WIP
This commit is contained in:
parent
f0a480cc22
commit
f931ad883f
|
|
@ -730,6 +730,8 @@ static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
|
|||
}
|
||||
}
|
||||
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
|
||||
template<const int BM, const int BN, const int BK, const int WM, const int WN,
|
||||
const int WK, const int NUM_THREADS>
|
||||
static __global__ void conv2d_implicit_kernel(const half * __restrict__ input,
|
||||
|
|
@ -793,16 +795,16 @@ static __global__ void conv2d_implicit_kernel(const half * __restrict__ input,
|
|||
// these register arrays are used to cache values pre-fetched from global memory during the inner loop of the kernel
|
||||
// the code is nicer if we hard code it for these tile dimensions and number of threads
|
||||
// since we performing this copy with float4 pointers, for these tile dimensions it works out to be 8 float4s for A and 4 float4s for B
|
||||
static_assert(BM_dim == 256);
|
||||
static_assert(BN_dim == 256);
|
||||
static_assert(BK_dim == 32);
|
||||
static_assert(BM == 256);
|
||||
static_assert(BN == 256);
|
||||
static_assert(BK == 32);
|
||||
static_assert(NUM_THREADS == 256);
|
||||
float4 A_gmem_cache_reg[4];
|
||||
float4 B_gmem_cache_reg[4];
|
||||
|
||||
// prefetch the first block tile of A,B into shared memory
|
||||
half* A_block_gmem = A + (block_m * BM_dim * A_stride);
|
||||
half* B_block_gmem = B + (block_n * BN_dim);
|
||||
half* A_block_gmem = input + (block_m * BM * A_stride);
|
||||
half* B_block_gmem = weight + (block_n * BN);
|
||||
tileMemcpySwizzleA<BM_dim, NUM_THREADS>(A_block_gmem, A_block_smem, K);
|
||||
tileMemcpySwizzle<BK_dim, BN_dim, NUM_THREADS, SWIZZLE_BITS_B>(B_block_gmem, B_block_smem, N);
|
||||
|
||||
|
|
@ -905,6 +907,7 @@ static __global__ void conv2d_implicit_kernel(const half * __restrict__ input,
|
|||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#define NUM_VARIANTS 6
|
||||
|
||||
|
|
|
|||
|
|
@ -25,6 +25,139 @@ typedef struct{
|
|||
uint3 S_fastdiv;
|
||||
} param_t;
|
||||
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
// same as above, but writes are swizzled to avoid bank conflicts when shared memory is read later in the kernel
|
||||
template<unsigned int TILE_ROWS,
|
||||
unsigned int TILE_COLS,
|
||||
unsigned int NUM_THREADS,
|
||||
unsigned int SWIZZLE_BITS>
|
||||
__device__ __forceinline__ void tileMemcpySwizzle(
|
||||
half* src,
|
||||
half* dst,
|
||||
const unsigned int src_stride
|
||||
)
|
||||
{
|
||||
constexpr unsigned int SWIZZLE_MASK = 0b111 << SWIZZLE_BITS;
|
||||
|
||||
// reinterpret input/output as float4
|
||||
float4* src_float4 = reinterpret_cast<float4*>(src);
|
||||
float4* dst_float4 = reinterpret_cast<float4*>(dst);
|
||||
const unsigned int src_stride_vectorized = src_stride / 8;
|
||||
|
||||
// # of threads is multiple of # of columns in the tile
|
||||
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
|
||||
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
|
||||
|
||||
// flatten out 2d grid of threads into in order of increasing threadIdx.x
|
||||
const unsigned int thread_idx = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
// assign each thread a row/column in the tile, calculate how many iterations we need
|
||||
// to cover the whole tile
|
||||
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
|
||||
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
|
||||
unsigned int thread_row = thread_idx / TILE_COLS_VECTORIZED;
|
||||
const unsigned int thread_col = thread_idx % TILE_COLS_VECTORIZED;
|
||||
|
||||
#pragma unroll
|
||||
for (unsigned int i = 0; i < NUM_ITERS; i++)
|
||||
{
|
||||
// apply swizzle to the dst index
|
||||
const unsigned int src_index = thread_row * src_stride_vectorized + thread_col;
|
||||
unsigned int dst_index = thread_row * TILE_COLS_VECTORIZED + thread_col;
|
||||
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK) >> SWIZZLE_BITS);
|
||||
dst_float4[dst_index] = src_float4[src_index];
|
||||
