIcon.svelte';
/** Code block actions component (copy, preview). */
export { default as ActionIconsCodeBlock } from './ActionIconsCodeBlock.svelte';
/** Copy-to-clipboard icon button with click handler. */
export { default as ActionIconCopyToClipboard } from './ActionIconCopyToClipboard.svelte';
/** Remove/delete icon button with X icon. */
export { default as ActionIconRemove } from './ActionIconRemove.svelte';

View File

@ -0,0 +1,44 @@
<script lang="ts">
import { BadgeInfo } from '$lib/components/app';
import * as Tooltip from '$lib/components/ui/tooltip';
import { copyToClipboard } from '$lib/utils';
import type { Component } from 'svelte';
interface Props {
class?: string;
icon: Component;
value: string | number;
tooltipLabel?: string;
}
let { class: className = '', icon: Icon, value, tooltipLabel }: Props = $props();
function handleClick() {
void copyToClipboard(String(value));
}
</script>
{#if tooltipLabel}
<Tooltip.Root>
<Tooltip.Trigger>
<BadgeInfo class={className} onclick={handleClick}>
{#snippet icon()}
<Icon class="h-3 w-3" />
{/snippet}
{value}
</BadgeInfo>
</Tooltip.Trigger>
<Tooltip.Content>
<p>{tooltipLabel}</p>
</Tooltip.Content>
</Tooltip.Root>
{:else}
<BadgeInfo class={className} onclick={handleClick}>
{#snippet icon()}
<Icon class="h-3 w-3" />
{/snippet}
{value}
</BadgeInfo>
{/if}

View File

@ -0,0 +1,27 @@
<script lang="ts">
import { cn } from '$lib/components/ui/utils';
import type { Snippet } from 'svelte';
interface Props {
children: Snippet;
class?: string;
icon?: Snippet;
onclick?: () => void;
}
let { children, class: className = '', icon, onclick }: Props = $props();
</script>
<button
class={cn(
'inline-flex cursor-pointer items-center gap-1 rounded-sm bg-muted-foreground/15 px-1.5 py-0.75',
className
)}
{onclick}
>
{#if icon}
{@render icon()}
{/if}
{@render children()}
</button>

View File

@ -0,0 +1,39 @@
<script lang="ts">
import { ModelModality } from '$lib/enums';
import { MODALITY_ICONS, MODALITY_LABELS } from '$lib/constants/icons';
import { cn } from '$lib/components/ui/utils';
type DisplayableModality = ModelModality.VISION | ModelModality.AUDIO;
interface Props {
modalities: ModelModality[];
class?: string;
}
let { modalities, class: className = '' }: Props = $props();
// Filter to only modalities that have icons (VISION, AUDIO)
const displayableModalities = $derived(
modalities.filter(
(m): m is DisplayableModality => m === ModelModality.VISION || m === ModelModality.AUDIO
)
);
</script>
{#each displayableModalities as modality, index (index)}
{@const IconComponent = MODALITY_ICONS[modality]}
{@const label = MODALITY_LABELS[modality]}
<span
class={cn(
'inline-flex items-center gap-1 rounded-md bg-muted px-2 py-1 text-xs font-medium',
className
)}
>
{#if IconComponent}
<IconComponent class="h-3 w-3" />
{/if}
{label}
</span>
{/each}

View File

@ -0,0 +1,16 @@
/**
*
* BADGES & INDICATORS
*
* Small visual indicators for status and metadata.
*
*/
/** Badge displaying chat statistics (tokens, timing). */
export { default as BadgeChatStatistic } from './BadgeChatStatistic.svelte';
/** Generic info badge with optional tooltip and click handler. */
export { default as BadgeInfo } from './BadgeInfo.svelte';
/** Badge indicating model modality (vision, audio, tools). */
export { default as BadgeModality } from './BadgeModality.svelte';

View File

@ -27,11 +27,13 @@
interface Props {
class?: string;
disabled?: boolean;
initialMessage?: string;
isLoading?: boolean;
onFileRemove?: (fileId: string) => void;
onFileUpload?: (files: File[]) => void;
onSend?: (message: string, files?: ChatUploadedFile[]) => Promise<boolean>;
onStop?: () => void;
onSystemPromptAdd?: (draft: { message: string; files: ChatUploadedFile[] }) => void;
showHelperText?: boolean;
uploadedFiles?: ChatUploadedFile[];
}
@ -39,11 +41,13 @@
let {
class: className,
disabled = false,
initialMessage = '',
isLoading = false,
onFileRemove,
onFileUpload,
onSend,
onStop,
onSystemPromptAdd,
showHelperText = true,
uploadedFiles = $bindable([])
}: Props = $props();
@ -53,15 +57,28 @@
let currentConfig = $derived(config());
let fileInputRef: ChatFormFileInputInvisible | undefined = $state(undefined);
let isRecording = $state(false);
let message = $state('');
let message = $state(initialMessage);
let pasteLongTextToFileLength = $derived.by(() => {
const n = Number(currentConfig.pasteLongTextToFileLen);
return Number.isNaN(n) ? Number(SETTING_CONFIG_DEFAULT.pasteLongTextToFileLen) : n;
});
let previousIsLoading = $state(isLoading);
let previousInitialMessage = $state(initialMessage);
let recordingSupported = $state(false);
let textareaRef: ChatFormTextarea | undefined = $state(undefined);
// Sync message when initialMessage prop changes (e.g., after draft restoration)
$effect(() => {
if (initialMessage !== previousInitialMessage) {
message = initialMessage;
previousInitialMessage = initialMessage;
}
});
function handleSystemPromptClick() {
onSystemPromptAdd?.({ message, files: uploadedFiles });
}
// Check if model is selected (in ROUTER mode)
let conversationModel = $derived(
chatStore.getConversationModel(activeMessages() as DatabaseMessage[])
@ -308,6 +325,7 @@
onFileUpload={handleFileUpload}
onMicClick={handleMicClick}
onStop={handleStop}
onSystemPromptClick={handleSystemPromptClick}
/>
</div>
</form>

