Merge remote-tracking branch 'sfallah/master' into sf/deepseek-ocr

# Conflicts:
#	tools/mtmd/clip.cpp
This commit is contained in:
Saba Fallah 2026-02-10 09:23:15 +01:00
commit f41d3239e7
82 changed files with 4285 additions and 1391 deletions

View File

@ -295,6 +295,7 @@ jobs:
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
@ -307,6 +308,7 @@ jobs:
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
@ -468,7 +470,7 @@ jobs:
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ctest -L main --verbose --timeout 4800
ubuntu-24-cmake-webgpu:
runs-on: ubuntu-24.04

73
.github/workflows/server-metal.yml vendored Normal file
View File

@ -0,0 +1,73 @@
name: Server-Metal
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server-metal.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
env:
LLAMA_LOG_COLORS: 1
LLAMA_LOG_PREFIX: 1
LLAMA_LOG_TIMESTAMPS: 1
LLAMA_LOG_VERBOSITY: 10
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
server-metal:
runs-on: [self-hosted, macOS, ARM64]
name: server-metal (${{ matrix.wf_name }})
strategy:
matrix:
build_type: [Release]
wf_name: ["GPUx1"]
include:
- build_type: Release
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
wf_name: "GPUx1, backend-sampling"
- build_type: Release
extra_args: "GGML_METAL_DEVICES=2"
wf_name: "GPUx2"
- build_type: Release
extra_args: "GGML_METAL_DEVICES=2 LLAMA_ARG_BACKEND_SAMPLING=1"
wf_name: "GPUx2, backend-sampling"
fail-fast: false
steps:
- name: Clone
id: checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Build
id: cmake_build
run: |
cmake -B build -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config ${{ matrix.build_type }} -j $(sysctl -n hw.logicalcpu) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
run: |
cd tools/server/tests
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
export ${{ matrix.extra_args }}
pytest -v -x -m "not slow"

View File

@ -8,10 +8,6 @@ on:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
@ -101,119 +97,3 @@ jobs:
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
- name: Setup Node.js for WebUI
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh

View File

@ -81,18 +81,14 @@ jobs:
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests
@ -102,6 +98,14 @@ jobs:
export ${{ matrix.extra_args }}
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
export ${{ matrix.extra_args }}
SLOW_TESTS=1 pytest -v -x
server-windows:
runs-on: windows-2022
@ -124,11 +128,7 @@ jobs:
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests

View File

@ -109,6 +109,7 @@ option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_DEFAULT})
option(LLAMA_TESTS_INSTALL "llama: install tests" ON)
# 3rd party libs
option(LLAMA_HTTPLIB "llama: httplib for downloading functionality" ON)

View File

@ -288,6 +288,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
| [VirtGPU](docs/backend/VirtGPU.md) | VirtGPU APIR |
## Obtaining and quantizing models

View File

@ -3437,16 +3437,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.ngram_size_m = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-check-rate"}, "N",
string_format("ngram check rate for ngram-simple/ngram-map speculative decoding (default: %d)", params.speculative.ngram_check_rate),
[](common_params & params, int value) {
if (value < 1) {
throw std::invalid_argument("ngram check rate must be at least 1");
}
params.speculative.ngram_check_rate = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-min-hits"}, "N",
string_format("minimum hits for ngram-map speculative decoding (default: %d)", params.speculative.ngram_min_hits),

View File

@ -380,15 +380,46 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
return msgs;
}
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
static json render_message_to_json(const std::vector<common_chat_msg> & msgs, const jinja::caps & c) {
if (!c.supports_string_content && !c.supports_typed_content) {
LOG_WRN("%s: Neither string content nor typed content is supported by the template. This is unexpected and may lead to issues.\n", __func__);
}
bool only_string_accepted = c.supports_string_content && !c.supports_typed_content;
bool only_typed_accepted = !c.supports_string_content && c.supports_typed_content;
json messages = json::array();
for (const auto & msg : msgs) {
json jmsg = msg.to_json_oaicompat(concat_typed_text);
messages.push_back(jmsg);
if (only_string_accepted) {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ true);
messages.push_back(jmsg);
} else if (only_typed_accepted) {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
if (jmsg.at("content").is_string()) {
jmsg["content"] = json::array({
json{
{"type", "text"},
{"text", jmsg.at("content").get<std::string>()},
}
});
}
messages.push_back(jmsg);
} else {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
messages.push_back(jmsg);
}
}
return messages;
}
// DEPRECATED: only used in tests
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
jinja::caps c;
c.supports_string_content = true;
c.supports_typed_content = !concat_typed_text;
return render_message_to_json(msgs, c);
}
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & tools) {
std::vector<common_chat_tool> result;
@ -3020,7 +3051,7 @@ static common_chat_params common_chat_templates_apply_jinja(
: *tmpls->template_default;
const auto & src = tmpl.source();
const auto & caps = tmpl.original_caps();
params.messages = common_chat_msgs_to_json_oaicompat(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
params.messages = render_message_to_json(inputs.messages, tmpl.original_caps());
params.add_generation_prompt = inputs.add_generation_prompt;
params.tool_choice = inputs.tool_choice;
params.reasoning_format = inputs.reasoning_format;

View File

@ -240,6 +240,8 @@ bool common_chat_templates_support_enable_thinking(const common_chat_templates *
// Parses a JSON array of messages in OpenAI's chat completion API format.
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const nlohmann::ordered_json & messages);
// DEPRECATED: only used in tests
nlohmann::ordered_json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const nlohmann::ordered_json & tools);

View File

@ -269,7 +269,6 @@ struct common_params_speculative {
uint16_t ngram_size_n = 12; // ngram size for lookup
uint16_t ngram_size_m = 48; // mgram size for speculative tokens
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
std::shared_ptr<common_ngram_mod> ngram_mod;

View File

@ -63,7 +63,8 @@ static void caps_print_stats(value & v, const std::string & path) {
std::map<std::string, bool> caps::to_map() const {
return {
{"requires_typed_content", requires_typed_content},
{"supports_string_content", supports_string_content},
{"supports_typed_content", supports_typed_content},
{"supports_tools", supports_tools},
{"supports_tool_calls", supports_tool_calls},
{"supports_parallel_tool_calls", supports_parallel_tool_calls},
@ -89,7 +90,7 @@ caps caps_get(jinja::program & prog) {
return v->stats.ops.find(op_name) != v->stats.ops.end();
};
// case: typed content requirement
// case: typed content support
caps_try_execute(
prog,
[&]() {
@ -105,12 +106,16 @@ caps caps_get(jinja::program & prog) {
// tools
return json{nullptr};
},
[&](bool, value & messages, value &) {
[&](bool success, value & messages, value &) {
auto & content = messages->at(0)->at("content");
caps_print_stats(content, "messages[0].content");
if (has_op(content, "selectattr") || has_op(content, "array_access")) {
// accessed as an array
result.requires_typed_content = true;
result.supports_typed_content = true;
}
if (!success) {
// failed to execute with content as string
result.supports_string_content = false;
}
}
);

View File

@ -14,7 +14,9 @@ struct caps {
bool supports_parallel_tool_calls = true;
bool supports_preserve_reasoning = false; // support assistant message with reasoning_content
bool requires_typed_content = false; // default: use string content
// one of the 2 content capabilities must be true
bool supports_string_content = true;
bool supports_typed_content = false;
// for reporting on server
std::map<std::string, bool> to_map() const;

View File

@ -446,6 +446,12 @@ value for_statement::execute_impl(context & ctx) {
value iterable_val = iter_expr->execute(scope);
// mark the variable being iterated as used for stats
if (ctx.is_get_stats) {
iterable_val->stats.used = true;
iterable_val->stats.ops.insert("array_access");
}
if (iterable_val->is_undefined()) {
JJ_DEBUG("%s", "For loop iterable is undefined, skipping loop");
iterable_val = mk_val<value_array>();

View File

@ -231,10 +231,9 @@ void common_ngram_map_draft(common_ngram_map & map,
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
}
// Only check every check_rate tokens to save compute
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
if (map.idx_last_check + map.check_rate > cur_len) {
return;
if (map.idx_last_check > cur_len) {
// Should not happen because of common_ngram_map_begin().
GGML_ABORT("%s: map.idx_last_check > cur_len: %zu > %zu", __func__, map.idx_last_check, cur_len);
}
map.idx_last_check = cur_len;

