Squashed commit of the following:

commit 912ed2cd9339d1b2875d98744ca5b51fa62e581e
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Dec 7 23:00:29 2025 -0300

    speculative (feat): implement recursive MTP drafting for GLM-4.5

commit bdf72d9552e3da64ffc85f175664713388752914
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Dec 6 16:10:16 2025 -0300

    sampling (feat): optimize speculative drafting with fast-path selection

commit a91980a8f3475a6bbac0a64d8be06dd4b613020e
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Dec 6 15:18:19 2025 -0300

    mtp (chore): clean old code

commit 6de0ecf55db8567db4faa99b0152b72c9e854548
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Dec 6 14:40:13 2025 -0300

    mtp (feat): add mtp arg

commit ea77394183b8e6c368af969b8274039a54b11486
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Dec 6 13:47:54 2025 -0300

    mtp-graph (fix): move llama_get_logits_ith outside the loop

commit 15dff208958fb66802f20ec53ce5fcaff133edb7
Merge: 171346c74 cae85fe53
Author: samuel <samueloliveira32df@gmail.com>
Date:   Thu Oct 16 13:44:41 2025 -0300

    Merge branch 'glm4-mtp-batch' of https://github.com/SamuelOliveirads/llama.cpp into glm4-mtp-graph-cache

commit cae85fe531876762ee02524fc4c3f6c5e7824c63
Author: samuel <samueloliveira32df@gmail.com>
Date:   Thu Oct 16 13:42:31 2025 -0300

    mtp-batch(fix): avoid logits for mtp kv cache operations

commit 171346c742c310bbcfbd786b61250638ccf8b44d
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Oct 12 16:33:01 2025 -0300

    mtp-graph(feat): Reactivate graph reuse only for main model path

commit 0127c6beeb384ec3abbc18b22dbe830f22fcf4b4
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Oct 11 22:20:54 2025 -0300

    mtp-batch(chore): Remove final MTP debug logs and dead code

commit 4bcc9e261ef57ee4cfaa65d06bcd0fcdeacf7797
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Oct 11 18:51:22 2025 -0300

    mtp-batch(fix): Correctly advance cache head and add MTP documentation

commit b4cbe030ac25056717763b812d1dd89681c08522
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Oct 11 18:37:40 2025 -0300

    mtp-batch(chore): Fix logit flags for speculative sampling and remove debug logs

commit a99709d0c1401d0b447dce1bd0101fb56390f50e
Author: samuel <samueloliveira32df@gmail.com>
Date:   Fri Oct 10 17:24:34 2025 -0300

    mtp-batch(refactor): Extract decode context and MTP input logic into helper methods

commit 913af8f48d2dab1d9e907cf6c48c921a229a295c
Author: samuel <samueloliveira32df@gmail.com>
Date:   Fri Oct 10 16:44:28 2025 -0300

    mtp-batch(refactor): Replace MTP boolean flags with an explicit operation enum

commit 6f74ba38070d62d37bc0fb71ce9871e1a4ffabcc
Author: samuel <samueloliveira32df@gmail.com>
Date:   Thu Oct 9 22:27:18 2025 -0300

    mtp-batch (fix): prevent mtp draft from polluting the cache

commit 5e1d719beffccf8c22784c24b52ff6f5ab56b9ff
Author: samuel <samueloliveira32df@gmail.com>
Date:   Thu Oct 9 15:21:23 2025 -0300

    mtp-batch (feat): Create and manage sinfo for MTP

commit febd8235d27fe9174ee4b54ea7a10e630939fee0
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Oct 5 14:43:40 2025 -0300

    mtp-batch (wip): fix how to warmup kv cache for MTP

commit 67c6c069e0a5496adfd7d8aa6ca7514db5a6f437
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Sep 27 19:42:32 2025 -0300

    mtp-batch (wip): Isolate MTP graph to prevent host embedding buffer corruption

commit 75dc25e6fe781c1b65038d69390fb778d760e3a1
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Sep 27 17:17:00 2025 -0300

    mtp-batch (wip): organize batch for mtp cache

commit 3da7e7f3309dbb576538850c92c1cbf8fdc6d6ee
Author: samuel <samueloliveira32df@gmail.com>
Date:   Tue Sep 23 22:45:11 2025 -0300

    mtp-batch (fix): warm mtp cache for small batch size

commit df64508b937784112168aa099644b60fef015f05
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Sep 21 21:55:41 2025 -0300

    mtp-batch (wip): merge glm graphs

commit 042eb8a829876ed175320df9c8133bcea0c40460
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Sep 21 21:29:00 2025 -0300

    mtp-batch (wip): merge mtp and model graph

commit 1318b2de82716710b9853e07bd640443a5a025bb
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sun Sep 14 10:22:59 2025 -0300

    mtp-batch (wip): move mtp execution to batch format

commit c6237c71ffd4485df1c35829c380b63e472fc5dd
Merge: 9fab53e43 8742ce0e3
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Sat Sep 13 02:57:01 2025 -0400

    Merge pull request #1 from SamuelOliveirads/glm4-moe-mtp

    feat: implemented sampling for MTP

commit 8742ce0e39823eeb101bb5b6099ff4ca7be10c6e
Author: samuel <samueloliveira32df@gmail.com>
Date:   Sat Sep 6 00:21:18 2025 -0300

    feat: apply logits + greedy sampler

commit 5a5bce85777041d841393b4396e28f8e3065bb10
Author: samuel <samueloliveira32df@gmail.com>
Date:   Wed Sep 3 17:56:14 2025 -0300

    fix: add sample acceptance

commit 07670a22c63b1fa335d6ec1c4a1e4255a920848c
Author: samuel <samueloliveira32df@gmail.com>
Date:   Wed Sep 3 13:25:21 2025 -0300

    feat: implemented sampling for MTP

commit 9fab53e4388c20aef497efd82e86dcb99ca58064
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Tue Sep 2 17:14:09 2025 -0400

    fixed mtp kv cache update step in cases where prompt size > n_batch and n_ubatch

commit 98bc0c6bf223f425f4ecea14f13fc46101f1b44a
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Tue Aug 26 01:26:51 2025 -0400

    replace standard sampler with greedy sampler for mtp draft

commit 471e026327cca9f6f58aeefe32129a6cb9390f4f
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Tue Aug 19 23:10:56 2025 -0400

    fixed vram leak

commit d72f9d5691054958cd1b139f228e5e588d3974cf
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Tue Aug 19 01:50:34 2025 -0400

    kludge-y kv cache management of mtp layer

commit 382135aa3619294ab8bf87b0de4b1255ab7942f0
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Sun Aug 17 21:54:45 2025 -0400

    fixed mtp kv cache update sequencing after prompt processing

commit 6870f9790c1bb1d0254241267b1a6c8a7fc82830
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Sun Aug 17 04:59:36 2025 -0400

    added proper KV cache management for MTP layers and slightly refactored

commit 6e9bafc7a738b4c99f9440c0ec461e08cf6ce702
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Fri Aug 15 23:13:56 2025 -0400

    failed attempt to implement MTP; outputs tokens but KV cache management is unreasonable

commit cf0f7c0448c2c1736588673114558e5829db7879
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Wed Aug 13 02:21:17 2025 -0400

    broad thrust of the mtp implementation

commit 03231da69eec20677e25e2307d4fe31ac2ede034
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Tue Aug 12 01:03:59 2025 -0400

    add model member function to build mtp graph, to be called from speculative.cpp

commit 1f477b375504aa557ed21066aa6783b11781a179
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Mon Aug 11 20:54:45 2025 -0400

    make nextn weights loadable without a crash

commit e434f87cc739a1901931d88e33f777170a4e18e7
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Mon Aug 11 01:21:47 2025 -0400

    some work towards building mtp layer graph

commit db60623e7926fb151b3cc63f029929122cac342a
Author: Aaron Lee <lee.aaron.65@gmail.com>
Date:   Sun Aug 10 23:52:54 2025 -0400

    added getter for nextn layer count and server slot has_mtp property
This commit is contained in:
samuel 2025-12-09 22:50:04 -03:00 committed by Aaron Lee
parent e1f15b454f
commit fe2baf5e2d
18 changed files with 1053 additions and 296 deletions