View File

@ -1,5 +1,6 @@
<script lang="ts">
import { Paperclip } from '@lucide/svelte';
import { MessageSquare } from '@lucide/svelte';
import { Button } from '$lib/components/ui/button';
import * as DropdownMenu from '$lib/components/ui/dropdown-menu';
import * as Tooltip from '$lib/components/ui/tooltip';
@ -11,6 +12,7 @@
hasAudioModality?: boolean;
hasVisionModality?: boolean;
onFileUpload?: () => void;
onSystemPromptClick?: () => void;
}
let {
@ -18,7 +20,8 @@
disabled = false,
hasAudioModality = false,
hasVisionModality = false,
onFileUpload
onFileUpload,
onSystemPromptClick
}: Props = $props();
const fileUploadTooltipText = $derived.by(() => {
@ -118,6 +121,23 @@
</Tooltip.Content>
{/if}
</Tooltip.Root>
<DropdownMenu.Separator />
<Tooltip.Root>
<Tooltip.Trigger class="w-full">
<DropdownMenu.Item
class="flex cursor-pointer items-center gap-2"
onclick={() => onSystemPromptClick?.()}
>
<MessageSquare class="h-4 w-4" />
<span>System Prompt</span>
</DropdownMenu.Item>
</Tooltip.Trigger>
<Tooltip.Content>
<p>Add a custom system message for this conversation</p>
</Tooltip.Content>
</Tooltip.Root>
</DropdownMenu.Content>
</DropdownMenu.Root>
</div>

View File

@ -27,6 +27,7 @@
onFileUpload?: () => void;
onMicClick?: () => void;
onStop?: () => void;
onSystemPromptClick?: () => void;
}
let {
@ -39,7 +40,8 @@
uploadedFiles = [],
onFileUpload,
onMicClick,
onStop
onStop,
onSystemPromptClick
}: Props = $props();
let currentConfig = $derived(config());
@ -170,6 +172,7 @@
{hasAudioModality}
{hasVisionModality}
{onFileUpload}
{onSystemPromptClick}
/>
<ModelsSelector

View File

@ -1,6 +1,16 @@
<script lang="ts">
import { chatStore } from '$lib/stores/chat.svelte';
import { goto } from '$app/navigation';
import { base } from '$app/paths';
import {
chatStore,
pendingEditMessageId,
clearPendingEditMessageId,
removeSystemPromptPlaceholder
} from '$lib/stores/chat.svelte';
import { conversationsStore } from '$lib/stores/conversations.svelte';
import { DatabaseService } from '$lib/services';
import { config } from '$lib/stores/settings.svelte';
import { SYSTEM_MESSAGE_PLACEHOLDER } from '$lib/constants/ui';
import { copyToClipboard, isIMEComposing, formatMessageForClipboard } from '$lib/utils';
import ChatMessageAssistant from './ChatMessageAssistant.svelte';
import ChatMessageUser from './ChatMessageUser.svelte';
@ -92,8 +102,30 @@
return null;
});
function handleCancelEdit() {
// Auto-start edit mode if this message is the pending edit target
$effect(() => {
const pendingId = pendingEditMessageId();
if (pendingId && pendingId === message.id && !isEditing) {
handleEdit();
clearPendingEditMessageId();
}
});
async function handleCancelEdit() {
isEditing = false;
// If canceling a new system message with placeholder content, remove it without deleting children
if (message.role === 'system') {
const conversationDeleted = await removeSystemPromptPlaceholder(message.id);
if (conversationDeleted) {
goto(`${base}/`);
}
return;
}
editedContent = message.content;
editedExtras = message.extra ? [...message.extra] : [];
editedUploadedFiles = [];
@ -114,8 +146,17 @@
onCopy?.(message);
}
function handleConfirmDelete() {
onDelete?.(message);
async function handleConfirmDelete() {
if (message.role === 'system') {
const conversationDeleted = await removeSystemPromptPlaceholder(message.id);
if (conversationDeleted) {
goto('/');
}
} else {
onDelete?.(message);
}
showDeleteDialog = false;
}
@ -126,7 +167,12 @@
function handleEdit() {
isEditing = true;
editedContent = message.content;
// Clear placeholder content for system messages
editedContent =
message.role === 'system' && message.content === SYSTEM_MESSAGE_PLACEHOLDER
? ''
: message.content;
textareaElement?.focus();
editedExtras = message.extra ? [...message.extra] : [];
editedUploadedFiles = [];
@ -166,7 +212,26 @@
}
async function handleSaveEdit() {
if (message.role === 'user' || message.role === 'system') {
if (message.role === 'system') {
// System messages: update in place without branching
const newContent = editedContent.trim();
// If content is empty or still the placeholder, remove without deleting children
if (!newContent) {
const conversationDeleted = await removeSystemPromptPlaceholder(message.id);
isEditing = false;
if (conversationDeleted) {
goto(`${base}/`);
}
return;
}
await DatabaseService.updateMessage(message.id, { content: newContent });
const index = conversationsStore.findMessageIndex(message.id);
if (index !== -1) {
conversationsStore.updateMessageAtIndex(index, { content: newContent });
}
} else if (message.role === 'user') {
const finalExtras = await getMergedExtras();
onEditWithBranching?.(message, editedContent.trim(), finalExtras);
} else {

View File

@ -5,6 +5,7 @@
ChatMessageBranchingControls,
DialogConfirmation
} from '$lib/components/app';
import { Switch } from '$lib/components/ui/switch';
interface Props {
role: 'user' | 'assistant';
@ -26,6 +27,9 @@
onConfirmDelete: () => void;
onNavigateToSibling?: (siblingId: string) => void;
onShowDeleteDialogChange: (show: boolean) => void;
showRawOutputSwitch?: boolean;
rawOutputEnabled?: boolean;
onRawOutputToggle?: (enabled: boolean) => void;
}
let {
@ -42,7 +46,10 @@
onRegenerate,
role,
siblingInfo = null,
showDeleteDialog
showDeleteDialog,
showRawOutputSwitch = false,
rawOutputEnabled = false,
onRawOutputToggle
}: Props = $props();
function handleConfirmDelete() {
@ -51,9 +58,9 @@
}
</script>
<div class="relative {justify === 'start' ? 'mt-2' : ''} flex h-6 items-center justify-{justify}">
<div class="relative {justify === 'start' ? 'mt-2' : ''} flex h-6 items-center justify-between">
<div
class="absolute top-0 {actionsPosition === 'left'
class="{actionsPosition === 'left'
? 'left-0'
: 'right-0'} flex items-center gap-2 opacity-100 transition-opacity"
>
@ -81,6 +88,16 @@
<ActionButton icon={Trash2} tooltip="Delete" onclick={onDelete} />
</div>
</div>
{#if showRawOutputSwitch}
<div class="flex items-center gap-2">
<span class="text-xs text-muted-foreground">Show raw output</span>
<Switch
checked={rawOutputEnabled}
onCheckedChange={(checked) => onRawOutputToggle?.(checked)}
/>
</div>
{/if}
</div>
<DialogConfirmation