View File

@ -24,7 +24,6 @@
struct common_ngram_simple_config {
uint16_t size_ngram; // size of n-grams to lookup in self-mode
uint16_t size_mgram; // size of m-grams to draft in self-mode
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
};
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
@ -66,15 +65,14 @@ struct common_ngram_map {
bool key_only; // true if only key n-grams are used, no values.
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
uint16_t min_hits; // minimum number of key hits to consider a draft
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
bool show_key_map_stats = false; // true, if statistics of the key_map should be printed.
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
uint16_t check_rate, uint16_t min_hits)
uint16_t min_hits)
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
check_rate(check_rate), min_hits(min_hits) {
min_hits(min_hits) {
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
}

View File

@ -113,13 +113,14 @@ static bool common_speculative_are_compatible(
struct common_speculative_state {
const enum common_speculative_type type;
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
// TODO: add n_call_begin, n_call_accept
size_t drafts_call_count = 0; // number of times this implementation was called.
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
size_t drafts_generated_tokens = 0; // number of tokens generated by this implementation.
size_t drafts_accepted_tokens = 0; // number of tokens accepted by the target model.
size_t n_call_begin = 0; // number of times this implementation was called for refresh.
size_t n_call_draft = 0; // number of times this implementation was called for generation.
size_t n_call_accept = 0; // number of times this implementation was called for accumulation.
size_t n_gen_drafts = 0; // number of times a draft or part was generated by this implementation.
size_t n_acc_drafts = 0; // number of times a draft or part was accepted by the target model.
size_t n_gen_tokens = 0; // number of tokens generated by this implementation.
size_t n_acc_tokens = 0; // number of tokens accepted by the target model.
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
@ -465,8 +466,6 @@ struct common_speculative_state_eagle3 : public common_speculative_state {
struct common_speculative_state_ngram_simple : public common_speculative_state {
common_ngram_simple_config config;
uint16_t check_id = 0; // used to control the frequency of generating drafts
common_speculative_state_ngram_simple(
enum common_speculative_type type,
common_ngram_simple_config config)
@ -481,11 +480,6 @@ struct common_speculative_state_ngram_simple : public common_speculative_state {
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
++check_id;
if (check_id < config.check_rate) {
return;
}
check_id = 0;
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
GGML_UNUSED(params);
@ -752,10 +746,9 @@ static common_ngram_map get_common_ngram_map(const common_speculative_config & c
uint16_t size_key = config.params.ngram_size_n;
uint16_t size_value = config.params.ngram_size_m;
bool key_only = (config.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
uint16_t check_rate = config.params.ngram_check_rate;
uint16_t min_hits = config.params.ngram_min_hits;
return common_ngram_map(size_key, size_value, key_only, check_rate, min_hits);
return common_ngram_map(size_key, size_value, key_only, min_hits);
}
static common_speculative_state_ngram_cache create_state_ngram_cache(
@ -805,6 +798,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
return it->second;
}
bool common_speculative_is_compat(llama_context * ctx_tgt) {
auto * mem = llama_get_memory(ctx_tgt);
if (mem == nullptr) {
return false;
}
bool res = true;
llama_memory_clear(mem, true);
// eval 2 tokens to check if the context is compatible
std::vector<llama_token> tmp;
tmp.push_back(0);
tmp.push_back(0);
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
if (ret != 0) {
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
res = false;
goto done;
}
// try to remove the last tokens
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
res = false;
goto done;
}
done:
llama_memory_clear(mem, true);
llama_synchronize(ctx_tgt);
return res;
}
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(
@ -895,12 +924,10 @@ common_speculative * common_speculative_init(
uint16_t ngram_size_key = ngram_map.size_key;
uint16_t mgram_size_value = ngram_map.size_value;
uint16_t check_rate = ngram_map.check_rate;
auto config_simple = common_ngram_simple_config {
/* .size_ngram = */ ngram_size_key,
/* .size_mgram = */ mgram_size_value,
/* .check_rate = */ check_rate
/* .size_mgram = */ mgram_size_value
};
auto state = std::make_unique<common_speculative_state_ngram_simple>(
/* .type = */ config.type,
@ -961,6 +988,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
for (auto & impl : spec->impls) {
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
impl->begin(prompt);
impl->n_call_begin++;
}
}
@ -977,17 +1005,17 @@ llama_tokens common_speculative_draft(
{
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
impl->draft(params, prompt_tgt, id_last, result);
impl->drafts_call_count++;
impl->n_call_draft++;
}
if (!result.empty()) {
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
impl.get()->drafts_call_count, result.size());
impl.get()->n_call_draft, result.size());
spec->curr_impl = impl.get(); // set current implementation for stats
impl->drafts_generated_count++;
impl->drafts_generated_tokens += result.size();
impl->n_gen_drafts++;
impl->n_gen_tokens += result.size();
break; // We have a draft, so break out of the loop and return it.
}
@ -1008,11 +1036,12 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
{
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
impl->n_acc_drafts++;
impl->n_acc_tokens += n_accepted;
}
impl->accept(n_accepted);
impl->n_call_accept++;
}
}
@ -1033,13 +1062,13 @@ void common_speculative_print_stats(const common_speculative * spec) {
str_perf = "";
}
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
LOG_INF("statistics %s: #calls(b,g,a) = %zu %zu %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,
impl->drafts_generated_count,
impl->drafts_accepted_count,
impl->drafts_generated_tokens,
impl->drafts_accepted_tokens,
impl->n_call_begin, impl->n_call_draft, impl->n_call_accept,
impl->n_gen_drafts,
impl->n_acc_drafts,
impl->n_gen_tokens,
impl->n_acc_tokens,
str_perf.c_str());
}
}

View File

@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
// convert type to string
std::string common_speculative_type_to_str(enum common_speculative_type type);
// check if the llama_context is compatible for speculative decoding
// note: clears the memory of the context
bool common_speculative_is_compat(llama_context * ctx_tgt);
common_speculative * common_speculative_init(
common_params_speculative & params,
llama_context * ctx_tgt);