View File

@ -3214,6 +3214,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.cache_type_k = kv_cache_type_from_str(value); params.speculative.cache_type_k = kv_cache_type_from_str(value);
} }
).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT")); ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
add_opt(common_arg(
{"-mtp", "--multi-token-prediction"},
string_format("Activate multi-token-prediction (if supported) (default: %s)", params.mtp ? "true" : "false"),
[](common_params & params) {
params.mtp = true;
}
));
add_opt(common_arg( add_opt(common_arg(
{"-ctvd", "--cache-type-v-draft"}, "TYPE", {"-ctvd", "--cache-type-v-draft"}, "TYPE",
string_format( string_format(

View File

@ -430,6 +430,7 @@ struct common_params {
bool no_op_offload = false; // globally disable offload host tensor operations to device bool no_op_offload = false; // globally disable offload host tensor operations to device
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking) bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
bool no_host = false; // bypass host buffer allowing extra buffers to be used bool no_host = false; // bypass host buffer allowing extra buffers to be used
bool mtp = false; // use mtp is supported
bool single_turn = false; // single turn chat conversation bool single_turn = false; // single turn chat conversation

View File

@ -666,3 +666,42 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
return samplers; return samplers;
} }
/**
* Specialized sampling for speculative drafting.
*
* Prioritizes performance by using a direct ArgMax loop (Greedy) when no
* penalties (repetition, frequency, presence, DRY) are configured.
* Falls back to the full sampler chain if penalties are active to prevent
* generative loops or adhere to constraints.
*/
llama_token common_sampler_sample_speculative(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
const auto & params = gsmpl->params;
bool use_heavy_sampler =
(params.penalty_last_n > 0 && (
params.penalty_repeat != 1.0f ||
params.penalty_freq != 0.0f ||
params.penalty_present != 0.0f
)) ||
(params.dry_allowed_length > 0 && params.dry_multiplier != 0.0f);
if (use_heavy_sampler) {
return common_sampler_sample(gsmpl, ctx, idx, false);
}
float * logits = llama_get_logits_ith(ctx, idx);
const int n_vocab = llama_n_vocab(llama_model_get_vocab(llama_get_model(ctx)));
int best_id = 0;
float max_val = logits[0];
for (int i = 1; i < n_vocab; ++i) {
if (logits[i] > max_val) {
max_val = logits[i];
best_id = i;
}
}
return best_id;
}

View File

@ -359,3 +359,116 @@ llama_tokens common_speculative_gen_draft(
} }
return result; return result;
} }
llama_tokens mtp_speculative_gen_draft(
struct common_sampler* smpl,
struct llama_context* ctx,
struct common_speculative_params params,
llama_token id_last,
int32_t n_past,
llama_seq_id seq_id) {
int n_draft = params.n_draft;
llama_tokens drafts;
drafts.reserve(n_draft);
if (!smpl) return drafts;
llama_batch mtp_batch = llama_batch_init(1, 0, 1);
mtp_batch.mtp_params.op_type = MTP_OP_DRAFT_GEN;
llama_token current_input_id = id_last;
int32_t current_n_past = n_past;
for (int i = 0; i < n_draft; ++i) {
mtp_batch.n_tokens = 0;
common_batch_add(mtp_batch, current_input_id, current_n_past, {seq_id}, true);
// Perform the MTP draft generation decode. This writes the MTP layer's
// KV state for the draft token into the cache.
if (llama_decode(ctx, mtp_batch) != 0) {
break;
}
llama_token id_next = common_sampler_sample_speculative(smpl, ctx, 0);
// Drafting stops if token probability drops below `p_min` to save compute.
const auto * cur_p = common_sampler_get_candidates(smpl, true);
if (cur_p && cur_p->size > 0) {
float prob = cur_p->data[0].p;
if (prob < params.p_min) {
drafts.push_back(id_next);
current_n_past++;
break;
}
}
drafts.push_back(id_next);
current_input_id = id_next;
current_n_past++;
}
llama_batch_free(mtp_batch);
// CRITICAL: Purge the metadata for the draft token we just wrote.
// This makes the physical cell available again for the main model's validation pass,
// preventing a cache state corruption where two cells map to the same logical position.
if (!drafts.empty()) {
llama_kv_cache_seq_rm(ctx, seq_id, n_past, current_n_past);
}
return drafts;
}
void mtp_update_kv_cache(struct llama_context * ctx, const llama_batch& batch, bool is_prompt_warmup) {
if (batch.n_tokens == 0) {
return;
}
LOG_DBG("[MTP-UPDATE|%s] Updating %d tokens...\n", is_prompt_warmup ? "PROMPT_WARMUP" : "GEN_ACCEPTED", batch.n_tokens);
llama_batch mtp_batch = batch;
if (is_prompt_warmup) {
mtp_batch.mtp_params.op_type = MTP_OP_WARMUP;
} else {
mtp_batch.mtp_params.op_type = MTP_OP_UPDATE_ACCEPTED;
}
for (int i = 0; i < mtp_batch.n_tokens; ++i) {
mtp_batch.logits[i] = true;
}
llama_decode(ctx, mtp_batch);
}
void mtp_accept_tokens(
struct llama_context * ctx,
const std::vector<llama_token> & ids,
int32_t n_past_base,
llama_seq_id seq_id
) {
if (ids.empty()) {
return;
}
// Prepare a resized copy of the validation sinfo to match the number of accepted tokens.
// This sets up the context for a "forced sinfo" decode.
if (!llama_mtp_prepare_sinfo_for_update(ctx, ids.size())) {
return;
}
// Build a new batch containing only the accepted tokens.
llama_batch accepted_batch = llama_batch_init(ids.size(), 0, 1);
for (size_t i = 0; i < ids.size(); ++i) {
common_batch_add(accepted_batch, ids[i], n_past_base + i, { seq_id }, true);
}
mtp_update_kv_cache(ctx, accepted_batch, false);
// Clean up the forced state to not affect subsequent, normal decode calls.
llama_mtp_cancel_sinfo_update(ctx);
llama_batch_free(accepted_batch);
}

View File

@ -12,6 +12,12 @@ struct common_speculative_params {
float p_min = 0.75f; // min probability required to accept a token in the draft float p_min = 0.75f; // min probability required to accept a token in the draft
}; };
struct mtp_kv_update_data {
llama_token id;
int32_t n_past;
int32_t tok_idx;
};
struct common_speculative * common_speculative_init( struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt, struct llama_context * ctx_tgt,
struct llama_context * ctx_dft struct llama_context * ctx_dft
@ -29,7 +35,40 @@ void common_speculative_add_replacement_tgt_dft(
// sample up to n_draft tokens and add them to the batch using the draft model // sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft( llama_tokens common_speculative_gen_draft(
struct common_speculative * spec, struct common_speculative * spec,
struct common_speculative_params params, struct common_speculative_params params,
const llama_tokens & prompt, const llama_tokens & prompt,
llama_token id_last); llama_token id_last);
/**
* @brief Generates speculative draft tokens using the Multi-Token Prediction (MTP) architecture.
*
* This function performs a recursive generation loop using the MTP head (e.g., Eagle/NextN).
* It uses the fixed hidden state from the main model's last step and updates the MTP layer's
* internal KV cache autoregressively.
*
* @param smpl The sampler instance.
* @param ctx The llama context (shared between Main and MTP).
* @param params Speculative parameters (n_draft, p_min).
* @param id_last The last confirmed token ID from the main model.
* @param n_past The number of tokens in the validated past (start position for drafting).
* @param seq_id The sequence ID to use for drafting.
*
* @return std::vector<llama_token> The generated draft tokens.
*/
llama_tokens mtp_speculative_gen_draft(
struct common_sampler* smpl,
struct llama_context* ctx,
struct common_speculative_params params,
llama_token id_last,
int32_t n_past,
llama_seq_id seq_id);
void mtp_update_kv_cache(struct llama_context * ctx, const llama_batch& batch, bool is_prompt_warmup);
void mtp_accept_tokens(
struct llama_context * ctx,
const std::vector<llama_token> & ids,
int32_t n_past_base,
llama_seq_id seq_id
);