View File

@ -90,6 +90,9 @@
const processingState = useProcessingState();
// Local state for raw output toggle (per message)
let showRawOutput = $state(false);
let currentConfig = $derived(config());
let isRouter = $derived(isRouterMode());
let displayedModel = $derived((): string | null => {
@ -238,7 +241,7 @@
</div>
</div>
{:else if message.role === 'assistant'}
{#if config().disableReasoningFormat}
{#if showRawOutput}
<pre class="raw-output">{messageContent || ''}</pre>
{:else}
<MarkdownContent content={messageContent || ''} />
@ -352,6 +355,9 @@
{onConfirmDelete}
{onNavigateToSibling}
{onShowDeleteDialogChange}
showRawOutputSwitch={currentConfig.showRawOutputSwitch}
rawOutputEnabled={showRawOutput}
onRawOutputToggle={(enabled) => (showRawOutput = enabled)}
/>
{/if}
</div>

View File

@ -3,6 +3,7 @@
import { BadgeChatStatistic } from '$lib/components/app';
import * as Tooltip from '$lib/components/ui/tooltip';
import { ChatMessageStatsView } from '$lib/enums';
import { formatPerformanceTime } from '$lib/utils/formatters';
interface Props {
predictedTokens?: number;
@ -57,8 +58,8 @@
);
let tokensPerSecond = $derived(hasGenerationStats ? (predictedTokens! / predictedMs!) * 1000 : 0);
let timeInSeconds = $derived(
predictedMs !== undefined ? (predictedMs / 1000).toFixed(2) : '0.00'
let formattedTime = $derived(
predictedMs !== undefined ? formatPerformanceTime(predictedMs) : '0s'
);
let promptTokensPerSecond = $derived(
@ -67,15 +68,15 @@
: undefined
);
let promptTimeInSeconds = $derived(
promptMs !== undefined ? (promptMs / 1000).toFixed(2) : undefined
let formattedPromptTime = $derived(
promptMs !== undefined ? formatPerformanceTime(promptMs) : undefined
);
let hasPromptStats = $derived(
promptTokens !== undefined &&
promptMs !== undefined &&
promptTokensPerSecond !== undefined &&
promptTimeInSeconds !== undefined
formattedPromptTime !== undefined
);
// In live mode, generation tab is disabled until we have generation stats
@ -142,7 +143,7 @@
<BadgeChatStatistic
class="bg-transparent"
icon={Clock}
value="{timeInSeconds}s"
value={formattedTime}
tooltipLabel="Generation time"
/>
<BadgeChatStatistic
@ -161,7 +162,7 @@
<BadgeChatStatistic
class="bg-transparent"
icon={Clock}
value="{promptTimeInSeconds}s"
value={formattedPromptTime ?? '0s'}
tooltipLabel="Prompt processing time"
/>
<BadgeChatStatistic

View File

@ -116,7 +116,7 @@
<Button class="h-8 px-3" onclick={onSaveEdit} disabled={!editedContent.trim()} size="sm">
<Check class="mr-1 h-3 w-3" />
Send
Save
</Button>
</div>
</div>

View File

@ -21,6 +21,7 @@
chatStore,
errorDialog,
isLoading,
isChatStreaming,
isEditing,
getAddFilesHandler
} from '$lib/stores/chat.svelte';
@ -71,6 +72,8 @@
let emptyFileNames = $state<string[]>([]);
let initialMessage = $state('');
let isEmpty = $derived(
showCenteredEmpty && !activeConversation() && activeMessages().length === 0 && !isLoading()
);
@ -79,7 +82,7 @@
let isServerLoading = $derived(serverLoading());
let hasPropsError = $derived(!!serverError());
let isCurrentConversationLoading = $derived(isLoading());
let isCurrentConversationLoading = $derived(isLoading() || isChatStreaming());
let isRouter = $derived(isRouterMode());
@ -221,6 +224,14 @@
}
}
async function handleSystemPromptAdd(draft: { message: string; files: ChatUploadedFile[] }) {
if (draft.message || draft.files.length > 0) {
chatStore.savePendingDraft(draft.message, draft.files);
}
await chatStore.addSystemPrompt();
}
function handleScroll() {
if (disableAutoScroll || !chatScrollContainer) return;
@ -343,6 +354,12 @@
if (!disableAutoScroll) {
setTimeout(() => scrollChatToBottom('instant'), INITIAL_SCROLL_DELAY);
}
const pendingDraft = chatStore.consumePendingDraft();
if (pendingDraft) {
initialMessage = pendingDraft.message;
uploadedFiles = pendingDraft.files;
}
});
$effect(() => {
@ -428,11 +445,13 @@
<div class="conversation-chat-form pointer-events-auto rounded-t-3xl pb-4">
<ChatForm
disabled={hasPropsError || isEditing()}
{initialMessage}
isLoading={isCurrentConversationLoading}
onFileRemove={handleFileRemove}
onFileUpload={handleFileUpload}
onSend={handleSendMessage}
onStop={() => chatStore.stopGeneration()}
onSystemPromptAdd={handleSystemPromptAdd}
showHelperText={false}
bind:uploadedFiles
/>
@ -486,11 +505,13 @@
<div in:fly={{ y: 10, duration: 250, delay: hasPropsError ? 0 : 300 }}>
<ChatForm
disabled={hasPropsError}
{initialMessage}
isLoading={isCurrentConversationLoading}
onFileRemove={handleFileRemove}
onFileUpload={handleFileUpload}
onSend={handleSendMessage}
onStop={() => chatStore.stopGeneration()}
onSystemPromptAdd={handleSystemPromptAdd}
showHelperText={true}
bind:uploadedFiles
/>

View File

@ -254,8 +254,13 @@
type: 'checkbox'
},
{
key: 'disableReasoningFormat',
label: 'Show raw LLM output',
key: 'disableReasoningParsing',
label: 'Disable reasoning content parsing',
type: 'checkbox'
},
{
key: 'showRawOutputSwitch',
label: 'Enable raw output toggle',
type: 'checkbox'
},
{