View File

@ -586,6 +586,10 @@ class ModelBase:
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
# Kimi KDA conv weights should be F32
gguf.MODEL_TENSOR.SSM_CONV1D_Q,
gguf.MODEL_TENSOR.SSM_CONV1D_K,
gguf.MODEL_TENSOR.SSM_CONV1D_V,
)
)
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
@ -906,10 +910,10 @@ class TextModel(ModelBase):
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
if (n_experts := self.hparams.get("num_local_experts")) is not None:
if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None:
self.gguf_writer.add_expert_count(n_experts)
logger.info(f"gguf: expert count = {n_experts}")
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
if (n_expert_groups := self.hparams.get("n_group")) is not None:
@ -919,7 +923,7 @@ class TextModel(ModelBase):
self.gguf_writer.add_expert_group_used_count(n_group_used)
logger.info(f"gguf: expert groups used count = {n_group_used}")
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None:
if score_func == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
elif score_func == "softmax":
@ -4108,37 +4112,29 @@ class Qwen2MoeModel(TextModel):
# Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
mapped = f"{name}.weight" if not name.endswith(".weight") else name
# Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
# Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
# Need PyTorch: (128, 2048, 768) [reversed of GGML]
# So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
permuted = data_torch.permute(0, 2, 1).contiguous()
yield from super().modify_tensors(permuted, mapped, bid)
# HF: [n_expert, n_embd, n_ff] -> GGML: {n_ff, n_embd, n_expert}
yield from super().modify_tensors(data_torch, mapped, bid)
return
if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
if data_torch.ndim < 3 or data_torch.shape[-2] % 2 != 0:
raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
split_dim = data_torch.shape[-1] // 2
gate = data_torch[..., :split_dim].contiguous()
up = data_torch[..., split_dim:].contiguous()
# Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
# Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
# Need PyTorch: (128, 768, 2048) [reversed of GGML]
# So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
base_name = name.removesuffix(".weight")
base = base_name.rsplit('.', 1)[0]
mapped_gate = f"{base}.gate_proj.weight"
mapped_up = f"{base}.up_proj.weight"
perm_gate = gate.permute(0, 2, 1).contiguous()
perm_up = up.permute(0, 2, 1).contiguous()
yield from super().modify_tensors(perm_gate, mapped_gate, bid)
yield from super().modify_tensors(perm_up, mapped_up, bid)
# HF: [n_expert, 2*n_ff, n_embd] -> split on dim=-2
n_ff = data_torch.shape[-2] // 2
gate = data_torch[..., :n_ff, :].contiguous()
up = data_torch[..., n_ff:, :].contiguous()
# gate/up: [n_expert, n_ff, n_embd] -> GGML: {n_embd, n_ff, n_expert}
base_name = name.removesuffix(".weight").removesuffix(".gate_up_proj")
mapped_gate = f"{base_name}.gate_proj.weight"
mapped_up = f"{base_name}.up_proj.weight"
yield from super().modify_tensors(gate, mapped_gate, bid)
yield from super().modify_tensors(up, mapped_up, bid)
return
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
# skip visual tensors
return
if name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
@ -4534,6 +4530,35 @@ class Qwen3VLMoeTextModel(Qwen3MoeModel):
if name.startswith("model.visual."):
return
# Qwen3VL has transposed packed tensors, so we treat it differently from general Qwen2MoE packed tensors
if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
name = name.replace("language_model.", "")
mapped = f"{name}.weight" if not name.endswith(".weight") else name
permuted = data_torch.permute(0, 2, 1).contiguous()
yield from ModelBase.modify_tensors(self, permuted, mapped, bid)
return
if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
name = name.replace("language_model.", "")
if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
split_dim = data_torch.shape[-1] // 2
gate = data_torch[..., :split_dim].contiguous()
up = data_torch[..., split_dim:].contiguous()
# Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
# Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
# Need PyTorch: (128, 768, 2048) [reversed of GGML]
# So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
base_name = name.removesuffix(".weight")
base = base_name.rsplit('.', 1)[0]
mapped_gate = f"{base}.gate_proj.weight"
mapped_up = f"{base}.up_proj.weight"
perm_gate = gate.permute(0, 2, 1).contiguous()
perm_up = up.permute(0, 2, 1).contiguous()
yield from ModelBase.modify_tensors(self, perm_gate, mapped_gate, bid)
yield from ModelBase.modify_tensors(self, perm_up, mapped_up, bid)
return
yield from super().modify_tensors(data_torch, name, bid)
@ -5016,6 +5041,221 @@ class CodeShellModel(TextModel):
self.gguf_writer.add_rope_scaling_factor(1.0)
@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM")
class KimiLinearModel(TextModel):
"""Kimi-Linear model with hybrid MLA+KDA architecture"""
model_arch = gguf.MODEL_ARCH.KIMI_LINEAR
_experts: list[dict[str, Tensor]] | None = None
def set_vocab(self):
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# override eos id in config.json with tiktoken eos id
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def set_gguf_parameters(self):
# note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group)
self.hparams["num_key_value_heads"] = 1
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
# KDA & MLA params
# Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv
linear_attn_config = self.hparams["linear_attn_config"]
# n_head == 0 for KDA layers, n_head > 0 for MLA layers
# full_attention_layers list will be used to distingush layer type
_num_kv_heads = list()
_full_attn_layers = linear_attn_config["full_attn_layers"]
for il in range(self.hparams["num_hidden_layers"]):
if il + 1 in _full_attn_layers:
_num_kv_heads.append(self.hparams["num_key_value_heads"])
else:
_num_kv_heads.append(0)
assert len(_num_kv_heads) == self.hparams["num_hidden_layers"]
self.gguf_writer.add_head_count_kv(_num_kv_heads)
if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None:
self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv)
if (kda_head_dim := linear_attn_config.get("head_dim")) is not None:
self.gguf_writer.add_kda_head_dim(kda_head_dim)
# MLA params - use add_* methods that handle arch substitution
# Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv)
if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None:
self.gguf_writer.add_q_lora_rank(q_lora_rank)
# To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA
kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)
self.gguf_writer.add_kv_lora_rank(kv_lora_rank)
# MLA head dimensions
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
# Rotation - use qk_rope_head_dim for Kimi
qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)
self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim)
self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim)
v_head_dim = self.hparams.get("v_head_dim")
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None:
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
elif qk_nope_head_dim is not None:
n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
# n_embd_head_v_mla = v_head_dim
if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None:
self.gguf_writer.add_value_length_mla(n_embd_head_v_mla)
elif v_head_dim is not None:
self.gguf_writer.add_value_length_mla(v_head_dim)
# moe_intermediate_size (1024 for Kimi)
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
# num_shared_experts (1 for Kimi)
self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"])
# first_k_dense_replace (1 for Kimi - first layer uses dense MLP)
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
# Routed scaling factor (expert_weights_scale = 2.446 for Kimi)
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}")
# Handle KDA conv1d weights
# HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest
# llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest
# GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
# Memory layouts match: both have conv_step (d_conv) changing fastest
if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")):
# HF shape: [d_inner, d_conv] e.g. [4096, 4]
# Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
if data_torch.ndim == 2:
d_inner, d_conv = data_torch.shape
# Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest)
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
elif data_torch.ndim == 3:
# Already 3D [d_inner, 1, d_conv] from unsqueeze
d_inner, _, d_conv = data_torch.shape
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
# Kimi specific bias
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# Handle A_log: iHF stores as [1, 1, num_heads, 1]
# llama.cpp expects ggml ne = [1, num_heads, 1, 1]
# GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1]
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
if name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
logger.info("Changed dt_bias to dt_proj.bias")
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False)
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
# w1: gate, w2: down, w3: up
for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP),
("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP),
("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
new_name = self.format_tensor_name(tname, bid)
yield from super().modify_tensors(data_torch, new_name, bid)
return
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
if name.endswith("kv_b_proj.weight"):
name_kb = name.replace("kv_b_proj", "k_b_proj")
name_vb = name.replace("kv_b_proj", "v_b_proj")
n_head_kv = self.hparams["num_key_value_heads"]
v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False)
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
logger.info("Split kv_b n_head_kv %d\n" % n_head_kv)
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
k_b = k_b.transpose(1, 2)
yield from super().modify_tensors(k_b, name_kb, bid)
yield from super().modify_tensors(v_b, name_vb, bid)
return
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("InternLM2ForCausalLM")
class InternLM2Model(TextModel):
model_arch = gguf.MODEL_ARCH.INTERNLM2
@ -7782,6 +8022,135 @@ class MimoV2Model(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("Step3p5ForCausalLM")
class Step35Model(TextModel):
model_arch = gguf.MODEL_ARCH.STEP35
def set_gguf_parameters(self):
rope_theta = self.hparams.get("rope_theta")
if isinstance(rope_theta, list):
self.hparams["rope_theta"] = float(rope_theta[0])
self.hparams["local_rope_theta"] = float(rope_theta[1])
self.rope_parameters["rope_theta"] = self.hparams["rope_theta"]
self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]}
super().set_gguf_parameters()
layer_types = self.hparams.get("layer_types") or []
partial_rotary_factors = self.hparams.get("partial_rotary_factors") or []
attn_other = self.hparams.get("attention_other_setting") or {}
n_head_base = self.hparams["num_attention_heads"]
n_kv_base = self.hparams["num_attention_groups"]
n_head_swa = attn_other.get("num_attention_heads", n_head_base)
n_kv_swa = attn_other.get("num_attention_groups", n_kv_base)
layer_types = layer_types[: self.block_count]
partial_rotary_factors = partial_rotary_factors[: self.block_count]
assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors
head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types]
kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types]
swa_pat = [lt == "sliding_attention" for lt in layer_types]
self.gguf_writer.add_head_count(head_arr)
self.gguf_writer.add_head_count_kv(kv_arr)
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_sliding_window_pattern(swa_pat)
self.gguf_writer.add_value_length(self.hparams["head_dim"])
# MoE params
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"])
if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor)
if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_expert_weight)
# leading dense blocks
leading_dense = 0
moe_layers_enum = self.hparams.get("moe_layers_enum")
if isinstance(moe_layers_enum, str) and moe_layers_enum.strip():
moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(","))
if moe_layers:
leading_dense = max(0, moe_layers[0])
self.gguf_writer.add_leading_dense_block_count(leading_dense)
self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1)))
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
# Optional per-layer SwiGLU clamps.
if (limits := self.hparams.get("swiglu_limits")) is not None:
limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_exp(limits_f)
if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None:
limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# remove mtp layers
if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None:
il = int(m.group(1))
n_main = int(self.hparams.get("num_hidden_layers", self.block_count))
if il >= n_main:
return
if name.endswith("norm.weight"):
data_torch += 1.0
# Map router bias (expert selection bias) to a GGUF bias tensor
if name.endswith(".moe.router_bias"):
name += ".bias"
if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")):
data_torch = data_torch.squeeze().contiguous()
yield from super().modify_tensors(data_torch, name, bid)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3").
# llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS).
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
rope_type = rope_params.get("rope_type") or ""
if rope_type.lower() != "llama3":
return
# Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value.
rope_theta = self.hparams.get("rope_theta", 10000.0)
if isinstance(rope_theta, list):
rope_theta = rope_theta[0]
base = float(rope_theta)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = int(dim)
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = float(rope_params.get("factor", 8.0))
low_freq_factor = float(rope_params.get("low_freq_factor", 1.0))
high_freq_factor = float(rope_params.get("high_freq_factor", 4.0))
old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192)))
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
rope_factors: list[float] = []
for freq in freqs:
wavelen = 2 * math.pi / float(freq)
if wavelen < high_freq_wavelen:
rope_factors.append(1.0)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("PanguEmbeddedForCausalLM")
class PanguEmbeddedModel(TextModel):
model_arch = gguf.MODEL_ARCH.PANGU_EMBED