View File

@ -228,6 +228,17 @@ extern "C" {
// - if not: only the last token is output // - if not: only the last token is output
// ) // )
// //
typedef enum {
MTP_OP_NONE,
MTP_OP_WARMUP,
MTP_OP_UPDATE_ACCEPTED,
MTP_OP_DRAFT_GEN,
} llama_mtp_op_type;
typedef struct llama_mtp_params {
llama_mtp_op_type op_type;
} llama_mtp_params;
typedef struct llama_batch { typedef struct llama_batch {
int32_t n_tokens; int32_t n_tokens;
@ -237,6 +248,7 @@ extern "C" {
int32_t * n_seq_id; int32_t * n_seq_id;
llama_seq_id ** seq_id; llama_seq_id ** seq_id;
int8_t * logits; // TODO: rename this to "output" int8_t * logits; // TODO: rename this to "output"
llama_mtp_params mtp_params;
} llama_batch; } llama_batch;
enum llama_model_kv_override_type { enum llama_model_kv_override_type {
@ -536,6 +548,8 @@ extern "C" {
LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab); LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
LLAMA_API int32_t llama_model_n_nextn_layer(const struct llama_model * model);
// Functions to access the model's GGUF metadata scalar values // Functions to access the model's GGUF metadata scalar values
// - The functions return the length of the string on success, or -1 on failure // - The functions return the length of the string on success, or -1 on failure
// - The output string is always null-terminated and cleared on failure // - The output string is always null-terminated and cleared on failure
@ -1442,6 +1456,38 @@ extern "C" {
ggml_opt_epoch_callback callback_train, ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval); ggml_opt_epoch_callback callback_eval);
//
// MTP
//
LLAMA_API void llama_set_draft_input_hidden_state(struct llama_context * ctx, const float * hidden_state);
/**
* @brief Prepares the context for an MTP KV cache update by creating a resized copy of the last sinfo.
* This is used after speculative validation when only a subset of draft tokens are accepted.
* @param n_accepted The number of tokens that were accepted and for which the sinfo should be resized.
* @return true on success.
*/
LLAMA_API bool llama_mtp_prepare_sinfo_for_update(struct llama_context * ctx, size_t n_accepted);
/**
* @brief Prepares the context for an MTP KV cache update by reusing the sinfo from the last main model decode.
* This is used for the prompt warmup to ensure the MTP and main model KV caches are perfectly aligned.
* @return true on success.
*/
LLAMA_API bool llama_mtp_prepare_sinfo_for_warmup(struct llama_context * ctx);
/**
* @brief Clears the forced sinfo state from the context. Must be called after a decode that used a prepared sinfo.
*/
LLAMA_API void llama_mtp_cancel_sinfo_update(struct llama_context * ctx);
/**
* @brief Removes KV cache metadata for a specified sequence and token range.
* This makes the physical cells logically available again without deleting the tensor data.
*/
LLAMA_API void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@ -2370,12 +2370,13 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}}, {LLM_TENSOR_VISEXP_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
// NextN/MTP tensors are currently ignored (reserved for future MTP support) // NextN/MTP tensors are currently ignored (reserved for future MTP support)
// These tensors only exist in the last layer(s) and are treated as output tensors // These tensors only exist in the last layer(s) and are treated as output tensors
{LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, // Changed to LLM_TENSOR_LAYER_REPEATING because we saved these under a blk with a non-negative id
{LLM_TENSOR_NEXTN_EMBED_TOKENS, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}}, {LLM_TENSOR_NEXTN_EH_PROJ, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_NEXTN_ENORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_GET_ROWS}}, {LLM_TENSOR_NEXTN_EMBED_TOKENS, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}},
{LLM_TENSOR_NEXTN_HNORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, {LLM_TENSOR_NEXTN_ENORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_GET_ROWS}},
{LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL_MAT}}, {LLM_TENSOR_NEXTN_HNORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, {LLM_TENSOR_LAYER_OUTPUT, GGML_OP_MUL}}, {LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
}; };
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {} LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}

View File

@ -301,17 +301,17 @@ bool llama_batch_allocr::init(
ok = false; ok = false;
} }
if (!ok) { // if (!ok) {
LLAMA_LOG_ERROR( // LLAMA_LOG_ERROR(
"%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n" // "%s: the tokens of sequence %d in the input batch have inconsistent sequence positions:\n"
" - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n" // " - the last position stored in the memory module of the context (i.e. the KV cache) for sequence %d is X = %d\n"
" - the tokens for sequence %d in the input batch have a starting position of Y = %d\n" // " - the tokens for sequence %d in the input batch have a starting position of Y = %d\n"
" it is required that the sequence positions remain consecutive: Y = X + 1\n", // " it is required that the sequence positions remain consecutive: Y = X + 1\n",
__func__, s, s, p0, s, seq_pos_min(s)); // __func__, s, s, p0, s, seq_pos_min(s));
return false; // return false;
} // }
} }
if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) { if (seq_pos_max(s) - seq_pos_min(s) + 1 > (int) seq_pos[s].size()) {
LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s); LLAMA_LOG_ERROR("%s: sequence %d positions are not continuous\n", __func__, s);
@ -874,13 +874,14 @@ struct llama_batch llama_batch_get_one(
struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) { struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
llama_batch batch = { llama_batch batch = {
/*n_tokens =*/ 0, /*n_tokens =*/ 0,
/*tokens =*/ nullptr, /*tokens =*/ nullptr,
/*embd =*/ nullptr, /*embd =*/ nullptr,
/*pos =*/ nullptr, /*pos =*/ nullptr,
/*n_seq_id =*/ nullptr, /*n_seq_id =*/ nullptr,
/*seq_id =*/ nullptr, /*seq_id =*/ nullptr,
/*logits =*/ nullptr, /*logits =*/ nullptr,
/*.mtp_params =*/ { MTP_OP_NONE },
}; };
if (embd) { if (embd) {