View File

@ -0,0 +1,97 @@
<script lang="ts">
import ChevronsUpDownIcon from '@lucide/svelte/icons/chevrons-up-down';
import * as Collapsible from '$lib/components/ui/collapsible/index.js';
import { buttonVariants } from '$lib/components/ui/button/index.js';
import { Card } from '$lib/components/ui/card';
import { createAutoScrollController } from '$lib/hooks/use-auto-scroll.svelte';
import type { Snippet } from 'svelte';
import type { Component } from 'svelte';
interface Props {
open?: boolean;
class?: string;
icon?: Component;
iconClass?: string;
title: string;
subtitle?: string;
isStreaming?: boolean;
onToggle?: () => void;
children: Snippet;
}
let {
open = $bindable(false),
class: className = '',
icon: Icon,
iconClass = 'h-4 w-4',
title,
subtitle,
isStreaming = false,
onToggle,
children
}: Props = $props();
let contentContainer: HTMLDivElement | undefined = $state();
const autoScroll = createAutoScrollController();
$effect(() => {
autoScroll.setContainer(contentContainer);
});
$effect(() => {
// Only auto-scroll when open and streaming
autoScroll.updateInterval(open && isStreaming);
});
function handleScroll() {
autoScroll.handleScroll();
}
</script>
<Collapsible.Root
{open}
onOpenChange={(value) => {
open = value;
onToggle?.();
}}
class={className}
>
<Card class="gap-0 border-muted bg-muted/30 py-0">
<Collapsible.Trigger class="flex w-full cursor-pointer items-center justify-between p-3">
<div class="flex items-center gap-2 text-muted-foreground">
{#if Icon}
<Icon class={iconClass} />
{/if}
<span class="font-mono text-sm font-medium">{title}</span>
{#if subtitle}
<span class="text-xs italic">{subtitle}</span>
{/if}
</div>
<div
class={buttonVariants({
variant: 'ghost',
size: 'sm',
class: 'h-6 w-6 p-0 text-muted-foreground hover:text-foreground'
})}
>
<ChevronsUpDownIcon class="h-4 w-4" />
<span class="sr-only">Toggle content</span>
</div>
</Collapsible.Trigger>
<Collapsible.Content>
<div
bind:this={contentContainer}
class="overflow-y-auto border-t border-muted px-3 pb-3"
onscroll={handleScroll}
style="min-height: var(--min-message-height); max-height: var(--max-message-height);"
>
{@render children()}
</div>
</Collapsible.Content>
</Card>
</Collapsible.Root>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,95 @@
<script lang="ts">
import hljs from 'highlight.js';
import { browser } from '$app/environment';
import { mode } from 'mode-watcher';
import githubDarkCss from 'highlight.js/styles/github-dark.css?inline';
import githubLightCss from 'highlight.js/styles/github.css?inline';
interface Props {
code: string;
language?: string;
class?: string;
maxHeight?: string;
maxWidth?: string;
}
let {
code,
language = 'text',
class: className = '',
maxHeight = '60vh',
maxWidth = ''
}: Props = $props();
let highlightedHtml = $state('');
function loadHighlightTheme(isDark: boolean) {
if (!browser) return;
const existingThemes = document.querySelectorAll('style[data-highlight-theme-preview]');
existingThemes.forEach((style) => style.remove());
const style = document.createElement('style');
style.setAttribute('data-highlight-theme-preview', 'true');
style.textContent = isDark ? githubDarkCss : githubLightCss;
document.head.appendChild(style);
}
$effect(() => {
const currentMode = mode.current;
const isDark = currentMode === 'dark';
loadHighlightTheme(isDark);
});
$effect(() => {
if (!code) {
highlightedHtml = '';
return;
}
try {
// Check if the language is supported
const lang = language.toLowerCase();
const isSupported = hljs.getLanguage(lang);
if (isSupported) {
const result = hljs.highlight(code, { language: lang });
highlightedHtml = result.value;
} else {
// Try auto-detection or fallback to plain text
const result = hljs.highlightAuto(code);
highlightedHtml = result.value;
}
} catch {
// Fallback to escaped plain text
highlightedHtml = code.replace(/&/g, '&amp;').replace(/</g, '&lt;').replace(/>/g, '&gt;');
}
});
</script>
<div
class="code-preview-wrapper rounded-lg border border-border bg-muted {className}"
style="max-height: {maxHeight}; max-width: {maxWidth};"
>
<!-- Needs to be formatted as single line for proper rendering -->
<pre class="m-0"><code class="hljs text-sm leading-relaxed">{@html highlightedHtml}</code></pre>
</div>
<style>
.code-preview-wrapper {
font-family:
ui-monospace, SFMono-Regular, 'SF Mono', Monaco, 'Cascadia Code', 'Roboto Mono', Consolas,
'Liberation Mono', Menlo, monospace;
}
.code-preview-wrapper pre {
background: transparent;
}
.code-preview-wrapper code {
background: transparent;
}
</style>

View File

@ -0,0 +1,79 @@
/**
*
* CONTENT RENDERING
*
* Components for rendering rich content: markdown, code, and previews.
*
*/
/**
* **MarkdownContent** - Rich markdown renderer
*
* Renders markdown content with syntax highlighting, LaTeX math,
* tables, links, and code blocks. Optimized for streaming with
* incremental block-based rendering.
*
* **Features:**
* - GFM (GitHub Flavored Markdown): tables, task lists, strikethrough
* - LaTeX math via KaTeX (`$inline$` and `$$block$$`)
* - Syntax highlighting (highlight.js) with language detection
* - Code copy buttons with click feedback
* - External links open in new tab with security attrs
* - Image attachment resolution from message extras
* - Dark/light theme support (auto-switching)
* - Streaming-optimized incremental rendering
* - Code preview dialog for large blocks
*
* @example
* ```svelte
* <MarkdownContent content={message.content} attachments={message.extra} />
* ```
*/
export { default as MarkdownContent } from './MarkdownContent.svelte';
/**
* **SyntaxHighlightedCode** - Code syntax highlighting
*
* Renders code with syntax highlighting using highlight.js.
* Supports theme switching and scrollable containers.
*
* **Features:**
* - Auto language detection with fallback
* - Dark/light theme auto-switching
* - Scrollable container with configurable max dimensions
* - Monospace font styling
* - Preserves whitespace and formatting
*
* @example
* ```svelte
* <SyntaxHighlightedCode code={jsonString} language="json" />
* ```
*/
export { default as SyntaxHighlightedCode } from './SyntaxHighlightedCode.svelte';
/**
* **CollapsibleContentBlock** - Expandable content card
*
* Reusable collapsible card with header, icon, and auto-scroll.
* Used for tool calls and reasoning blocks in chat messages.
*
* **Features:**
* - Collapsible content with smooth animation
* - Custom icon and title display
* - Optional subtitle/status text
* - Auto-scroll during streaming (pauses on user scroll)
* - Configurable max height with overflow scroll
*
* @example
* ```svelte
* <CollapsibleContentBlock
* bind:open
* icon={BrainIcon}
* title="Thinking..."
* isStreaming={true}
* >
* {reasoningContent}
* </CollapsibleContentBlock>
* ```
*/
export { default as CollapsibleContentBlock } from './CollapsibleContentBlock.svelte';