180
docs/backend/VirtGPU.md Normal file
View File

@ -0,0 +1,180 @@
# GGML-VirtGPU Backend
The GGML-VirtGPU backend enables GGML applications to run machine
learning computations on host hardware while the application itself
runs inside a virtual machine. It uses host-guest shared memory to
efficiently share data buffers between the two sides.
This backend relies on the virtio-gpu, and VirglRenderer API Remoting
(APIR) component. The backend is split into two libraries:
- a GGML implementation (the "remoting frontend"), running in the
guest and interacting with the virtgpu device
- a VirglRenderer APIR compatible library (the "remoting backend"),
running in the host and interacting with Virglrenderer and an actual
GGML device backend.
## OS support
| OS | Status | Backend | CI testing | Notes
| -------- | ----------------- | ----------- | ----------- | -----
| MacOS 14 | Supported | ggml-metal | X | Working when compiled on MacOS 14
| MacOS 15 | Supported | ggml-metal | X | Working when compiled on MacOS 14 or MacOS 15
| MacOS 26 | Not tested | | |
| Linux | Under development | ggml-vulkan | not working | Working locally, CI running into deadlocks
## Architecture Overview
The GGML-VirtGPU backend consists of three main components:
```mermaid
graph TD
%% Nodes
subgraph GuestVM ["Guest VM - Frontend"]
App([GGML Application<br/>llama.cpp, etc.])
direction TB
Interface[GGML Backend Interface]
Comm["GGML-VirtGPU<br/>(hypercalls + shared mem)"]
App --> Interface
Interface --> Comm
end
API[virtio-gpu / virglrenderer API]
subgraph HostSystem [Host System - Backend]
direction TB
Dispatcher[GGML-VirtGPU-Backend]
BackendLib[GGML Backend library<br/>Metal / Vulkan / CPU / ...]
Dispatcher --> BackendLib
end
%% Connections
Comm --> API
API --> HostSystem
```
### Key Components
1. **Guest-side Frontend** (`ggml-virtgpu/`): Implements the GGML backend interface and forwards operations to the host
2. **Host-side Backend** (`ggml-virtgpu/backend/`): Receives forwarded operations and executes them on actual hardware backends
3. **Communication Layer**: Uses virtio-gpu hypercalls and shared memory for efficient data transfer
## Features
- **Dynamic backend loading** on the host side (CPU, CUDA, Metal, etc.)
- **Zero-copy data transfer** via host-guest shared memory pages
## Communication Protocol
### Hypercalls and Shared Memory
The backend uses two primary communication mechanisms:
1. **Hypercalls (`DRM_IOCTL_VIRTGPU_EXECBUFFER`)**: Trigger remote execution from guest to host
2. **Shared Memory Pages**: Zero-copy data transfer for tensors and parameters
#### Shared Memory Layout
Each connection uses two shared memory buffers:
- **Data Buffer** (24 MiB): For command/response data and tensor transfers
- **Reply Buffer** (16 KiB): For command replies and status information
- **Data Buffers**: Dynamically allocated host-guest shared buffers
served as GGML buffers.
### APIR Protocol
The Virglrender API Remoting protocol defines three command types:
- `HANDSHAKE`: Protocol version negotiation and capability discovery
- `LOADLIBRARY`: Dynamic loading of backend libraries on the host
- `FORWARD`: API function call forwarding
### Binary Serialization
Commands and data are serialized using a custom binary protocol with:
- Fixed-size encoding for basic types
- Variable-length arrays with size prefixes
- Buffer bounds checking
- Error recovery mechanisms
## Supported Operations
### Device Operations
- Device enumeration and capability queries
- Memory information (total/free)
- Backend type detection
### Buffer Operations
- Buffer allocation and deallocation
- Tensor data transfer (host ↔ guest)
- Memory copying and clearing
### Computation Operations
- Graph execution forwarding
## Build Requirements
### Guest-side Dependencies
- `libdrm` for DRM/virtio-gpu communication
- C++20 compatible compiler
- CMake 3.14+
### Host-side Dependencies
- virglrenderer with APIR support (pending upstream review)
- Target backend libraries (libggml-metal, libggml-vulkan, etc.)
## Configuration
### Environment Variables
- `GGML_VIRTGPU_BACKEND_LIBRARY`: Path to the host-side backend library
- `GGML_VIRTGPU_DEBUG`: Enable debug logging
### Build Options
- `GGML_VIRTGPU`: Enable the VirtGPU backend (`ON` or `OFF`, default: `OFF`)
- `GGML_VIRTGPU_BACKEND`: Build the host-side backend component (`ON`, `OFF` or `ONLY`, default: `OFF`)
### System Requirements
- VM with virtio-gpu support
- VirglRenderer with APIR patches
- Compatible backend libraries on host
## Limitations
- **VM-specific**: Only works in virtual machines with virtio-gpu support
- **Host dependency**: Requires properly configured host-side backend
- **Latency**: Small overhead from VM escaping for each operation
* This work is pending upstream changes in the VirglRenderer
project.
* The backend can be tested with Virglrenderer compiled from source
using this PR:
https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590
* This work is pending changes in the VMM/hypervisor running the
virtual machine, which need to know how to route the newly
introduced APIR capset.
* The environment variable `VIRGL_ROUTE_VENUS_TO_APIR=1` allows
using the Venus capset, until the relevant hypervisors have been
patched. However, setting this flag breaks the Vulkan/Venus normal
behavior.
* The environment variable `GGML_REMOTING_USE_APIR_CAPSET` tells the
`ggml-virtgpu` backend to use the APIR capset. This will become
the default when the relevant hypervisors have been patched.
* This work focused on improving the performance of llama.cpp running
on MacOS containers, and is mainly tested on this platform. The
linux support (via `krun`) is in progress.
## See Also
- [Development and Testing](VirtGPU/development.md)
- [Backend configuration](VirtGPU/configuration.md)