View File

@ -7,6 +7,7 @@
#include "llama-memory.h" #include "llama-memory.h"
#include "llama-mmap.h" #include "llama-mmap.h"
#include "llama-model.h" #include "llama-model.h"
#include "llama-kv-cache.h"
#include <cinttypes> #include <cinttypes>
#include <cmath> #include <cmath>
@ -17,6 +18,13 @@
// //
// llama_context // llama_context
// //
// Key for the graph cache. It contains all parameters that define the graph topology.
struct llama_context_kv_cache_data {
llama_kv_cache::slot_info_vec_t last_main_model_sinfos;
llama_kv_cache::slot_info_vec_t resized_sinfo_for_force;
const llama_kv_cache::slot_info_vec_t * forced_sinfos = nullptr;
};
llama_context::llama_context( llama_context::llama_context(
const llama_model & model, const llama_model & model,
@ -136,6 +144,9 @@ llama_context::llama_context(
cparams.op_offload = params.op_offload; cparams.op_offload = params.op_offload;
cparams.kv_unified = params.kv_unified; cparams.kv_unified = params.kv_unified;
kv_cache_data = new llama_context_kv_cache_data();
{ {
const char * LLAMA_GRAPH_REUSE_DISABLE = getenv("LLAMA_GRAPH_REUSE_DISABLE"); const char * LLAMA_GRAPH_REUSE_DISABLE = getenv("LLAMA_GRAPH_REUSE_DISABLE");
graph_reuse_disable = LLAMA_GRAPH_REUSE_DISABLE ? (atoi(LLAMA_GRAPH_REUSE_DISABLE) != 0) : graph_reuse_disable; graph_reuse_disable = LLAMA_GRAPH_REUSE_DISABLE ? (atoi(LLAMA_GRAPH_REUSE_DISABLE) != 0) : graph_reuse_disable;
@ -477,6 +488,7 @@ llama_context::~llama_context() {
// } // }
// } // }
ggml_opt_free(opt_ctx); ggml_opt_free(opt_ctx);
delete static_cast<llama_context_kv_cache_data *>(kv_cache_data);
} }
void llama_context::synchronize() { void llama_context::synchronize() {
@ -712,6 +724,10 @@ float * llama_context::get_embeddings_seq(llama_seq_id seq_id) {
return it->second.data(); return it->second.data();
} }
ggml_tensor * llama_context::get_embeddings_tensor() {
return embd_tensor;
}
void llama_context::attach_threadpool( void llama_context::attach_threadpool(
ggml_threadpool_t threadpool, ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch) { ggml_threadpool_t threadpool_batch) {
@ -806,7 +822,8 @@ bool llama_context::apply_adapter_cvec(
return cvec.apply(model, data, len, n_embd, il_start, il_end); return cvec.apply(model, data, len, n_embd, il_start, il_end);
} }
llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, ggml_status & ret) { llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, ggml_status & ret,
const llama_mtp_params & mtp_params) {
if (mctx && !mctx->apply()) { if (mctx && !mctx->apply()) {
LLAMA_LOG_ERROR("%s: failed to apply memory context\n", __func__); LLAMA_LOG_ERROR("%s: failed to apply memory context\n", __func__);
ret = GGML_STATUS_FAILED; ret = GGML_STATUS_FAILED;
@ -818,7 +835,7 @@ llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, ll
// the new graph parameters // the new graph parameters
// in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters // in order to correctly reuse a graph, it's full topology has to be uniquely determined by these parameters
const auto gparams = graph_params(res, ubatch, mctx, gtype); const auto gparams = graph_params(res, ubatch, mctx, gtype, mtp_params);
if (!graph_reuse_disable && res->can_reuse(gparams)) { if (!graph_reuse_disable && res->can_reuse(gparams)) {
//LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__); //LLAMA_LOG_DEBUG("%s: reusing previous graph\n", __func__);
@ -849,6 +866,13 @@ llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, ll
} }
} }
if (mtp_params.op_type != MTP_OP_NONE) { // If it is any MTP operation
if (!prepare_mtp_graph_inputs(res, ubatch, mtp_params)) {
ret = GGML_STATUS_FAILED;
return nullptr;
}
}
// set the input data for the input tensors // set the input data for the input tensors
{ {
//const auto t_start_us = ggml_time_us(); //const auto t_start_us = ggml_time_us();
@ -927,7 +951,7 @@ int llama_context::encode(const llama_batch & batch_inp) {
cparams.causal_attn = false; cparams.causal_attn = false;
ggml_status status; ggml_status status;
const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status); const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_ENCODER, nullptr, status, { MTP_OP_NONE });
cparams.causal_attn = causal_attn_org; cparams.causal_attn = causal_attn_org;
@ -1035,6 +1059,8 @@ int llama_context::encode(const llama_batch & batch_inp) {
int llama_context::decode(const llama_batch & batch_inp) { int llama_context::decode(const llama_batch & batch_inp) {
GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT GGML_ASSERT((!batch_inp.token && batch_inp.embd) || (batch_inp.token && !batch_inp.embd)); // NOLINT
auto * kvd = static_cast<llama_context_kv_cache_data *>(kv_cache_data);
if (!memory) { if (!memory) {
LLAMA_LOG_DEBUG("%s: cannot decode batches with this context (calling encode() instead)\n", __func__); LLAMA_LOG_DEBUG("%s: cannot decode batches with this context (calling encode() instead)\n", __func__);
return encode(batch_inp); return encode(batch_inp);
@ -1089,10 +1115,11 @@ int llama_context::decode(const llama_batch & batch_inp) {
// handle any pending shifts/copies // handle any pending shifts/copies
memory_update(false); memory_update(false);
llama_memory_context_ptr mctx; std::unique_ptr<llama_memory_context_i> mctx;
while (true) { while (true) {
mctx = memory->init_batch(*balloc, cparams.n_ubatch, output_all); mctx = this->initialize_decode_context(batch_inp, output_all);
if (!mctx) { if (!mctx) {
return -2; return -2;
} }
@ -1109,6 +1136,12 @@ int llama_context::decode(const llama_batch & batch_inp) {
} }
case LLAMA_MEMORY_STATUS_FAILED_PREPARE: case LLAMA_MEMORY_STATUS_FAILED_PREPARE:
{ {
if (kvd->forced_sinfos) {
LLAMA_LOG_ERROR("%s: Mismatch between ubatches and sinfos during reuse.\n", __func__);
return -1;
}
if (!did_optimize) { if (!did_optimize) {
did_optimize = true; did_optimize = true;
@ -1162,7 +1195,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
} }
ggml_status status; ggml_status status;
const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mctx.get(), status); const auto * res = process_ubatch(ubatch, LLM_GRAPH_TYPE_DECODER, mctx.get(), status, batch_inp.mtp_params);
if (!res) { if (!res) {
// the last ubatch failed or was aborted -> remove all positions of that ubatch from the memory module // the last ubatch failed or was aborted -> remove all positions of that ubatch from the memory module
@ -1209,71 +1242,81 @@ int llama_context::decode(const llama_batch & batch_inp) {
// extract logits // extract logits
if (t_logits && n_outputs > 0) { if (t_logits && n_outputs > 0) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits); // MTP operations that are purely for updating the KV cache
GGML_ASSERT(backend_res != nullptr); // (MTP_OP_WARMUP and MTP_OP_UPDATE_ACCEPTED) also produce a logit tensor
GGML_ASSERT(logits != nullptr); // as a side effect of running the graph. If these logits are copied
// back to the main context buffer, they will overwrite the valid logits
// produced by the main model's pass, leading to incorrect sampling.
// This condition explicitly prevents that copy for cache-only operations.
if (batch_inp.mtp_params.op_type != MTP_OP_WARMUP &&
batch_inp.mtp_params.op_type != MTP_OP_UPDATE_ACCEPTED) {
ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(sched.get(), t_logits);
GGML_ASSERT(backend_res != nullptr);
GGML_ASSERT(logits != nullptr);
float * logits_out = logits + n_outputs_prev*n_vocab; float * logits_out = logits + n_outputs_prev*n_vocab;
if (n_outputs) { if (n_outputs) {
GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size); GGML_ASSERT((n_outputs_prev + n_outputs)*n_vocab <= (int64_t) logits_size);
ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float)); ggml_backend_tensor_get_async(backend_res, t_logits, logits_out, 0, n_outputs*n_vocab*sizeof(float));
}
} }
} }
// extract embeddings // extract embeddings
if (t_embd && n_outputs > 0) { if (t_embd && n_outputs > 0) {
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd); if (batch_inp.mtp_params.op_type == MTP_OP_NONE) {
GGML_ASSERT(backend_embd != nullptr); ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
GGML_ASSERT(backend_embd != nullptr);
switch (cparams.pooling_type) { switch (cparams.pooling_type) {
case LLAMA_POOLING_TYPE_NONE: case LLAMA_POOLING_TYPE_NONE:
{ {
// extract token embeddings // extract token embeddings