View File

@ -17,9 +17,13 @@
let { conversations, messageCountMap = new Map(), mode, onCancel, onConfirm }: Props = $props();
let searchQuery = $state('');
let selectedIds = $state.raw<SvelteSet<string>>(new SvelteSet(conversations.map((c) => c.id)));
let selectedIds = $state.raw<SvelteSet<string>>(getInitialSelectedIds());
let lastClickedId = $state<string | null>(null);
function getInitialSelectedIds(): SvelteSet<string> {
return new SvelteSet(conversations.map((c) => c.id));
}
let filteredConversations = $derived(
conversations.filter((conv) => {
const name = conv.name || 'Untitled conversation';
@ -92,7 +96,7 @@
}
function handleCancel() {
selectedIds = new SvelteSet(conversations.map((c) => c.id));
selectedIds = getInitialSelectedIds();
searchQuery = '';
lastClickedId = null;
@ -100,7 +104,7 @@
}
export function reset() {
selectedIds = new SvelteSet(conversations.map((c) => c.id));
selectedIds = getInitialSelectedIds();
searchQuery = '';
lastClickedId = null;
}

View File

@ -0,0 +1,88 @@
<script lang="ts">
import type { Snippet } from 'svelte';
import * as DropdownMenu from '$lib/components/ui/dropdown-menu';
import { cn } from '$lib/components/ui/utils';
import { SearchInput } from '$lib/components/app';
interface Props {
open?: boolean;
onOpenChange?: (open: boolean) => void;
placeholder?: string;
searchValue?: string;
onSearchChange?: (value: string) => void;
onSearchKeyDown?: (event: KeyboardEvent) => void;
align?: 'start' | 'center' | 'end';
contentClass?: string;
emptyMessage?: string;
isEmpty?: boolean;
disabled?: boolean;
trigger: Snippet;
children: Snippet;
footer?: Snippet;
}
let {
open = $bindable(false),
onOpenChange,
placeholder = 'Search...',
searchValue = $bindable(''),
onSearchChange,
onSearchKeyDown,
align = 'start',
contentClass = 'w-72',
emptyMessage = 'No items found',
isEmpty = false,
disabled = false,
trigger,
children,
footer
}: Props = $props();
function handleOpenChange(newOpen: boolean) {
open = newOpen;
if (!newOpen) {
searchValue = '';
onSearchChange?.('');
}
onOpenChange?.(newOpen);
}
</script>
<DropdownMenu.Root bind:open onOpenChange={handleOpenChange}>
<DropdownMenu.Trigger
{disabled}
onclick={(e) => {
e.preventDefault();
e.stopPropagation();
}}
>
{@render trigger()}
</DropdownMenu.Trigger>
<DropdownMenu.Content {align} class={cn(contentClass, 'pt-0')}>
<div class="sticky top-0 z-10 mb-2 bg-popover p-1 pt-2">
<SearchInput
{placeholder}
bind:value={searchValue}
onInput={onSearchChange}
onKeyDown={onSearchKeyDown}
/>
</div>
<div class={cn('overflow-y-auto')}>
{@render children()}
{#if isEmpty}
<div class="px-2 py-3 text-center text-sm text-muted-foreground">{emptyMessage}</div>
{/if}
</div>
{#if footer}
<DropdownMenu.Separator />
{@render footer()}
{/if}
</DropdownMenu.Content>
</DropdownMenu.Root>

View File

@ -0,0 +1,93 @@
<script lang="ts">
import { ChevronLeft, ChevronRight } from '@lucide/svelte';
interface Props {
class?: string;
children?: import('svelte').Snippet;
gapSize?: string;
onScrollableChange?: (isScrollable: boolean) => void;
}
let { class: className = '', children, gapSize = '3', onScrollableChange }: Props = $props();
let canScrollLeft = $state(false);
let canScrollRight = $state(false);
let scrollContainer: HTMLDivElement | undefined = $state();
function scrollLeft(event?: MouseEvent) {
event?.stopPropagation();
event?.preventDefault();
if (!scrollContainer) return;
scrollContainer.scrollBy({ left: scrollContainer.clientWidth * -0.67, behavior: 'smooth' });
}
function scrollRight(event?: MouseEvent) {
event?.stopPropagation();
event?.preventDefault();
if (!scrollContainer) return;
scrollContainer.scrollBy({ left: scrollContainer.clientWidth * 0.67, behavior: 'smooth' });
}
function updateScrollButtons() {
if (!scrollContainer) return;
const { scrollLeft, scrollWidth, clientWidth } = scrollContainer;
canScrollLeft = scrollLeft > 0;
canScrollRight = scrollLeft < scrollWidth - clientWidth - 1;
const isScrollable = scrollWidth > clientWidth;
onScrollableChange?.(isScrollable);
}
export function resetScroll() {
if (scrollContainer) {
scrollContainer.scrollLeft = 0;
setTimeout(() => {
updateScrollButtons();
}, 0);
}
}
$effect(() => {
if (scrollContainer) {
setTimeout(() => {
updateScrollButtons();
}, 0);
}
});
</script>
<div class="relative {className}">
<button
class="absolute top-1/2 left-4 z-10 flex h-6 w-6 -translate-y-1/2 items-center justify-center rounded-full bg-foreground/15 shadow-md backdrop-blur-xs transition-opacity hover:bg-foreground/35 {canScrollLeft
? 'opacity-100'
: 'pointer-events-none opacity-0'}"
onclick={scrollLeft}
aria-label="Scroll left"
>
<ChevronLeft class="h-4 w-4" />
</button>
<div
class="scrollbar-hide flex items-start gap-{gapSize} overflow-x-auto"
bind:this={scrollContainer}
onscroll={updateScrollButtons}
>
{@render children?.()}
</div>
<button
class="absolute top-1/2 right-4 z-10 flex h-6 w-6 -translate-y-1/2 items-center justify-center rounded-full bg-foreground/15 shadow-md backdrop-blur-xs transition-opacity hover:bg-foreground/35 {canScrollRight
? 'opacity-100'
: 'pointer-events-none opacity-0'}"
onclick={scrollRight}
aria-label="Scroll right"
>
<ChevronRight class="h-4 w-4" />
</button>
</div>