View File

@ -0,0 +1,174 @@
# GGML-VirtGPU Backend Configuration
This document describes the environment variables used by the ggml-virtgpu backend system, covering both the frontend (guest-side) and backend (host-side) components.
## Environment Variables Overview
The ggml-virtgpu backend uses environment variables for configuration across three main components:
- **Frontend (Guest)**: GGML applications running in VMs
- **Hypervisor**: Virglrenderer/APIR system
- **Backend (Host)**: Host-side GGML backend integration
## Frontend (Guest-side) Configuration
### GGML_REMOTING_USE_APIR_CAPSET
- **Location**: `ggml/src/ggml-virtgpu/virtgpu.cpp`
- **Type**: Boolean flag (presence-based)
- **Purpose**: Controls which virtio-gpu capability set to use for communication
- **Values**:
- Set (any value): Use the APIR capset (long-term setup)
- Unset: Use the Venus capset (easier for testing with an unmodified hypervisor)
- **Default**: Unset (Venus capset)
- **Usage**:
```bash
export GGML_REMOTING_USE_APIR_CAPSET=1 # Use APIR capset
# or leave unset for Venus capset
```
## Hypervisor (Virglrenderer/APIR) Configuration
These environment variables are used during the transition phase for
running with an unmodified hypervisor (not supporting the
VirglRenderer APIR component). They will be removed in the future, and
the hypervisor will instead configure VirglRenderer with the APIR
_Configuration Key_.
### VIRGL_APIR_BACKEND_LIBRARY
- **Location**: `virglrenderer/src/apir/apir-context.c`
- **Configuration Key**: `apir.load_library.path`
- **Type**: File path string
- **Purpose**: Path to the APIR backend library that virglrenderer should dynamically load
- **Required**: Yes
- **Example**:
```bash
export VIRGL_APIR_BACKEND_LIBRARY="/path/to/libggml-remotingbackend.so"
```
### VIRGL_ROUTE_VENUS_TO_APIR
- **Location**: `virglrenderer/src/apir/apir-renderer.h`
- **Type**: Boolean flag (presence-based)
- **Purpose**: Temporary workaround to route Venus capset calls to APIR during hypervisor transition period
- **Status**: will be removed once hypervisors support APIR natively
- **Warning**: Breaks normal Vulkan/Venus functionality
- **Usage**:
```bash
export VIRGL_ROUTE_VENUS_TO_APIR=1 # For testing with an unmodified hypervisor
```
### VIRGL_APIR_LOG_TO_FILE
- **Location**: `virglrenderer/src/apir/apir-renderer.c`
- **Environment Variable**: `VIRGL_APIR_LOG_TO_FILE`
- **Type**: File path string
- **Purpose**: Enable debug logging from the VirglRenderer APIR component to specified file
- **Required**: No (optional debugging)
- **Default**: Logging to `stderr`
- **Usage**:
```bash
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir-debug.log"
```
## Backend (Host-side) Configuration
These environment variables are used during the transition phase for
running with an unmodified hypervisor (not supporting the
VirglRenderer APIR component). They will be removed in the future, and
the hypervisor will instead configure VirglRenderer with the APIR
_Configuration Key_.
### APIR_LLAMA_CPP_GGML_LIBRARY_PATH
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
- **Configuration Key**: `ggml.library.path`
- **Type**: File path string
- **Purpose**: Path to the actual GGML backend library (Metal, CUDA, Vulkan, etc.)
- **Required**: **Yes** - backend initialization fails without this
- **Examples**:
```bash
# macOS with Metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
# Linux with CUDA backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-cuda.so"
# macOS or Linux with Vulkan backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-vulkan.so"
```
### APIR_LLAMA_CPP_GGML_LIBRARY_REG
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_REG`
- **Configuration Key**: `ggml.library.reg`
- **Type**: Function symbol name string
- **Purpose**: Name of the backend registration function to call after loading the library
- **Required**: No (defaults to `ggml_backend_init`)
- **Default**: `ggml_backend_init`
- **Examples**:
```bash
# Metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
# CUDA backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_cuda_reg"
# Vulkan backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_vulkan_reg"
# Generic fallback (default)
# export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_init"
```
### APIR_LLAMA_CPP_LOG_TO_FILE
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp:62`
- **Environment Variable**: `APIR_LLAMA_CPP_LOG_TO_FILE`
- **Type**: File path string
- **Purpose**: Enable debug logging from the GGML backend to specified file
- **Required**: No (optional debugging)
- **Usage**:
```bash
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml-backend-debug.log"
```
## Configuration Flow
The configuration system works as follows:
1. **Hypervisor Setup**: Virglrenderer loads the APIR backend library specified by `VIRGL_APIR_BACKEND_LIBRARY`
2. **Context Creation**: When an APIR context is created, it populates a configuration table with environment variables:
- `apir.load_library.path``VIRGL_APIR_BACKEND_LIBRARY`
- `ggml.library.path``APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
- `ggml.library.reg``APIR_LLAMA_CPP_GGML_LIBRARY_REG`
- this step will eventually be performed by the hypervisor itself, with command-line arguments instead of environment variables.
3. **Backend Initialization**: The backend queries the configuration via callbacks:
- `virgl_cbs->get_config(ctx_id, "ggml.library.path")` returns the library path
- `virgl_cbs->get_config(ctx_id, "ggml.library.reg")` returns the registration function
4. **Library Loading**: The backend dynamically loads and initializes the specified GGML library
## Error Messages
Common error scenarios and their messages:
- **Missing library path**: `"cannot open the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_PATH' not defined"`
- **Missing registration function**: `"cannot register the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_REG' not defined"`
## Example Complete Configuration
Here's an example configuration for a macOS host with Metal backend:
```bash
# Hypervisor environment
export VIRGL_APIR_BACKEND_LIBRARY="/opt/llama.cpp/lib/libggml-virtgpu-backend.dylib"
# Backend configuration
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
# Optional logging
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir.log"
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml.log"
# Guest configuration
export GGML_REMOTING_USE_APIR_CAPSET=1
```