GGML_ASSERT(embd != nullptr); GGML_ASSERT(embd != nullptr);
float * embd_out = embd + n_outputs_prev*n_embd; float * embd_out = embd + n_outputs_prev*n_embd;
if (n_outputs) { if (n_outputs) {
GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all); GGML_ASSERT( n_outputs_prev + n_outputs <= n_outputs_all);
GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size); GGML_ASSERT((n_outputs_prev + n_outputs)*n_embd <= (int64_t) embd_size);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float)); ggml_backend_tensor_get_async(backend_embd, t_embd, embd_out, 0, n_outputs*n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
// extract sequence embeddings (cleared before processing each batch)
auto & embd_seq_out = embd_seq;
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_RANK:
{
// extract the rerank score - n_cls_out floats per sequence
auto & embd_seq_out = embd_seq;
const uint32_t n_cls_out = hparams.n_cls_out;
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_cls_out);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
GGML_ABORT("unknown pooling type");
} }
} break; }
case LLAMA_POOLING_TYPE_MEAN:
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
// extract sequence embeddings (cleared before processing each batch)
auto & embd_seq_out = embd_seq;
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_embd);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_embd*seq_idx)*sizeof(float), n_embd*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_RANK:
{
// extract the rerank score - n_cls_out floats per sequence
auto & embd_seq_out = embd_seq;
const uint32_t n_cls_out = hparams.n_cls_out;
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const llama_seq_id seq_id = ubatch.seq_id_unq[s];
const int32_t seq_idx = ubatch.seq_idx[seq_id];
embd_seq_out[seq_id].resize(n_cls_out);
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (n_cls_out*seq_idx)*sizeof(float), n_cls_out*sizeof(float));
}
} break;
case LLAMA_POOLING_TYPE_UNSPECIFIED:
{
GGML_ABORT("unknown pooling type");
}
} }
} }
@ -1478,7 +1521,7 @@ ggml_cgraph * llama_context::graph_reserve(
auto * res = gf_res_reserve.get(); auto * res = gf_res_reserve.get();
const auto gparams = graph_params(res, ubatch, mctx, LLM_GRAPH_TYPE_DEFAULT); const auto gparams = graph_params(res, ubatch, mctx, LLM_GRAPH_TYPE_DEFAULT, { MTP_OP_NONE });
res->reset(); res->reset();
@ -1505,8 +1548,9 @@ ggml_cgraph * llama_context::graph_reserve(
llm_graph_params llama_context::graph_params( llm_graph_params llama_context::graph_params(
llm_graph_result * res, llm_graph_result * res,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
const llama_memory_context_i * mctx, const llama_memory_context_i * mctx,
llm_graph_type gtype) const { llm_graph_type gtype,
const llama_mtp_params & mtp_params) const {
return { return {
/*.arch =*/ model.arch, /*.arch =*/ model.arch,
/*.hparams =*/ model.hparams, /*.hparams =*/ model.hparams,
@ -1519,12 +1563,28 @@ llm_graph_params llama_context::graph_params(
/*.loras =*/ &loras, /*.loras =*/ &loras,
/*.mctx =*/ mctx, /*.mctx =*/ mctx,
/*.cross =*/ &cross, /*.cross =*/ &cross,
/*.mtp_params =*/ mtp_params,
/*.n_outputs =*/ n_outputs, /*.n_outputs =*/ n_outputs,
/*.cb =*/ graph_get_cb(), /*.cb =*/ graph_get_cb(),
/*.res =*/ res, /*.res =*/ res,
}; };
} }
std::unique_ptr<llama_memory_context_i> llama_context::mtp_memory_batch(const llama_batch& batch_inp) {
const auto& vocab = model.vocab;
const auto& hparams = model.hparams;
const int64_t n_vocab = vocab.n_tokens();
const int64_t n_embd = hparams.n_embd;
if (!balloc->init(batch_inp, vocab, memory.get(), n_embd, cparams.kv_unified ? LLAMA_MAX_SEQ : cparams.n_seq_max, false)) {
LLAMA_LOG_ERROR("%s: failed to initialize batch\n", __func__);
return nullptr;
}
return memory->init_batch(*balloc, 1, false);
}
ggml_status llama_context::graph_compute( ggml_status llama_context::graph_compute(
ggml_cgraph * gf, ggml_cgraph * gf,
bool batched) { bool batched) {
@ -2266,7 +2326,7 @@ void llama_context::opt_epoch_iter(
auto * res = gf_res_prev.get(); auto * res = gf_res_prev.get();
const auto gparams = graph_params(res, ubatch, mctx.get(), LLM_GRAPH_TYPE_DEFAULT); const auto gparams = graph_params(res, ubatch, mctx.get(), LLM_GRAPH_TYPE_DEFAULT, { MTP_OP_NONE });
res->reset(); res->reset();
@ -3055,3 +3115,122 @@ void llama_opt_epoch(
callback_train, callback_train,
callback_eval); callback_eval);
} }
void llama_set_draft_input_hidden_state(struct llama_context * ctx, const float * hidden_state) {
ctx->draft_input_hidden_state = hidden_state;
}
bool llama_mtp_prepare_sinfo_for_warmup(struct llama_context * ctx) {
auto * kvd = static_cast<llama_context_kv_cache_data *>(ctx->kv_cache_data);
const auto & last_sinfo = kvd->last_main_model_sinfos;
if (last_sinfo.empty()) {
LLAMA_LOG_ERROR("%s: The main call sinfo is not available for warmup.\n", __func__);
return false;
}
kvd->forced_sinfos = &last_sinfo;
return true;
}
bool llama_mtp_prepare_sinfo_for_update(struct llama_context * ctx, size_t n_accepted) {
auto * kvd = static_cast<llama_context_kv_cache_data *>(ctx->kv_cache_data);
const auto & last_sinfo = kvd->last_main_model_sinfos;
if (last_sinfo.empty() || last_sinfo[0].idxs.empty()) {
LLAMA_LOG_ERROR("%s: The sinfo for the last main call is not available.", __func__);
return false;
}
kvd->resized_sinfo_for_force = last_sinfo;
kvd->resized_sinfo_for_force[0].idxs[0].resize(n_accepted);
kvd->forced_sinfos = &kvd->resized_sinfo_for_force;
return true;
}
void llama_mtp_cancel_sinfo_update(struct llama_context * ctx) {
auto * kvd = static_cast<llama_context_kv_cache_data *>(ctx->kv_cache_data);
kvd->forced_sinfos = nullptr;
}
void llama_context::kv_cache_seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
if (memory) {
static_cast<llama_kv_cache *>(memory.get())->seq_rm(seq_id, p0, p1);
}
}
void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
ctx->kv_cache_seq_rm(seq_id, p0, p1);
}
/*
Initializes the memory context for a decode operation.
The logic follows a specific priority:
1. Warmup: Always use a standard batch initialization.
2. Forced S-Info (MTP Updates): If a specific KV cache layout is forced, use it.
3. Default: Use a standard batch initialization, and if it's a main model pass,
save the resulting s-info for potential future reuse by MTP.
*/
std::unique_ptr<llama_memory_context_i> llama_context::initialize_decode_context(const llama_batch & batch_inp, const bool output_all) {
auto * kvd = static_cast<llama_context_kv_cache_data *>(kv_cache_data);
std::unique_ptr<llama_memory_context_i> mctx;
if (cparams.warmup) {
mctx = memory->init_batch(*balloc, cparams.n_ubatch, output_all);
} else if (kvd->forced_sinfos && !kvd->forced_sinfos->empty()) {
LLAMA_LOG_DEBUG("%s: Forcing sinfos, bypassing find_slot.\n", __func__);
mctx = static_cast<llama_kv_cache *>(memory.get())->init_batch_with_sinfos(
*balloc, cparams.n_ubatch, *kvd->forced_sinfos, true
);
} else {
mctx = memory->init_batch(*balloc, cparams.n_ubatch, output_all);
if (batch_inp.mtp_params.op_type == MTP_OP_NONE) {
if (mctx && mctx->get_status() == LLAMA_MEMORY_STATUS_SUCCESS) {
kvd->last_main_model_sinfos = static_cast<llama_kv_cache_context *>(mctx.get())->get_sinfos();
} else {
kvd->last_main_model_sinfos.clear();
}
}
}
return mctx;
}
bool llama_context::prepare_mtp_graph_inputs(
llm_graph_result * res,
const llama_ubatch & ubatch,
const llama_mtp_params & mtp_params) {
const char * target_tensor_name = "result_embd_pooled";
ggml_tensor* hidden_states_input = ggml_get_tensor(res->get_ctx(), target_tensor_name);
const float * source_hidden_state = nullptr;
if (mtp_params.op_type == MTP_OP_WARMUP || mtp_params.op_type == MTP_OP_UPDATE_ACCEPTED) {
source_hidden_state = this->embd;
} else { // MTP_OP_DRAFT_GEN
source_hidden_state = this->draft_input_hidden_state;
}
if (source_hidden_state != nullptr && hidden_states_input != nullptr) {
const char * op_type;
if (mtp_params.op_type == MTP_OP_WARMUP || mtp_params.op_type == MTP_OP_UPDATE_ACCEPTED) {
op_type = "MTP_UPDATE";
} else { // MTP_OP_DRAFT_GEN
op_type = "DRAFT_GEN";
}
ggml_backend_tensor_set(hidden_states_input, source_hidden_state, 0, ggml_nbytes(hidden_states_input));
} else {
LLAMA_LOG_ERROR("%s: MTP hidden state input tensor ('%s') not found or main embd buffer is null\n",
__func__, target_tensor_name);
return false;
}
return true;
}