View File

@ -11,7 +11,9 @@
let baseClasses =
'px-1 pointer-events-none inline-flex select-none items-center gap-0.5 font-sans text-md font-medium opacity-0 transition-opacity -my-1';
let variantClasses = variant === 'destructive' ? 'text-destructive' : 'text-muted-foreground';
let variantClasses = $derived(
variant === 'destructive' ? 'text-destructive' : 'text-muted-foreground'
);
</script>
<kbd class="{baseClasses} {variantClasses} {className}">

View File

@ -486,6 +486,8 @@
text-decoration: underline;
text-underline-offset: 2px;
transition: color 0.2s ease;
overflow-wrap: anywhere;
word-break: break-all;
}
div :global(a:hover) {

View File

@ -0,0 +1,48 @@
<script lang="ts">
import * as Tooltip from '$lib/components/ui/tooltip';
interface Props {
text: string;
class?: string;
}
let { text, class: className = '' }: Props = $props();
let textElement: HTMLSpanElement | undefined = $state();
let isTruncated = $state(false);
function checkTruncation() {
if (textElement) {
isTruncated = textElement.scrollWidth > textElement.clientWidth;
}
}
$effect(() => {
if (textElement) {
checkTruncation();
const observer = new ResizeObserver(checkTruncation);
observer.observe(textElement);
return () => observer.disconnect();
}
});
</script>
{#if isTruncated}
<Tooltip.Root>
<Tooltip.Trigger class={className}>
<span bind:this={textElement} class="block truncate">
{text}
</span>
</Tooltip.Trigger>
<Tooltip.Content class="z-[9999]">
<p>{text}</p>
</Tooltip.Content>
</Tooltip.Root>
{:else}
<span bind:this={textElement} class="{className} block truncate">
{text}
</span>
{/if}

View File

@ -0,0 +1,45 @@
/**
*
* MISC
*
* Miscellaneous utility components.
*
*/
/**
* **ConversationSelection** - Multi-select conversation picker
*
* List of conversations with checkboxes for multi-selection.
* Used in import/export dialogs for selecting conversations.
*
* **Features:**
* - Search/filter conversations by name
* - Select all / deselect all controls
* - Shift-click for range selection
* - Message count display per conversation
* - Mode-specific UI (export vs import)
*/
export { default as ConversationSelection } from './ConversationSelection.svelte';
/**
* Horizontal scrollable carousel with navigation arrows.
* Used for displaying items in a horizontally scrollable container
* with left/right navigation buttons that appear on hover.
*/
export { default as HorizontalScrollCarousel } from './HorizontalScrollCarousel.svelte';
/**
* **TruncatedText** - Text with ellipsis and tooltip
*
* Displays text with automatic truncation and full content in tooltip.
* Useful for long names or paths in constrained spaces.
*/
export { default as TruncatedText } from './TruncatedText.svelte';
/**
* **KeyboardShortcutInfo** - Keyboard shortcut hint display
*
* Displays keyboard shortcut hints (e.g., "⌘ + Enter").
* Supports special keys like shift, cmd, and custom text.
*/
export { default as KeyboardShortcutInfo } from './KeyboardShortcutInfo.svelte';

View File

@ -0,0 +1,86 @@
<script lang="ts">
import * as DropdownMenu from '$lib/components/ui/dropdown-menu';
import * as Tooltip from '$lib/components/ui/tooltip';
import { KeyboardShortcutInfo } from '$lib/components/app';
import type { Component } from 'svelte';
interface ActionItem {
icon: Component;
label: string;
onclick: (event: Event) => void;
variant?: 'default' | 'destructive';
disabled?: boolean;
shortcut?: string[];
separator?: boolean;
}
interface Props {
triggerIcon: Component;
triggerTooltip?: string;
triggerClass?: string;
actions: ActionItem[];
align?: 'start' | 'center' | 'end';
open?: boolean;
}
let {
triggerIcon,
triggerTooltip,
triggerClass = '',
actions,
align = 'end',
open = $bindable(false)
}: Props = $props();
</script>
<DropdownMenu.Root bind:open>
<DropdownMenu.Trigger
class="flex h-6 w-6 cursor-pointer items-center justify-center rounded-md p-0 text-sm font-medium transition-colors hover:bg-accent hover:text-accent-foreground focus:bg-accent focus:text-accent-foreground focus:outline-none disabled:pointer-events-none disabled:opacity-50 data-[state=open]:bg-accent data-[state=open]:text-accent-foreground {triggerClass}"
onclick={(e) => e.stopPropagation()}
>
{#if triggerTooltip}
<Tooltip.Root>
<Tooltip.Trigger>
{@render iconComponent(triggerIcon, 'h-3 w-3')}
<span class="sr-only">{triggerTooltip}</span>
</Tooltip.Trigger>
<Tooltip.Content>
<p>{triggerTooltip}</p>
</Tooltip.Content>
</Tooltip.Root>
{:else}
{@render iconComponent(triggerIcon, 'h-3 w-3')}
{/if}
</DropdownMenu.Trigger>
<DropdownMenu.Content {align} class="z-[999999] w-48">
{#each actions as action, index (action.label)}
{#if action.separator && index > 0}
<DropdownMenu.Separator />
{/if}
<DropdownMenu.Item
onclick={action.onclick}
variant={action.variant}
disabled={action.disabled}
class="flex items-center justify-between hover:[&>kbd]:opacity-100"
>
<div class="flex items-center gap-2">
{@render iconComponent(
action.icon,
`h-4 w-4 ${action.variant === 'destructive' ? 'text-destructive' : ''}`
)}
{action.label}
</div>
{#if action.shortcut}
<KeyboardShortcutInfo keys={action.shortcut} variant={action.variant} />
{/if}
</DropdownMenu.Item>
{/each}
</DropdownMenu.Content>
</DropdownMenu.Root>
{#snippet iconComponent(IconComponent: Component, className: string)}
<IconComponent class={className} />
{/snippet}

