CLI: fixed adding cli and completion into docker containers, improved docs (#18003)

Co-authored-by: Andrew Aladjev <andrew.aladjev@gmail.com>
This commit is contained in:
Andrew Aladjev 2025-12-16 13:52:23 +03:00 committed by GitHub
parent 5f5f9b4637
commit fb644247de
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 23 additions and 14 deletions

View File

@ -107,7 +107,7 @@ ENTRYPOINT ["/app/tools.sh"]
# ENTRYPOINT ["/app/llama-server"] # ENTRYPOINT ["/app/llama-server"]
### Target: light ### Target: light
# Lightweight image containing only llama-cli # Lightweight image containing only llama-cli and llama-completion
# ============================================================================== # ==============================================================================
FROM base AS light FROM base AS light

View File

@ -23,11 +23,12 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \ RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \ source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \ cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \
cmake --build build --config Release --target llama-cli cmake --build build --config Release --target llama-cli && \
cmake --build build --config Release --target llama-completion
# TODO: use image with NNRT # TODO: use image with NNRT
FROM ascendai/cann:$ASCEND_VERSION AS runtime FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli COPY --from=build /app/build/bin/llama-cli /app/build/bin/llama-completion /
ENV LC_ALL=C.utf8 ENV LC_ALL=C.utf8

View File

@ -37,6 +37,7 @@ make -j GGML_CUDA=1
%install %install
mkdir -p %{buildroot}%{_bindir}/ mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-cuda-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple
@ -68,6 +69,7 @@ rm -rf %{_builddir}/*
%files %files
%{_bindir}/llama-cuda-cli %{_bindir}/llama-cuda-cli
%{_bindir}/llama-cuda-completion
%{_bindir}/llama-cuda-server %{_bindir}/llama-cuda-server
%{_bindir}/llama-cuda-simple %{_bindir}/llama-cuda-simple
/usr/lib/systemd/system/llamacuda.service /usr/lib/systemd/system/llamacuda.service

View File

@ -39,6 +39,7 @@ make -j
%install %install
mkdir -p %{buildroot}%{_bindir}/ mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cli cp -p llama-cli %{buildroot}%{_bindir}/llama-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-server cp -p llama-server %{buildroot}%{_bindir}/llama-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-simple cp -p llama-simple %{buildroot}%{_bindir}/llama-simple
@ -70,6 +71,7 @@ rm -rf %{_builddir}/*
%files %files
%{_bindir}/llama-cli %{_bindir}/llama-cli
%{_bindir}/llama-completion
%{_bindir}/llama-server %{_bindir}/llama-server
%{_bindir}/llama-simple %{_bindir}/llama-simple
/usr/lib/systemd/system/llama.service /usr/lib/systemd/system/llama.service

View File

@ -7,9 +7,9 @@
## Images ## Images
We have three Docker images available for this project: We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`) 1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`) 2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the `llama-cli` and `llama-completion` executables. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`) 3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the `llama-server` executable. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above: Additionally, there the following images, similar to the above:
@ -44,13 +44,15 @@ docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-o
On completion, you are ready to play! On completion, you are ready to play!
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run-legacy -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
``` ```
or with a light image: or with a light image:
```bash ```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 docker run -v /path/to/models:/models --entrypoint /app/llama-cli ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models --entrypoint /app/llama-completion ghcr.io/ggml-org/llama.cpp:light -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
``` ```
or with a server image: or with a server image:
@ -59,6 +61,8 @@ or with a server image:
docker run -v /path/to/models:/models -p 8080:8080 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512 docker run -v /path/to/models:/models -p 8080:8080 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512
``` ```
In the above examples, `--entrypoint /app/llama-cli` is specified for clarity, but you can safely omit it since it's the default entrypoint in the container.
## Docker With CUDA ## Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container. Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
@ -80,9 +84,9 @@ The defaults are:
The resulting images, are essentially the same as the non-CUDA images: The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. 1. `local/llama.cpp:full-cuda`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file. 2. `local/llama.cpp:light-cuda`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file. 3. `local/llama.cpp:server-cuda`: This image only includes the `llama-server` executable.
## Usage ## Usage
@ -114,9 +118,9 @@ The defaults are:
The resulting images, are essentially the same as the non-MUSA images: The resulting images, are essentially the same as the non-MUSA images:
1. `local/llama.cpp:full-musa`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. 1. `local/llama.cpp:full-musa`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-musa`: This image only includes the main executable file. 2. `local/llama.cpp:light-musa`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-musa`: This image only includes the server executable file. 3. `local/llama.cpp:server-musa`: This image only includes the `llama-server` executable.
## Usage ## Usage