View File

@ -32,6 +32,8 @@ struct llama_memory_breakdown_data {
} }
}; };
struct llama_context_kv_cache_data;
struct llama_context { struct llama_context {
// init scheduler and compute buffers, reserve worst-case graphs // init scheduler and compute buffers, reserve worst-case graphs
llama_context( llama_context(
@ -69,6 +71,11 @@ struct llama_context {
float * get_embeddings(); float * get_embeddings();
float * get_embeddings_ith(int32_t i); float * get_embeddings_ith(int32_t i);
float * get_embeddings_seq(llama_seq_id seq_id); float * get_embeddings_seq(llama_seq_id seq_id);
ggml_tensor * get_embeddings_tensor();
const float * draft_input_hidden_state = nullptr;
void * kv_cache_data = nullptr;
void attach_threadpool( void attach_threadpool(
ggml_threadpool_t threadpool, ggml_threadpool_t threadpool,
@ -100,6 +107,8 @@ struct llama_context {
int32_t il_start, int32_t il_start,
int32_t il_end); int32_t il_end);
void kv_cache_seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1);
// process a single ubatch with a specific graph type // process a single ubatch with a specific graph type
// if memory_context is provided, it will be applied first to the context's memory // if memory_context is provided, it will be applied first to the context's memory
// ret contains the status of the graph computation // ret contains the status of the graph computation
@ -108,7 +117,8 @@ struct llama_context {
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
llm_graph_type gtype, llm_graph_type gtype,
llama_memory_context_i * mctx, llama_memory_context_i * mctx,
ggml_status & ret); ggml_status & ret,
const llama_mtp_params & mtp_params);
int encode(const llama_batch & batch_inp); int encode(const llama_batch & batch_inp);
int decode(const llama_batch & batch_inp); int decode(const llama_batch & batch_inp);
@ -218,10 +228,21 @@ private:
llm_graph_result * res, llm_graph_result * res,
const llama_ubatch & ubatch, const llama_ubatch & ubatch,
const llama_memory_context_i * mctx, const llama_memory_context_i * mctx,
llm_graph_type gtype) const; llm_graph_type gtype,
const llama_mtp_params & mtp_params) const;
llm_graph_cb graph_get_cb() const; llm_graph_cb graph_get_cb() const;
// Methods for MTP decode
std::unique_ptr<llama_memory_context_i> initialize_decode_context(const llama_batch & batch_inp, const bool output_all);
bool prepare_mtp_graph_inputs(
llm_graph_result * res,
const llama_ubatch & ubatch,
const llama_mtp_params & mtp_params);
std::unique_ptr<struct llama_memory_context_i> mtp_memory_batch(const llama_batch & batch_inp);
// TODO: read/write lora adapters and cvec // TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io); size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io); size_t state_read_data (llama_io_read_i & io);
@ -251,6 +272,7 @@ private:
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings size_t embd_size = 0; // capacity (of floats) for embeddings
float * embd = nullptr; float * embd = nullptr;
ggml_tensor * embd_tensor = nullptr;
// sequence embeddings output (map of [n_embd] vectors) // sequence embeddings output (map of [n_embd] vectors)
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE

View File

@ -1254,6 +1254,26 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
return cur; return cur;
} }
ggml_tensor * llm_graph_context::build_inp_embd_mtp(ggml_tensor * mtp_tok_embd) const {
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * cur = nullptr;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
ggml_set_name(inp->tokens, "mtp_inp_tokens");
ggml_set_input(inp->tokens);
cur = ggml_get_rows(ctx0, mtp_tok_embd, inp->tokens);
} else {
GGML_ABORT("fatal error: MTP update expects token IDs, not embeddings");
}
cb(cur, "mtp_inp_embd", -1);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos() const { ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd()); auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());

View File

@ -29,6 +29,7 @@ enum llm_graph_type {
LLM_GRAPH_TYPE_DEFAULT, LLM_GRAPH_TYPE_DEFAULT,
LLM_GRAPH_TYPE_ENCODER, LLM_GRAPH_TYPE_ENCODER,
LLM_GRAPH_TYPE_DECODER, LLM_GRAPH_TYPE_DECODER,
LLM_GRAPH_TYPE_DRAFT,
}; };
enum llm_ffn_op_type { enum llm_ffn_op_type {
@ -102,6 +103,20 @@ protected:
using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>; using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
class llm_graph_input_mtp_states : public llm_graph_input_i {
public:
llm_graph_input_mtp_states() = default;
virtual ~llm_graph_input_mtp_states() = default;
void set_input(const llama_ubatch * /*ubatch*/) override {}
bool can_reuse(const llm_graph_params & /*params*/) override {
return true;
}
ggml_tensor * states = nullptr;
};
class llm_graph_input_embd : public llm_graph_input_i { class llm_graph_input_embd : public llm_graph_input_i {
public: public:
llm_graph_input_embd() = default; llm_graph_input_embd() = default;
@ -428,6 +443,7 @@ struct llm_graph_params {
const llama_adapter_loras * loras; const llama_adapter_loras * loras;
const llama_memory_context_i * mctx; const llama_memory_context_i * mctx;
const llama_cross * cross; const llama_cross * cross;
llama_mtp_params mtp_params;
uint32_t n_outputs; uint32_t n_outputs;
@ -476,6 +492,7 @@ struct llm_graph_params {
cvec == other.cvec && cvec == other.cvec &&
loras == other.loras && loras == other.loras &&
cross == other.cross && cross == other.cross &&
mtp_params.op_type == other.mtp_params.op_type &&
n_outputs == other.n_outputs; n_outputs == other.n_outputs;
} }
}; };
@ -690,6 +707,7 @@ struct llm_graph_context {
// //
ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const; ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
ggml_tensor * build_inp_embd_mtp(ggml_tensor * mtp_tok_embd) const;
ggml_tensor * build_inp_pos() const; ggml_tensor * build_inp_pos() const;
ggml_tensor * build_inp_attn_scale() const; ggml_tensor * build_inp_attn_scale() const;
ggml_tensor * build_inp_out_ids() const; ggml_tensor * build_inp_out_ids() const;

View File

@ -542,6 +542,34 @@ llama_memory_context_ptr llama_kv_cache::init_batch(
return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
} }
llama_memory_context_ptr llama_kv_cache::init_batch_with_sinfos(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
const slot_info_vec_t & sinfos,
bool is_inplace_update) {
if (sinfos.empty()) {
return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch));
}
if (ubatches.size() != sinfos.size()) {
return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
return std::make_unique<llama_kv_cache_context>(
this, sinfos, std::move(ubatches), is_inplace_update);
}
llama_memory_context_ptr llama_kv_cache::init_full() { llama_memory_context_ptr llama_kv_cache::init_full() {
return std::make_unique<llama_kv_cache_context>(this); return std::make_unique<llama_kv_cache_context>(this);
} }
@ -888,40 +916,61 @@ llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch,
} }
assert(res.s1 >= res.s0); assert(res.s1 >= res.s0);
if (!res.empty()) {
std::string idxs_str;
for (const auto& vec : res.idxs) {
if (!vec.empty()) {
if (vec.size() > 8) {
idxs_str += " [" + std::to_string(vec.front()) + "..." + std::to_string(vec.back()) + " (" + std::to_string(vec.size()) + " cells)]";
} else {
idxs_str += " [";
for(size_t i = 0; i < vec.size(); ++i) {
idxs_str += std::to_string(vec[i]) + (i == vec.size() - 1 ? "" : ", ");
}
idxs_str += "]";
}
}
}
}
return res; return res;
} }
void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) { void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch, bool is_inplace_update) {
// keep track of the max sequence position that we would overwrite with this ubatch // For "in-place" updates (MTP warmup/accept), we only update the tensor data.
// for non-SWA cache, this would be always empty // The cell metadata (logical position, sequence ID) has already been set
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ]; // by the main model's pass. We must skip all metadata modifications
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) { // to prevent `pos_set` from asserting on an already-set cell.
seq_pos_max_rm[s] = -1; if (!is_inplace_update) {
} // keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
seq_pos_max_rm[s] = -1;
}
assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size()); assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
for (uint32_t ii = 0; ii < sinfo.size(); ++ii) { for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
const uint32_t i = s*sinfo.size() + ii; const uint32_t i = s*sinfo.size() + ii;
auto & cells = v_cells[sinfo.strm[s]]; auto & cells = v_cells[sinfo.strm[s]];
const auto idx = sinfo.idxs[s][ii]; const auto idx = sinfo.idxs[s][ii];
if (!cells.is_empty(idx)) { if (!cells.is_empty(idx)) {
assert(cells.seq_count(idx) == 1); assert(cells.seq_count(idx) == 1);
const llama_seq_id seq_id = cells.seq_get(idx); const llama_seq_id seq_id = cells.seq_get(idx);
const llama_pos pos = cells.pos_get(idx); const llama_pos pos = cells.pos_get(idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos); seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(idx); cells.rm(idx);
} }
cells.pos_set(idx, ubatch.pos[i]); cells.pos_set(idx, ubatch.pos[i]);
if (ubatch.is_pos_2d()) { if (ubatch.is_pos_2d()) {
llama_kv_cell_ext ext { llama_kv_cell_ext ext {
@ -931,29 +980,30 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch &
cells.ext_set(idx, ext); cells.ext_set(idx, ext);
} }
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) { for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]); cells.seq_add(idx, ubatch.seq_id[i][s]);
}
} }
} }
}
// note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
// will be present in the cache. so we have to purge any position which is less than those we would overwrite // will be present in the cache. so we have to purge any position which is less than those we would overwrite
// ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092 // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) { for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (seq_pos_max_rm[s] == -1) { if (seq_pos_max_rm[s] == -1) {
continue; continue;
} }
GGML_ASSERT(s < seq_to_stream.size()); GGML_ASSERT(s < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[s]]; auto & cells = v_cells[seq_to_stream[s]];
if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) { if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n", LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
__func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s); __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1); seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
}
} }
} }
@ -2010,7 +2060,8 @@ llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache_context::llama_kv_cache_context( llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache * kv, llama_kv_cache * kv,
llama_kv_cache::slot_info_vec_t sinfos, llama_kv_cache::slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) { std::vector<llama_ubatch> ubatches,
bool is_inplace_update) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)), is_inplace_update(is_inplace_update) {
} }
llama_kv_cache_context::~llama_kv_cache_context() = default; llama_kv_cache_context::~llama_kv_cache_context() = default;
@ -2035,7 +2086,7 @@ bool llama_kv_cache_context::apply() {
return true; return true;
} }
kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]); kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur], is_inplace_update);
n_kv = kv->get_n_kv(sinfos[i_cur]); n_kv = kv->get_n_kv(sinfos[i_cur]);
return true; return true;
@ -2098,3 +2149,7 @@ void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ub
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch); kv->set_input_pos_bucket(dst, ubatch);
} }
void llama_kv_cache_context::set_sinfos(llama_kv_cache_context::slot_info_vec_t new_sinfos) {
sinfos = new_sinfos;
}