View File

@ -0,0 +1,50 @@
<script lang="ts">
import type { Snippet } from 'svelte';
import * as DropdownMenu from '$lib/components/ui/dropdown-menu';
import { SearchInput } from '$lib/components/app';
interface Props {
placeholder?: string;
searchValue?: string;
onSearchChange?: (value: string) => void;
onSearchKeyDown?: (event: KeyboardEvent) => void;
emptyMessage?: string;
isEmpty?: boolean;
children: Snippet;
footer?: Snippet;
}
let {
placeholder = 'Search...',
searchValue = $bindable(''),
onSearchChange,
onSearchKeyDown,
emptyMessage = 'No items found',
isEmpty = false,
children,
footer
}: Props = $props();
</script>
<div class="sticky top-0 z-10 mb-2 bg-popover p-1 pt-2">
<SearchInput
{placeholder}
bind:value={searchValue}
onInput={onSearchChange}
onKeyDown={onSearchKeyDown}
/>
</div>
<div class="overflow-y-auto">
{@render children()}
{#if isEmpty}
<div class="px-2 py-3 text-center text-sm text-muted-foreground">{emptyMessage}</div>
{/if}
</div>
{#if footer}
<DropdownMenu.Separator />
{@render footer()}
{/if}

View File

@ -0,0 +1,65 @@
/**
*
* NAVIGATION & MENUS
*
* Components for dropdown menus and action selection.
*
*/
/**
* **DropdownMenuSearchable** - Searchable content for dropdown menus
*
* Renders a search input with filtered content area, empty state, and optional footer.
* Designed to be injected into any dropdown container (DropdownMenu.Content,
* DropdownMenu.SubContent, etc.) without providing its own Root.
*
* **Features:**
* - Search/filter input
* - Keyboard navigation support
* - Custom content and footer via snippets
* - Empty state message
*
* @example
* ```svelte
* <DropdownMenu.Root>
* <DropdownMenu.Trigger>...</DropdownMenu.Trigger>
* <DropdownMenu.Content class="pt-0">
* <DropdownMenuSearchable
* bind:searchValue
* placeholder="Search..."
* isEmpty={filteredItems.length === 0}
* >
* {#each items as item}<Item {item} />{/each}
* </DropdownMenuSearchable>
* </DropdownMenu.Content>
* </DropdownMenu.Root>
* ```
*/
export { default as DropdownMenuSearchable } from './DropdownMenuSearchable.svelte';
/**
* **DropdownMenuActions** - Multi-action dropdown menu
*
* Dropdown menu for multiple action options with icons and shortcuts.
* Supports destructive variants and keyboard shortcut hints.
*
* **Features:**
* - Configurable trigger icon with tooltip
* - Action items with icons and labels
* - Destructive variant styling
* - Keyboard shortcut display
* - Separator support between groups
*
* @example
* ```svelte
* <DropdownMenuActions
* triggerIcon={MoreHorizontal}
* triggerTooltip="More actions"
* actions={[
* { icon: Edit, label: 'Edit', onclick: handleEdit },
* { icon: Trash, label: 'Delete', onclick: handleDelete, variant: 'destructive' }
* ]}
* />
* ```
*/
export { default as DropdownMenuActions } from './DropdownMenuActions.svelte';

View File

@ -8,6 +8,7 @@
import { serverStore, serverLoading } from '$lib/stores/server.svelte';
import { config, settingsStore } from '$lib/stores/settings.svelte';
import { fade, fly, scale } from 'svelte/transition';
import { KeyboardKey } from '$lib/enums/keyboard';
interface Props {
class?: string;
@ -117,7 +118,7 @@
}
function handleApiKeyKeydown(event: KeyboardEvent) {
if (event.key === 'Enter') {
if (event.key === KeyboardKey.ENTER) {
handleSaveApiKey();
}
}

View File

@ -48,7 +48,7 @@
{model || 'Unknown Model'}
</Badge>
{#if serverData.default_generation_settings.n_ctx}
{#if serverData?.default_generation_settings?.n_ctx}
<Badge variant="secondary" class="text-xs">
ctx: {serverData.default_generation_settings.n_ctx.toLocaleString()}
</Badge>

View File

@ -0,0 +1,80 @@
/**
*
* SERVER
*
* Components for displaying server connection state and handling
* connection errors. Integrates with serverStore for state management.
*
*/
/**
* **ServerStatus** - Server connection status indicator
*
* Compact status display showing connection state, model name,
* and context size. Used in headers and loading screens.
*
* **Architecture:**
* - Reads state from serverStore (props, loading, error)
* - Displays model name from modelsStore
*
* **Features:**
* - Status dot: green (connected), yellow (connecting), red (error), gray (unknown)
* - Status text label
* - Model name badge with icon
* - Context size badge
* - Optional error action button
*
* @example
* ```svelte
* <ServerStatus showActions />
* ```
*/
export { default as ServerStatus } from './ServerStatus.svelte';
/**
* **ServerErrorSplash** - Full-screen connection error display
*
* Blocking error screen shown when server connection fails.
* Provides retry options and API key input for authentication errors.
*
* **Architecture:**
* - Detects access denied errors for API key flow
* - Validates API key against server before saving
* - Integrates with settingsStore for API key persistence
*
* **Features:**
* - Error message display with icon
* - Retry connection button with loading state
* - API key input for authentication errors
* - API key validation with success/error feedback
* - Troubleshooting section with server start commands
* - Animated transitions for UI elements
*
* @example
* ```svelte
* <ServerErrorSplash
* error={serverError}
* onRetry={handleRetry}
* showTroubleshooting
* />
* ```
*/
export { default as ServerErrorSplash } from './ServerErrorSplash.svelte';
/**
* **ServerLoadingSplash** - Full-screen loading display
*
* Shown during initial server connection. Displays loading animation
* with ServerStatus component for real-time connection state.
*
* **Features:**
* - Animated server icon
* - Customizable loading message
* - Embedded ServerStatus for live updates
*
* @example
* ```svelte
* <ServerLoadingSplash message="Connecting to server..." />
* ```
*/
export { default as ServerLoadingSplash } from './ServerLoadingSplash.svelte';

View File

@ -42,7 +42,7 @@
bind:this={ref}
data-slot="badge"
{href}
class={cn(badgeVariants({ variant }), className)}
class={cn(badgeVariants({ variant }), className, 'backdrop-blur-sm')}
{...restProps}
>
{@render children?.()}

View File

@ -12,8 +12,9 @@
'bg-destructive shadow-xs hover:bg-destructive/90 focus-visible:ring-destructive/20 dark:focus-visible:ring-destructive/40 dark:bg-destructive/60 text-white',
outline:
'bg-background shadow-xs hover:bg-accent hover:text-accent-foreground dark:bg-input/30 dark:border-input dark:hover:bg-input/50 border',
secondary: 'bg-secondary text-secondary-foreground shadow-xs hover:bg-secondary/80',
ghost: 'hover:bg-accent hover:text-accent-foreground dark:hover:bg-accent/50',
secondary:
'dark:bg-secondary dark:text-secondary-foreground bg-background shadow-sm text-foreground hover:bg-muted-foreground/20',
ghost: 'hover:text-accent-foreground hover:bg-muted-foreground/10',
link: 'text-primary underline-offset-4 hover:underline'
},
size: {