View File

@ -0,0 +1,220 @@
# Development and Testing
## Development
### Code Generation
The backend uses code generation from YAML configuration:
```bash
# Regenerate protocol code
cd ggml-virtgpu/
python regenerate_remoting.py
```
### Adding New Operations
1. Add function definition to `ggmlremoting_functions.yaml`
2. Regenerate code with `regenerate_remoting.py`
3. Implement guest-side forwarding in `virtgpu-forward-*.cpp`
4. Implement host-side handling in `backend-dispatched-*.cpp`
## Testing
This document provides instructions for building and testing the GGML-VirtGPU backend on macOS with containers.
### Prerequisites
The testing setup requires:
- macOS host system
- Container runtime with `libkrun` provider (podman machine)
- Access to development patchset for VirglRenderer
### Required Patchsets
The backend requires patches that are currently under review:
- **Virglrenderer APIR upstream PR**: https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590 (for reference)
- **MacOS Virglrenderer (for krunkit)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-macos
- **Linux Virglrenderer (for krun)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-linux
### Build Instructions
#### 1. Build ggml-virtgpu-backend (Host-side, macOS)
```bash
# Build the backend that runs natively on macOS
mkdir llama.cpp
cd llama.cpp
git clone https://github.com/ggml-org/llama.cpp.git src
cd src
LLAMA_MAC_BUILD=$PWD/build/ggml-virtgpu-backend
cmake -S . -B $LLAMA_MAC_BUILD \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=ON \
-DGGML_REMOTINGBACKEND=ONLY \
-DGGML_METAL=ON
TARGETS="ggml-metal"
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $TARGETS
# Build additional tools for native benchmarking
EXTRA_TARGETS="llama-run llama-bench"
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $EXTRA_TARGETS
```
#### 2. Build virglrenderer (Host-side, macOS)
```bash
# Build virglrenderer with APIR support
mkdir virglrenderer
git clone https://gitlab.freedesktop.org/kpouget/virglrenderer -b main-macos src
cd src
VIRGL_BUILD_DIR=$PWD/build
# -Dvenus=true and VIRGL_ROUTE_VENUS_TO_APIR=1 route the APIR requests via the Venus backend, for easier testing without a patched hypervisor
meson setup $VIRGL_BUILD_DIR \
-Dvenus=true \
-Dapir=true
ninja -C $VIRGL_BUILD_DIR
```
#### 3. Build ggml-virtgpu (Guest-side, Linux)
Option A: Build from a script:
```bash
# Inside a Linux container
mkdir llama.cpp
git clone https://github.com/ggml-org/llama.cpp.git src
cd src
LLAMA_LINUX_BUILD=$PWD//build-virtgpu
cmake -S . -B $LLAMA_LINUX_BUILD \
-DGGML_VIRTGPU=ON
ninja -C $LLAMA_LINUX_BUILD
```
Option B: Build container image with frontend:
```bash
cat << EOF > remoting.containerfile
FROM quay.io/fedora/fedora:43
USER 0
WORKDIR /app/remoting
ARG LLAMA_CPP_REPO="https://github.com/ggml-org/llama.cpp.git"
ARG LLAMA_CPP_VERSION="master"
ARG LLAMA_CPP_CMAKE_FLAGS="-DGGML_VIRTGPU=ON"
ARG LLAMA_CPP_CMAKE_BUILD_FLAGS="--parallel 4"
RUN dnf install -y git cmake gcc gcc-c++ libcurl-devel libdrm-devel
RUN git clone "\${LLAMA_CPP_REPO}" src \\
&& git -C src fetch origin \${LLAMA_CPP_VERSION} \\
&& git -C src reset --hard FETCH_HEAD
RUN mkdir -p build \\
&& cd src \\
&& set -o pipefail \\
&& cmake -S . -B ../build \${LLAMA_CPP_CMAKE_FLAGS} \\
&& cmake --build ../build/ \${LLAMA_CPP_CMAKE_BUILD_FLAGS}
ENTRYPOINT ["/app/remoting/src/build/bin/llama-server"]
EOF
mkdir -p empty_dir
podman build -f remoting.containerfile ./empty_dir -t localhost/llama-cpp.virtgpu
```
### Environment Setup
#### Set krunkit Environment Variables
```bash
# Define the base directories (adapt these paths to your system)
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build
LLAMA_MAC_BUILD=$HOME/remoting/llama.cpp/build-backend
# For krunkit to load the custom virglrenderer library
export DYLD_LIBRARY_PATH=$VIRGL_BUILD_DIR/src
# For Virglrenderer to load the ggml-remotingbackend library
export VIRGL_APIR_BACKEND_LIBRARY="$LLAMA_MAC_BUILD/bin/libggml-virtgpu-backend.dylib"
# For llama.cpp remotingbackend to load the ggml-metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="$LLAMA_MAC_BUILD/bin/libggml-metal.dylib"
export APIR_LLAMA_CPP_GGML_LIBRARY_REG=ggml_backend_metal_reg
```
#### Launch Container Environment
```bash
# Set container provider to libkrun
export CONTAINERS_MACHINE_PROVIDER=libkrun
podman machine start
```
#### Verify Environment
Confirm that krunkit is using the correct virglrenderer library:
```bash
lsof -c krunkit | grep virglrenderer
# Expected output:
# krunkit 50574 user txt REG 1,14 2273912 10849442 ($VIRGL_BUILD_DIR/src)/libvirglrenderer.1.dylib
```
### Running Tests
#### Launch Test Container
```bash
# Optional model caching
mkdir -p models
PODMAN_CACHE_ARGS="-v models:/models --user root:root --cgroupns host --security-opt label=disable -w /models"
podman run $PODMAN_CACHE_ARGS -it --rm --device /dev/dri localhost/llama-cpp.virtgpu
```
#### Test llama.cpp in Container
```bash
# Run performance benchmark
/app/remoting/build/bin/llama-bench -m ./llama3.2
```
Expected output (performance may vary):
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ------------: | -------------------: |
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | pp512 | 991.30 ± 0.66 |
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | tg128 | 85.71 ± 0.11 |
```
### Troubleshooting
#### SSH Environment Variable Issues
⚠️ **Warning**: Setting `DYLD_LIBRARY_PATH` from SSH doesn't work on macOS. Here is a workaround:
**Workaround 1: Replace system library**
```bash
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build # ⚠️ adapt to your system
BREW_VIRGL_DIR=/opt/homebrew/Cellar/virglrenderer/0.10.4d/lib
VIRGL_LIB=libvirglrenderer.1.dylib
cd $BREW_VIRGL_DIR
mv $VIRGL_LIB ${VIRGL_LIB}.orig
ln -s $VIRGL_BUILD_DIR/src/$VIRGL_LIB
```

View File

@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |

View File

@ -77,8 +77,8 @@
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@ -161,8 +161,8 @@
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"

Can't render this file because it is too large.

View File

@ -119,8 +119,6 @@ If a draft model is combined with a draftless decoding the draftless decoding ha
of lookup n-gram (default: 12)
--spec-ngram-size-m N ngram size M for ngram-simple/ngram-map speculative decoding, length
of draft m-gram (default: 48)
--spec-ngram-check-rate N ngram check rate for ngram-simple/ngram-map speculative decoding
(default: 1)
--spec-ngram-min-hits N minimum hits for ngram-map speculative decoding (default: 1)
```
@ -153,10 +151,6 @@ Sets the size M of the draft m-gram for n-gram map based speculative decoding.
The m-gram size determines how many tokens to draft when a match is found.
Larger values can provide more speedup but may reduce acceptance rate.
### `--spec-ngram-check-rate R`
This option aims at performance if the n-gram lookup in history is to costly. A lookup will be executed at every R tokens (default is 1, every token).
### `--spec-ngram-min-hits H`
This option defines how often a key has to appear in the token history to be used as a draft (default is 1).
@ -175,7 +169,12 @@ draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
```
- `#calls`: number of calls of this implementations
```
statistics ngram_map_k: #calls(b,g,a) = 6 1690 26, #gen drafts = 26, #acc drafts = 26, #gen tokens = 1248, #acc tokens = 968, dur(b,g,a) = 2.234, 1.427, 0.016 ms
```
- `#calls(b,g,a)`: number of calls of begin (new prompt), generation and accumulation of this implementations
- `#gen drafts`: number of drafts generated by this implementation
- `#acc drafts`: number of drafts accepted (partially) by the main model
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)

View File

@ -3286,130 +3286,223 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context & ctx, ggml_tensor
}
/**
* @brief Performs expert-specific matrix multiplication (MoE) with
* quantized precision using the CANN backend.
* @brief Performs quantized matrix multiplication for Mixture of Experts (MoE)
* models using the CANN backend.
*
* This function executes a matrix multiplication operation tailored for
* Mixture of Experts (MoE) models, where the input tensor is multiplied
* with expert-specific quantized weight matrices. It leverages the CANN
* backend to perform efficient low-precision computations and stores the
* quantized result in the destination tensor `dst`.
* This function implements MUL_MAT_ID operation for quantized weight matrices
* (Q4_0 and Q8_0 formats). It selects expert-specific weight matrices based on
* the provided expert indices, and computes matrix multiplication using CANN's
* WeightQuantBatchMatmulV2 operator.
*
* Quantization techniques reduce memory footprint and improve performance
* by using lower-bit representations (e.g., int8) instead of floating-point.
* This function is designed to work with such formats and may incorporate
* optimizations like identity-based fast paths or routing masks for sparse
* expert selection.
* The function performs the following steps:
* 1. Converts input/output tensors to F16 format if necessary
* 2. Uses IndexSelect to extract expert-specific weights and scales based on indices
* 3. Performs quantized matrix multiplication for each expert using WeightQuantBatchMatmulV2
* 4. Converts output back to the target type if needed
*
* @param ctx The context for executing CANN backend operations.
* @param dst The destination tensor where the quantized MoE multiplication result
* will be stored.
* Tensor shapes:
* - dst: [M, K, N, 1] - output tensor
* - src0: [D, M, A, 1] - quantized weight matrices (Q4_0 or Q8_0)
* - src1: [D, B, N, 1] - input activations (B = K for per-expert input, or B = 1 for broadcast)
* - ids: [K, N] - expert indices for routing
*
* @note This function assumes quantized data types and is designed for
* MoE architectures with potential sparse expert routing.
* @param ctx The CANN backend context for operation execution.
* @param dst The destination tensor where the multiplication result will be stored.
*
* @note Only Q4_0 and Q8_0 quantization formats are supported.