View File

@ -118,6 +118,12 @@ public:
llama_batch_allocr & balloc, llama_batch_allocr & balloc,
uint32_t n_ubatch, uint32_t n_ubatch,
bool embd_all) override; bool embd_all) override;
llama_memory_context_ptr init_batch_with_sinfos(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
const slot_info_vec_t & sinfos,
bool is_inplace_update);
llama_memory_context_ptr init_full() override; llama_memory_context_ptr init_full() override;
@ -182,7 +188,7 @@ public:
slot_info find_slot(const llama_ubatch & ubatch, bool cont) const; slot_info find_slot(const llama_ubatch & ubatch, bool cont) const;
// emplace the ubatch context into slot: [sinfo.idxs[0...ubatch.n_tokens - 1]] // emplace the ubatch context into slot: [sinfo.idxs[0...ubatch.n_tokens - 1]]
void apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch); void apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch, bool is_inplace_update = false);
// //
// input API // input API
@ -309,7 +315,8 @@ public:
llama_kv_cache_context( llama_kv_cache_context(
llama_kv_cache * kv, llama_kv_cache * kv,
slot_info_vec_t sinfos, slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches); std::vector<llama_ubatch> ubatches,
bool is_inplace_update = false);
virtual ~llama_kv_cache_context(); virtual ~llama_kv_cache_context();
@ -355,6 +362,10 @@ public:
void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
void set_sinfos(slot_info_vec_t new_sinfos);
const slot_info_vec_t & get_sinfos() const { return sinfos; }
private: private:
llama_memory_status status; llama_memory_status status;
@ -387,4 +398,6 @@ private:
// a heuristic, to avoid attending the full cache if it is not yet utilized // a heuristic, to avoid attending the full cache if it is not yet utilized
// as the cache gets filled, the benefit from this heuristic disappears // as the cache gets filled, the benefit from this heuristic disappears
int32_t n_kv; int32_t n_kv;
bool is_inplace_update = false;
}; };

View File

@ -1720,8 +1720,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
// NextN/MTP parameters // NextN/MTP parameters
ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false); ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
// TODO: when MTP is implemented, this should probably be updated if needed hparams.n_layer_kv_from_start = hparams.n_layer;
hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
switch (hparams.n_layer) { switch (hparams.n_layer) {
case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer) case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
@ -5054,10 +5053,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// but only PROCESS up to last layer (skipping final NextN layer) in forward pass // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
for (int i = 0; i < n_layer; ++i) { for (int i = 0; i < n_layer; ++i) {
int flags = 0; int flags = 0;
if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
// skip all tensors in the NextN layers
flags |= TENSOR_SKIP;
}
auto & layer = layers[i]; auto & layer = layers[i];
@ -7642,7 +7637,9 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
} }
// add on pooling layer // add on pooling layer
llm->build_pooling(cls, cls_b, cls_out, cls_out_b); if (params.mtp_params.op_type == MTP_OP_NONE) {
llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
}
// if the gguf model was converted with --sentence-transformers-dense-modules // if the gguf model was converted with --sentence-transformers-dense-modules
// there will be two additional dense projection layers // there will be two additional dense projection layers
@ -7733,6 +7730,10 @@ const char * llama_model_cls_label(const struct llama_model * model, uint32_t i)
return nullptr; return nullptr;
} }
int32_t llama_model_n_nextn_layer(const llama_model * model) {
return model->hparams.nextn_predict_layers;
}
// deprecated // deprecated
int32_t llama_n_ctx_train(const llama_model * model) { int32_t llama_n_ctx_train(const llama_model * model) {
return llama_model_n_ctx_train(model); return llama_model_n_ctx_train(model);

View File

@ -2,169 +2,308 @@
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v; const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
int sections[4]; int sections[4];
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections); std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
ggml_tensor * cur; ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd); if (params.mtp_params.op_type != MTP_OP_NONE) {
ggml_tensor* hidden_states_from_main_model;
bool use_mrope = hparams.use_mrope(); if (params.mtp_params.op_type == MTP_OP_WARMUP || params.mtp_params.op_type == MTP_OP_UPDATE_ACCEPTED) {
if (ubatch.embd && !use_mrope) { hidden_states_from_main_model = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, hparams.n_embd, n_tokens);
// unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results ggml_set_name(hidden_states_from_main_model, "result_embd_pooled");
GGML_ABORT("This GGUF does not support multimodal. Please reconvert it."); ggml_set_input(hidden_states_from_main_model);
}
// inp_pos - contains the positions auto inp_mtp = std::make_unique<llm_graph_input_mtp_states>();
ggml_tensor * inp_pos = build_inp_pos(); inp_mtp->states = hidden_states_from_main_model;
res->add_input(std::move(inp_mtp));
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Only process up to last layer (skip final NextN layer)
// Final layer tensors are loaded but not processed in forward pass
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
if (use_mrope) {
Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
} else {
// Normal RoPE
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// Post-attention norm
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else { } else {
// Process routed experts using existing MoE infrastructure hidden_states_from_main_model = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, hparams.n_embd);
ggml_tensor * routed_out = build_moe_ffn(cur, ggml_set_name(hidden_states_from_main_model, "result_embd_pooled");
model.layers[il].ffn_gate_inp, ggml_set_input(hidden_states_from_main_model);
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input auto inp_mtp = std::make_unique<llm_graph_input_mtp_states>();
ggml_tensor * shared_out = build_ffn(cur, inp_mtp->states = hidden_states_from_main_model;
model.layers[il].ffn_up_shexp, NULL, NULL, res->add_input(std::move(inp_mtp));
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
} }
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il); const int il_mtp = hparams.n_layer - 1;
cb(cur, "l_out", il); const auto & mtp_layer = model.layers[il_mtp];
res->t_logits = build_mtp_tail(mtp_layer, hidden_states_from_main_model, n_embd_head);
} else {
ggml_tensor * inpL;
// input for next layer inpL = build_inp_embd(model.tok_embd);
inpL = cur;
bool use_mrope = hparams.use_mrope();
if (ubatch.embd && !use_mrope) {
// unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * inp_out_ids = build_inp_out_ids();
// Only process up to last layer (skip final NextN layer)
// Final layer tensors are loaded but not processed in forward pass
const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
for (int il = 0; il < n_transformer_layers; ++il) {
ggml_tensor * inpSA = inpL;
// Pre-attention norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
}
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
}
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
}
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
if (use_mrope) {
Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
} else {
// Normal RoPE
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
if (il == n_transformer_layers - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// Post-attention norm
cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "post_attn_norm", il);
// Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
model.layers[il].ffn_gate, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// Process routed experts using existing MoE infrastructure
ggml_tensor * routed_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input
ggml_tensor * shared_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
} }
cur = inpL;
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1); ggml_build_forward_expand(gf, res->t_logits);
res->t_embd = cur; }
// lm_head
cur = build_lora_mm(model.output, cur); ggml_tensor * llm_build_glm4_moe::build_mtp_tail(const llama_layer & mtp_layer, ggml_tensor * prev_embeddings, int64_t n_embd_head) {
ggml_tensor * embd_copy = ggml_dup(ctx0, prev_embeddings);
cb(cur, "result_output", -1);
res->t_logits = cur; const int il = hparams.n_layer - 1;
ggml_tensor * sum_node = ggml_sum(ctx0, embd_copy);
ggml_build_forward_expand(gf, cur);
ggml_set_name(sum_node, "mtp_input_sum");
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv();
ggml_tensor * token_emb = build_inp_embd_mtp(mtp_layer.nextn.embed_tokens);
ggml_tensor * token_emb_norm = build_norm(token_emb, mtp_layer.nextn.enorm, NULL, LLM_NORM_RMS, il);
ggml_tensor * hidden_state_norm = build_norm(embd_copy, mtp_layer.nextn.hnorm, NULL, LLM_NORM_RMS, il);
ggml_tensor * combined = ggml_concat(ctx0, token_emb_norm, hidden_state_norm, 0);
ggml_tensor* cur = build_lora_mm(mtp_layer.nextn.eh_proj, combined);
// now proceed through last layer (skipped in main model)
ggml_tensor * inpSA = cur;
// Pre-attention norm for the MTP block
cur = build_norm(cur, mtp_layer.attn_norm, NULL, LLM_NORM_RMS, il);
// self-attention
{
ggml_tensor * Qcur = build_lora_mm(mtp_layer.wq, cur);
if (mtp_layer.bq) Qcur = ggml_add(ctx0, Qcur, mtp_layer.bq);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = build_lora_mm(mtp_layer.wk, cur);
if (mtp_layer.bk) Kcur = ggml_add(ctx0, Kcur, mtp_layer.bk);
cb(Kcur, "Kcur", il);
ggml_tensor * Vcur = build_lora_mm(mtp_layer.wv, cur);
if (mtp_layer.bv) Vcur = ggml_add(ctx0, Vcur, mtp_layer.bv);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
// Apply Q/K norm if available (GLM-4.5 355B variant)
if (mtp_layer.attn_q_norm) {
Qcur = build_norm(Qcur, mtp_layer.attn_q_norm, NULL, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (mtp_layer.attn_k_norm) {
Kcur = build_norm(Kcur, mtp_layer.attn_k_norm, NULL, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn,
mtp_layer.wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cur = build_norm(ffn_inp, mtp_layer.attn_post_norm, NULL, LLM_NORM_RMS, il);
// moe ffn for nextn block
{
// Process routed experts using existing MoE infrastructure
ggml_tensor * routed_out = build_moe_ffn(cur,
mtp_layer.ffn_gate_inp,
mtp_layer.ffn_up_exps,
mtp_layer.ffn_gate_exps,
mtp_layer.ffn_down_exps,
mtp_layer.ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(routed_out, "ffn_moe_out", il);
// Process shared expert on original input
ggml_tensor * shared_out = build_ffn(cur,
mtp_layer.ffn_up_shexp, NULL, NULL,
mtp_layer.ffn_gate_shexp, NULL, NULL,
mtp_layer.ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shared_out, "ffn_shexp_out", il);
// Final output: routed_output + shared_output
cur = ggml_add(ctx0, routed_out, shared_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_norm(cur, mtp_layer.nextn.shared_head_norm, NULL, LLM_NORM_RMS, il);
cur = build_lora_mm(mtp_layer.nextn.shared_head_head, cur);
return cur;
} }