View File

@ -1,6 +1,7 @@
<script lang="ts">
import type { HTMLAttributes } from 'svelte/elements';
import { cn, type WithElementRef } from '$lib/components/ui/utils';
import { BOX_BORDER } from '$lib/constants/css-classes';
let {
ref = $bindable(null),
@ -14,7 +15,8 @@
bind:this={ref}
data-slot="card"
class={cn(
'flex flex-col gap-6 rounded-xl border bg-card py-6 text-card-foreground shadow-sm',
'flex flex-col gap-6 rounded-xl bg-card py-6 text-card-foreground shadow-sm',
BOX_BORDER,
className
)}
{...restProps}

View File

@ -19,7 +19,7 @@
data-slot="dropdown-menu-content"
{sideOffset}
class={cn(
'z-50 max-h-(--bits-dropdown-menu-content-available-height) min-w-[8rem] origin-(--bits-dropdown-menu-content-transform-origin) overflow-x-hidden overflow-y-auto rounded-md border border-border bg-popover p-1 text-popover-foreground shadow-md outline-none data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95 data-[state=open]:animate-in data-[state=open]:fade-in-0 data-[state=open]:zoom-in-95 dark:border-border/20',
'z-50 max-h-(--bits-dropdown-menu-content-available-height) min-w-[8rem] origin-(--bits-dropdown-menu-content-transform-origin) overflow-x-hidden overflow-y-auto rounded-md border border-border bg-popover p-1.5 text-popover-foreground shadow-md outline-none data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95 data-[state=open]:animate-in data-[state=open]:fade-in-0 data-[state=open]:zoom-in-95 dark:border-border/20',
className
)}
{...restProps}

View File

@ -44,6 +44,7 @@
'aria-invalid:border-destructive aria-invalid:ring-destructive/20 dark:aria-invalid:ring-destructive/40',
className
)}
style="backdrop-filter: blur(0.5rem);"
{type}
bind:value
{...restProps}

View File

@ -1,6 +1,5 @@
<script lang="ts">
import { Button } from '$lib/components/ui/button/index.js';
import { cn } from '$lib/components/ui/utils.js';
import PanelLeftIcon from '@lucide/svelte/icons/panel-left';
import type { ComponentProps } from 'svelte';
import { useSidebar } from './context.svelte.js';
@ -22,7 +21,7 @@
data-slot="sidebar-trigger"
variant="ghost"
size="icon"
class={cn('size-7', className)}
class="rounded-full backdrop-blur-lg {className} h-9! w-9!"
type="button"
onclick={(e) => {
onclick?.(e);

View File

@ -15,7 +15,7 @@
bind:checked
data-slot="switch"
class={cn(
'peer inline-flex h-[1.15rem] w-8 shrink-0 items-center rounded-full border border-transparent shadow-xs transition-all outline-none focus-visible:border-ring focus-visible:ring-[3px] focus-visible:ring-ring/50 disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-primary data-[state=unchecked]:bg-input dark:data-[state=unchecked]:bg-input/80',
'peer inline-flex h-[1.15rem] w-8 shrink-0 cursor-pointer items-center rounded-full border border-transparent shadow-xs transition-all outline-none focus-visible:border-ring focus-visible:ring-[3px] focus-visible:ring-ring/50 disabled:cursor-not-allowed disabled:opacity-50 data-[state=checked]:bg-primary data-[state=unchecked]:bg-input dark:data-[state=unchecked]:bg-input/80',
className
)}
{...restProps}

View File

@ -9,22 +9,28 @@
side = 'top',
children,
arrowClasses,
noPortal = false,
...restProps
}: TooltipPrimitive.ContentProps & {
arrowClasses?: string;
noPortal?: boolean;
} = $props();
const contentClass = $derived(
cn(
'z-50 w-fit origin-(--bits-tooltip-content-transform-origin) animate-in rounded-md bg-primary px-3 py-1.5 text-xs text-balance text-primary-foreground fade-in-0 zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95',
className
)
);
</script>
<TooltipPrimitive.Portal>
{#snippet tooltipContent()}
<TooltipPrimitive.Content
bind:ref
data-slot="tooltip-content"
{sideOffset}
{side}
class={cn(
'z-50 w-fit origin-(--bits-tooltip-content-transform-origin) animate-in rounded-md bg-primary px-3 py-1.5 text-xs text-balance text-primary-foreground fade-in-0 zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2 data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=closed]:zoom-out-95',
className
)}
class={contentClass}
{...restProps}
>
{@render children?.()}
@ -44,4 +50,12 @@
{/snippet}
</TooltipPrimitive.Arrow>
</TooltipPrimitive.Content>
</TooltipPrimitive.Portal>
{/snippet}
{#if noPortal}
{@render tooltipContent()}
{:else}
<TooltipPrimitive.Portal>
{@render tooltipContent()}
</TooltipPrimitive.Portal>
{/if}

View File

@ -1,9 +1,6 @@
export interface BinaryDetectionOptions {
/** Number of characters to check from the beginning of the file */
prefixLength: number;
/** Maximum ratio of suspicious characters allowed (0.0 to 1.0) */
suspiciousCharThresholdRatio: number;
/** Maximum absolute number of null bytes allowed */
maxAbsoluteNullBytes: number;
}

View File

@ -0,0 +1,3 @@
export const INITIAL_FILE_SIZE = 0;
export const PROMPT_CONTENT_SEPARATOR = '\n\n';
export const CLIPBOARD_CONTENT_QUOTE_PREFIX = '"';

View File

@ -0,0 +1,8 @@
export const CODE_BLOCK_SCROLL_CONTAINER_CLASS = 'code-block-scroll-container';
export const CODE_BLOCK_WRAPPER_CLASS = 'code-block-wrapper';
export const CODE_BLOCK_HEADER_CLASS = 'code-block-header';
export const CODE_BLOCK_ACTIONS_CLASS = 'code-block-actions';
export const CODE_LANGUAGE_CLASS = 'code-language';
export const COPY_CODE_BTN_CLASS = 'copy-code-btn';
export const PREVIEW_CODE_BTN_CLASS = 'preview-code-btn';
export const RELATIVE_CLASS = 'relative';

Some files were not shown because too many files have changed in this diff Show More