thread_row += ROW_STEP;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// this is a special case of the above for when TILE_COLS == 32
|
||||
template<unsigned int TILE_ROWS,
|
||||
unsigned int NUM_THREADS>
|
||||
__device__ __forceinline__ void tileMemcpySwizzleA(
|
||||
half* src,
|
||||
half* dst,
|
||||
const unsigned int src_stride
|
||||
)
|
||||
{
|
||||
constexpr unsigned int SWIZZLE_MASK_1 = 0b10000;
|
||||
constexpr unsigned int SWIZZLE_BITS_1 = 4;
|
||||
constexpr unsigned int SWIZZLE_MASK_2 = 0b1100;
|
||||
constexpr unsigned int SWIZZLE_BITS_2 = 2;
|
||||
constexpr unsigned int TILE_COLS = 32;
|
||||
|
||||
// reinterpret input/output as float4
|
||||
float4* src_float4 = reinterpret_cast<float4*>(src);
|
||||
float4* dst_float4 = reinterpret_cast<float4*>(dst);
|
||||
const unsigned int src_stride_vectorized = src_stride / 8;
|
||||
|
||||
// # of threads is multiple of # of columns in the tile
|
||||
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
|
||||
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
|
||||
|
||||
// flatten out 2d grid of threads into in order of increasing threadIdx.x
|
||||
const unsigned int thread_idx = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
// assign each thread a row/column in the tile, calculate how many iterations we need
|
||||
// to cover the whole tile
|
||||
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
|
||||
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
|
||||
unsigned int thread_row = thread_idx / TILE_COLS_VECTORIZED;
|
||||
const unsigned int thread_col = thread_idx % TILE_COLS_VECTORIZED;
|
||||
|
||||
#pragma unroll
|
||||
for (unsigned int i = 0; i < NUM_ITERS; i++)
|
||||
{
|
||||
// apply swizzle to the dst index
|
||||
const unsigned int src_index = thread_row * src_stride_vectorized + thread_col;
|
||||
unsigned int dst_index = thread_row * TILE_COLS_VECTORIZED + thread_col;
|
||||
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_1) >> SWIZZLE_BITS_1);
|
||||
dst_index = dst_index ^ ((dst_index & SWIZZLE_MASK_2) >> SWIZZLE_BITS_2);
|
||||
dst_float4[dst_index] = src_float4[src_index];
|
||||
thread_row += ROW_STEP;
|
||||
}
|
||||
}
|
||||
|
||||
template<unsigned int TILE_ROWS,
|
||||
unsigned int TILE_COLS,
|
||||
unsigned int NUM_THREADS,
|
||||
unsigned int ELEMENTS_PER_THREAD>
|
||||
__device__ __forceinline__ void tileMemcpyLoad(
|
||||
half* src,
|
||||
float4 (&dst_reg)[ELEMENTS_PER_THREAD],
|
||||
const unsigned int src_stride
|
||||
)
|
||||
{
|
||||
// reinterpret input/output as float4
|
||||
float4* src_float4 = reinterpret_cast<float4*>(src);
|
||||
const unsigned int src_stride_vectorized = src_stride / 8;
|
||||
|
||||
// # of threads is multiple of # of columns in the tile
|
||||
constexpr unsigned int TILE_COLS_VECTORIZED = TILE_COLS / 8;
|
||||
static_assert(NUM_THREADS % TILE_COLS_VECTORIZED == 0);
|
||||
|
||||
// flatten out 2d grid of threads into in order of increasing threadIdx.x
|
||||
const unsigned int thread_idx = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
// assign each thread a row/column in the tile, calculate how many iterations we need
|
||||
// to cover the whole tile
|
||||
constexpr unsigned int ROW_STEP = NUM_THREADS / TILE_COLS_VECTORIZED;
|
||||
constexpr unsigned int NUM_ITERS = TILE_ROWS / ROW_STEP;
|
||||
unsigned int thread_row = thread_idx / TILE_COLS_VECTORIZED;
|
||||
const unsigned int thread_col = thread_idx % TILE_COLS_VECTORIZED;
|
||||
|
||||
// compile time check that we provided the right amount of registers for storage
|
||||
static_assert(ELEMENTS_PER_THREAD == NUM_ITERS);
|
||||
|
||||
#pragma unroll
|
||||
for (unsigned int i = 0; i < NUM_ITERS; i++)
|
||||
{
|
||||
const unsigned int src_index = thread_row * src_stride_vectorized + thread_col;
|
||||
dst_reg[i] = src_float4[src_index];
|
||||
thread_row += ROW_STEP;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#define CUDA_CONV2D_IMPLICT_BLOCK_SIZE 256
|
||||
void ggml_cuda_op_conv2d_implicit(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
|||
Loading…
Reference in New Issue