* @note The function handles automatic type conversion to/from F16 as needed by the hardware.
*/
static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
// TODO: Use aclnnGroupedMatMul
//dst [M, K, N, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
ggml_tensor * ids = dst->src[2]; //ids [K, N]
// dst: [M, K, N, 1]
// src0: [D, M, A, 1] - quantized weights
// src1: [D, B, N, 1] - input activations, B = K or B = 1
// ids: [K, N] - expert indices
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
ggml_tensor * ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(dst->ne[3] == 1);
GGML_ASSERT(src1->ne[2] == ids->ne[1]);
// copy index from npu to cpu
int64_t n_as = ne02; // A
int64_t n_ids = ids->ne[0]; // K
const int64_t n_batches = ids->ne[1];
const int64_t n_select_experts = ids->ne[0];
const enum ggml_type type = src0->type;
std::vector<char> ids_host(ggml_nbytes(ids));
ACL_CHECK(aclrtMemcpyAsync(ids_host.data(), ggml_nbytes(ids), ids->data, ggml_nbytes(ids),
ACL_MEMCPY_DEVICE_TO_HOST, ctx.stream()));
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
const int32_t group_size = QK8_0; // Both Q4_0 and Q8_0 use group size of 32
GGML_ASSERT(group_size == QK4_0);
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
// Calculate element size for quantized weights
const float weight_elem_size =
(type == GGML_TYPE_Q4_0) ? 0.5f :
(type == GGML_TYPE_Q8_0) ? 1.0f :
(GGML_ABORT("MUL_MAT_ID only supports Q4_0 and Q8_0"), 0.0f);
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
// Calculate scale offset in memory
const size_t weight_size = src0->ne[0] * src0->ne[1] * src0->ne[2] * weight_elem_size;
const size_t scale_elem_size = sizeof(uint16_t);
char * scale_data = (char *) src0->data + weight_size;
const enum ggml_type type = dst->src[0]->type;
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
} else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
} else {
GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
}
// Allocate buffers for selected expert weights and scales
const size_t selected_weight_size = src0->ne[0] * src0->ne[1] * n_select_experts * weight_elem_size;
ggml_cann_pool_alloc selected_weight_alloc(ctx.pool(), selected_weight_size);
void * selected_weight_buffer = selected_weight_alloc.get();
// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = weight_elem_size;
src0_row.nb[1] = weight_elem_size * ne00;
src0_row.nb[2] = weight_elem_size * ne00;
src0_row.nb[3] = weight_elem_size * ne00;
size_t weight_stride = ne00 * ne01 * weight_elem_size;
size_t weight_size = weight_stride * ne02 * ne03;
const size_t selected_scale_size = (src0->ne[0] / group_size) * src0->ne[1] * n_select_experts * scale_elem_size;
ggml_cann_pool_alloc selected_scale_alloc(ctx.pool(), selected_scale_size);
void * selected_scale_buffer = selected_scale_alloc.get();
// scale [D, M, 1, 1] -> scale && permute
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
// Helper lambda to allocate and cast tensor to F16 if needed
constexpr size_t f16_elem_size = sizeof(uint16_t);
auto prepare_f16_buffer = [&](ggml_tensor * tensor, ggml_cann_pool_alloc & allocator,
bool need_cast = false) -> void * {
if (tensor->type == GGML_TYPE_F16) {
return tensor->data;
}
// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
size_t total_size = f16_elem_size;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
total_size *= tensor->ne[i];
}
void * buffer = allocator.alloc(total_size);
// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (need_cast == false) {
return buffer;
}
//create weight for one row
ggml_cann_pool_alloc weight_allocator(ctx.pool());
void * weight_buffer = weight_allocator.alloc(nb02);
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1 * ids->nb[1] + id * ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
for (int i = 0; i < GGML_MAX_DIMS; i++) {
ne[i] = tensor->ne[i];
if (i > 0) {
nb[i] = nb[i - 1] * ne[i - 1];
}
}
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
acl_tensor_ptr src_tensor = ggml_cann_create_tensor(tensor);
acl_tensor_ptr f16_tensor = ggml_cann_create_tensor(buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
aclnn_cast(ctx, src_tensor.get(), f16_tensor.get(), ACL_FLOAT16);
int64_t i1 = id;
int64_t i2 = i12;
return buffer;
};
void * src0_tmp_ptr = src0_original + i02 * weight_stride;
void * scale_tmp_ptr = src0_original + weight_size + i02 * scale_stride;
void * src1_tmp_ptr = src1_original + i11 * nb11 + i12 * nb12;
void * dst_tmp_ptr = dst_original + i1 * nb1 + i2 * nb2;
// Prepare input and output buffers
ggml_cann_pool_alloc input_alloc(ctx.pool());
void * input_buffer = prepare_f16_buffer(src1, input_alloc, true);
// mem cpy
ACL_CHECK(aclrtMemcpyAsync(weight_buffer, weight_stride, src0_tmp_ptr, weight_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
void * scale_buffer = (char *) weight_buffer + weight_stride;
ACL_CHECK(aclrtMemcpyAsync(scale_buffer, scale_stride, scale_tmp_ptr, scale_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
ggml_cann_pool_alloc output_alloc(ctx.pool());
void * output_buffer = prepare_f16_buffer(dst, output_alloc, false);
src0_row.data = weight_buffer;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;
// Process each batch
for (int64_t batch_idx = 0; batch_idx < n_batches; batch_idx++) {
// Create index tensor for current batch
const size_t index_offset = batch_idx * ids->nb[1];
acl_tensor_ptr batch_indices = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, index_offset);
ggml_cann_mul_mat(ctx, &dst_row);
// Select quantized weights using expert indices
// Q4_0 stores 2 values per byte, Q8_0 stores 1 value per byte
const int64_t weight_d = (type == GGML_TYPE_Q4_0) ? src0->ne[0] / 2 : src0->ne[0];
const int64_t weight_m = src0->ne[1];
const int64_t weight_n_experts = src0->ne[2];
int64_t weight_ne[3] = { weight_d, weight_m, weight_n_experts };
size_t weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t), weight_d * weight_m * sizeof(int8_t) };
acl_tensor_ptr all_weights =
ggml_cann_create_tensor(src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, 3);
int64_t selected_weight_ne[3] = { weight_d, weight_m, n_select_experts };
size_t selected_weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t),
weight_d * weight_m * sizeof(int8_t) };
acl_tensor_ptr selected_weights = ggml_cann_create_tensor(selected_weight_buffer, ACL_INT8, sizeof(int8_t),
selected_weight_ne, selected_weight_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_weights.get(), 0, batch_indices.get(), selected_weights.get());
// Select scales using the same expert indices
const int64_t scale_d = src0->ne[0] / group_size;
int64_t scale_ne[3] = { scale_d, weight_m, weight_n_experts };
size_t scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size, scale_d * weight_m * scale_elem_size };
acl_tensor_ptr all_scales =
ggml_cann_create_tensor(scale_data, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 3);
int64_t selected_scale_ne[3] = { scale_d, weight_m, n_select_experts };
size_t selected_scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size,
scale_d * weight_m * scale_elem_size };
acl_tensor_ptr selected_scales = ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size,
selected_scale_ne, selected_scale_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_scales.get(), 0, batch_indices.get(), selected_scales.get());
// Process each expert for current batch
// IndexSelect output layout: [D, M, K] in contiguous format
// WeightQuantBatchMatmulV2 expects: [M, D] with row-major stride
for (int64_t expert_idx = 0; expert_idx < n_select_experts; expert_idx++) {
// Determine input offset: broadcast if src1->ne[1]==1, otherwise use per-expert input
const size_t input_offset =
(batch_idx * src1->ne[1] + (src1->ne[1] == 1 ? 0 : expert_idx)) * src1->ne[0] * f16_elem_size;
const size_t output_offset = (batch_idx * dst->ne[1] + expert_idx) * dst->ne[0] * f16_elem_size;
// Create weight view for current expert: [D, M, K] -> [M, D]
int64_t weight_view_ne[2] = { weight_m, src0->ne[0] };
float weight_view_nb[2] = { src0->ne[0] * weight_elem_size, weight_elem_size };
const size_t weight_view_offset = expert_idx * selected_weight_nb[2];
acl_tensor_ptr weight_view =
ggml_cann_create_tensor(selected_weight_buffer, ggml_cann_type_mapping(type), weight_elem_size,
weight_view_ne, weight_view_nb, 2, ACL_FORMAT_ND, weight_view_offset);
// Create scale view for current expert: [D, M, K] -> [M, D]
int64_t scale_view_ne[2] = { weight_m, scale_d };
size_t scale_view_nb[2] = { selected_scale_nb[1], selected_scale_nb[0] };
const size_t scale_view_offset = expert_idx * selected_scale_nb[2];
acl_tensor_ptr scale_view =
ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size, scale_view_ne,
scale_view_nb, 2, ACL_FORMAT_ND, scale_view_offset);
// Create input activation tensor [D, 1]
int64_t input_ne[2] = { src1->ne[0], 1 };
size_t input_nb[2] = { f16_elem_size, src1->ne[0] * f16_elem_size };
acl_tensor_ptr input_tensor = ggml_cann_create_tensor(input_buffer, ACL_FLOAT16, f16_elem_size, input_ne,
input_nb, 2, ACL_FORMAT_ND, input_offset);
// Create output tensor [M, 1]
int64_t output_ne[2] = { dst->ne[0], 1 };
size_t output_nb[2] = { f16_elem_size, dst->ne[0] * f16_elem_size };
acl_tensor_ptr output_tensor = ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, output_ne,
output_nb, 2, ACL_FORMAT_ND, output_offset);
// Perform quantized matrix multiplication
GGML_CANN_CALL_ACLNN_OP(ctx, WeightQuantBatchMatmulV2, input_tensor.get(), weight_view.get(),
scale_view.get(), nullptr, nullptr, nullptr, nullptr, group_size,
output_tensor.get());
}
}
return;
// Cast output back to original type if we used a temporary F16 buffer
if (dst->type != GGML_TYPE_F16) {
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
for (int i = 0; i < GGML_MAX_DIMS; i++) {
ne[i] = dst->ne[i];
if (i > 0) {
nb[i] = nb[i - 1] * ne[i - 1];
}
}
acl_tensor_ptr f16_output =
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
acl_tensor_ptr dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, f16_output.get(), dst_tensor.get(), ggml_cann_type_mapping(dst->type));
}
}