View File

@ -220,6 +220,8 @@ struct llm_build_glm4 : public llm_graph_context {
struct llm_build_glm4_moe : public llm_graph_context { struct llm_build_glm4_moe : public llm_graph_context {
llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params); llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_mtp_tail(const llama_layer & mtp_layer, ggml_tensor * prev_embeddings, int64_t n_embd_head);
}; };
struct llm_build_gpt2 : public llm_graph_context { struct llm_build_gpt2 : public llm_graph_context {

View File

@ -80,6 +80,7 @@ struct server_slot {
mtmd_context * mctx = nullptr; mtmd_context * mctx = nullptr;
common_speculative * spec = nullptr; common_speculative * spec = nullptr;
bool has_mtp = false;
std::unique_ptr<const server_task> task; std::unique_ptr<const server_task> task;
std::unique_ptr<const server_task> task_prev; // used for debugging std::unique_ptr<const server_task> task_prev; // used for debugging
@ -206,7 +207,7 @@ struct server_slot {
bool need_embd() const { bool need_embd() const {
GGML_ASSERT(task); GGML_ASSERT(task);
return server_task_type_need_embd(task->type); return server_task_type_need_embd(task->type) || has_mtp;
} }
bool need_logits() const { bool need_logits() const {
@ -220,7 +221,8 @@ struct server_slot {
bool can_split() const { bool can_split() const {
return return
!need_embd() || !need_embd() ||
(llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST); (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST) ||
(llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_NONE);
} }
bool can_batch_with(server_slot & other_slot) const { bool can_batch_with(server_slot & other_slot) const {
@ -252,7 +254,7 @@ struct server_slot {
} }
bool can_speculate() const { bool can_speculate() const {
return ctx_dft; return (ctx_dft || has_mtp);
} }
void add_token(const completion_token_output & token) { void add_token(const completion_token_output & token) {
@ -769,6 +771,18 @@ struct server_context_impl {
} }
} }
// if model has MTP and no draft model is specified...
else if (llama_model_n_nextn_layer(model) > 0 && params_base.mtp) {
SRV_INF("model has nextn layers = %d\n", llama_model_n_nextn_layer(model));
slot.has_mtp = true;
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
SLT_DBG(slot, "batch_spec contains %d tokens\n", slot.batch_spec.n_tokens);
SRV_INF("%s (n_max=%d)\n", "MTP needs embeddings on decode, enabling", params_base.speculative.n_max);
llama_set_embeddings(ctx, true);
}
SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx); SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
slot.callback_on_release = [this](int) { slot.callback_on_release = [this](int) {
@ -1971,12 +1985,34 @@ struct server_context_impl {
GGML_ABORT("not supported by multimodal"); GGML_ABORT("not supported by multimodal");
} }
llama_tokens draft;
struct common_speculative_params params_spec; struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max; params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
params_spec.p_min = slot.task->params.speculative.p_min; params_spec.p_min = slot.task->params.speculative.p_min;
const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled); if (slot.ctx_dft) {
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
} else {
params_spec.n_reuse = 0;
}
if (slot.has_mtp) {
llama_set_draft_input_hidden_state(ctx, llama_get_embeddings_ith(ctx, -1));
draft = mtp_speculative_gen_draft(
slot.smpl,
ctx,
params_spec,
slot.sampled,
slot.prompt.n_tokens(),
slot.id
);
}
else {
const llama_tokens& cached_text_tokens = slot.prompt.tokens.get_text_tokens();
draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled);
}
// add the sampled token to the batch // add the sampled token to the batch
slot.i_batch_dft.push_back(batch.n_tokens); slot.i_batch_dft.push_back(batch.n_tokens);
@ -2583,6 +2619,21 @@ struct server_context_impl {
continue; // continue loop of n_batch continue; // continue loop of n_batch
} }
if (slot_batched && slot_batched->has_mtp &&
(slot_batched->state == SLOT_STATE_PROCESSING_PROMPT || slot_batched->state == SLOT_STATE_DONE_PROMPT)) {
// Prepare the context to reuse the exact sinfo layout (including multiple u-batches)
// from the main model's prompt processing pass. This ensures the MTP layer's
// KV cache is perfectly aligned.
if (llama_mtp_prepare_sinfo_for_warmup(ctx)) {
mtp_update_kv_cache(ctx, batch_view, true);
// Clean up the forced state to not affect subsequent decodes.
llama_mtp_cancel_sinfo_update(ctx);
} else {
LOG_ERR("%s: Failed to prepare the MTP for warmup.", __func__);
}
}
// move the head of the batch forward with the number of tokens we just processed // move the head of the batch forward with the number of tokens we just processed
i_next = i + n_tokens; i_next = i + n_tokens;
@ -2702,6 +2753,16 @@ struct server_context_impl {
slot.i_batch_dft.clear(); slot.i_batch_dft.clear();
slot.drafted.clear(); slot.drafted.clear();
if (slot.has_mtp) {
if (!ids.empty()) {
llama_set_draft_input_hidden_state(ctx, llama_get_embeddings_ith(ctx, ids.size() - 1));
} else {
llama_set_draft_input_hidden_state(ctx, llama_get_embeddings_ith(ctx, 0));
}
mtp_accept_tokens(ctx, ids, slot.prompt.n_tokens(), slot.id);
}
slot.n_decoded += ids.size(); slot.n_decoded += ids.size();
slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3; slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;