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst) {

View File

@ -794,19 +794,44 @@ struct ggml_backend_cann_buffer_context {
~ggml_backend_cann_buffer_context() { ACL_CHECK(aclrtFree(dev_ptr)); }
};
// cann buffer type
/**
* @brief Check if a buffer is a CANN buffer.
*
* This function checks if a given buffer is a CANN buffer by comparing its
* `get_name` function pointer to `ggml_backend_cann_buffer_get_name`.
*
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
* @brief Structure representing context information for a specific backend
* buffer type.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft);
struct ggml_backend_cann_buffer_type_context {
int32_t device; /**< Device identifier associated with the buffer context. */
std::string name; /**< Name associated with the buffer context. */
};
static bool ggml_backend_buffer_is_cann(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_cann(buffer->buft);
/**
* @brief Retrieves the name associated with a CANN buffer type.
*
* This function returns the descriptive name associated with the specified
* CANN buffer type context.
*
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
return buft_ctx->name.c_str();
}
/**
* @brief Checks if the backend buffer type is associated with the CANN backend.
*
* This function checks whether the provided backend buffer type is associated
* with the CANN backend based on the comparison of its name retrieval function
* pointer.
*
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the buffer type is associated with the CANN
* backend, otherwise false.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
@ -1271,7 +1296,7 @@ static void ggml_backend_cann_buffer_get_tensor(ggml_backend_buffer_t buffer,
static bool ggml_backend_cann_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * src,
ggml_tensor * dst) {
if (ggml_backend_buffer_is_cann(src->buffer)) {
if (ggml_backend_buft_is_cann(src->buffer->buft)) {
ggml_backend_cann_buffer_context * src_ctx = (ggml_backend_cann_buffer_context *) src->buffer->context;
ggml_backend_cann_buffer_context * dst_ctx = (ggml_backend_cann_buffer_context *) buffer->context;
@ -1335,31 +1360,6 @@ static const ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
/* .reset = */ NULL,
};
// cann buffer type
/**
* @brief Structure representing context information for a specific backend
* buffer type.
*/
struct ggml_backend_cann_buffer_type_context {
int32_t device; /**< Device identifier associated with the buffer context. */
std::string name; /**< Name associated with the buffer context. */
};
/**
* @brief Retrieves the name associated with a CANN buffer type.
*
* This function returns the descriptive name associated with the specified
* CANN buffer type context.
*
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
return buft_ctx->name.c_str();
}
/**
* @brief Allocates a new CANN buffer of the specified type and size.
*
@ -1997,7 +1997,7 @@ static bool ggml_backend_cann_cpy_tensor_async(ggml_backend_t backend_src,
GGML_ASSERT(!is_matmul_weight((const ggml_tensor *) src));
if (!ggml_backend_buffer_is_cann(src->buffer) || !ggml_backend_buffer_is_cann(dst->buffer)) {
if (!ggml_backend_buft_is_cann(src->buffer->buft) || !ggml_backend_buft_is_cann(dst->buffer->buft)) {
return false;
}
@ -2523,21 +2523,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
GGML_UNUSED(dev);
}
/**
* @brief Checks if the backend buffer type is associated with the CANN backend.
*
* This function checks whether the provided backend buffer type is associated
* with the CANN backend based on the comparison of its name retrieval function
* pointer.
*
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the buffer type is associated with the CANN
* backend, otherwise false.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
* @brief Records an event on the CANN backend stream.
*

View File

@ -7629,8 +7629,7 @@ static void ggml_compute_forward_pad_f32(
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT( dst->nb[0] == sizeof(float));
assert(dst->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;

View File

@ -4834,8 +4834,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_GROUP_NORM:
case GGML_OP_PAD:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_PAD:
return true;
case GGML_OP_UPSCALE:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_ARANGE:

View File

@ -7,7 +7,7 @@ __device__ __forceinline__ int64_t wrap_around(int64_t coord, int64_t size) {
return (coord + size) % size;
}
static __global__ void pad_f32(const float * src, float * dst,
static __global__ void pad_f32(const float * src, size_t s00, size_t s01, size_t s02, size_t s03, float * dst,
const int lp0, const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3, const int rp3,
const int ne0, const int ne1, const int ne2, const int ne3,
@ -34,11 +34,8 @@ static __global__ void pad_f32(const float * src, float * dst,
const int64_t i01 = i1 - lp1;
const int64_t i02 = i2 - lp2;
const int64_t i03 = i3 - lp3;
const int64_t ne02 = ne2 - lp2 - rp2;
const int64_t ne01 = ne1 - lp1 - rp1;
const int64_t ne00 = ne0 - lp0 - rp0;
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) + i02 * (ne00 * ne01) + i01 * ne00 + i00;
const int64_t src_idx = i03 * s03 + i02 * s02 + i01 * s01 + i00 * s00;
dst[dst_idx] = src[src_idx];
} else {
@ -57,21 +54,21 @@ static __global__ void pad_f32(const float * src, float * dst,
const int64_t i02 = wrap_around(i2 - lp2, ne02);
const int64_t i03 = wrap_around(i3 - lp3, ne03);
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) + i02 * (ne00 * ne01) + i01 * ne00 + i00;
const int64_t src_idx = i03 * s03 + i02 * s02 + i01 * s01 + i00 * s00;
dst[dst_idx] = src[src_idx];
}
}
static void pad_f32_cuda(const float * src, float * dst,
static void pad_f32_cuda(const float * src, size_t s00, size_t s01, size_t s02, size_t s03, float * dst,
const int lp0, const int rp0, const int lp1, const int rp1,
const int lp2, const int rp2, const int lp3, const int rp3,
const int ne0, const int ne1, const int ne2, const int ne3,
const bool circular, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2 * ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, dst,
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, s00, s01, s02, s03, dst,
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
ne0, ne1, ne2, ne3, circular);
}
@ -82,9 +79,10 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
const int32_t lp0 = ((const int32_t *) (dst->op_params))[0];
const int32_t rp0 = ((const int32_t *) (dst->op_params))[1];
@ -96,7 +94,12 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int32_t rp3 = ((const int32_t *) (dst->op_params))[7];
const int32_t circular = ((const int32_t *) (dst->op_params))[8];
pad_f32_cuda(src0_d, dst_d,
const size_t s00 = nb00 / ggml_type_size(src0->type);
const size_t s01 = nb01 / ggml_type_size(src0->type);
const size_t s02 = nb02 / ggml_type_size(src0->type);
const size_t s03 = nb03 / ggml_type_size(src0->type);
pad_f32_cuda(src0_d, s00, s01, s02, s03, dst_d,
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
(bool) circular, stream);

View File

@ -43,10 +43,15 @@ static __device__ void rope_yarn(
template <bool forward, bool has_ff, typename T, typename D>
static __global__ void rope_norm(const T * x,
D * dst,
const int ne0,
const int ne1,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int32_t * pos,
const float freq_scale,
@ -59,23 +64,23 @@ static __global__ void rope_norm(const T * x,
const int set_rows_stride) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
if (i0 >= ne00) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
int idst = row_dst * ne0 + i0;
const int ix = channel_x*s2 + row_x*s1 + i0;
const uint32_t i3 = row_dst / (ne01 * ne02);
const uint32_t i2 = (row_dst - i3 * ne01 * ne02) / ne01;
const uint32_t i1 = row_dst - i3 * ne01 * ne02 - i2 * ne01;
int idst = i0 + i1 * s1 + i2 * s2 + i3 * s3;
const int ix = i0 + i1 * s01 + i2 * s02 + i3 * s03;
// Fusion optimization: ROPE + VIEW + SET_ROWS.
// The rope output is viewed as a 1D tensor and offset based on a row index in row_indices.
if (set_rows_stride != 0) {
idst = row_x * ne0 + i0;
idst += row_indices[channel_x] * set_rows_stride;
idst = i1 * s1 + i0;
idst += row_indices[i2] * set_rows_stride;
}
const auto & store_coaelsced = [&](float x0, float x1) {
@ -92,7 +97,7 @@ static __global__ void rope_norm(const T * x,
return;
}
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -110,10 +115,15 @@ static __global__ void rope_norm(const T * x,
template <bool forward, bool has_ff, typename T, typename D>
static __global__ void rope_neox(const T * x,
D * dst,
const int ne0,
const int ne1,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int32_t * pos,
const float freq_scale,
@ -126,23 +136,24 @@ static __global__ void rope_neox(const T * x,
const int set_rows_stride) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
if (i0 >= ne00) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const uint32_t i3 = row_dst / (ne01 * ne02);
const uint32_t i2 = (row_dst - i3 * ne01 * ne02) / ne01;
const uint32_t i1 = row_dst - i3 * ne01 * ne02 - i2 * ne01;
int idst = row_dst * ne0 + i0 / 2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
int idst = i0 / 2 + i1 * s1 + i2 * s2 + i3 * s3;
const int ix = i0 / 2 + i1 * s01 + i2 * s02 + i3 * s03;
// Fusion optimization: ROPE + VIEW + SET_ROWS.
// The rope output is viewed as a 1D tensor and offset based on a row index in row_indices.
if (set_rows_stride != 0) {
idst = row_x * ne0 + i0 / 2;
idst += row_indices[channel_x] * set_rows_stride;
idst = i1 * s1 + i0 / 2;
idst += row_indices[i2] * set_rows_stride;
}
if (i0 >= n_dims) {
@ -152,7 +163,7 @@ static __global__ void rope_neox(const T * x,
return;
}
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float theta_base = pos[i2]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -168,24 +179,42 @@ static __global__ void rope_neox(const T * x,
dst[idst + n_dims / 2] = ggml_cuda_cast<D>(x0 * sin_theta + x1 * cos_theta);
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_multi(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections, const bool is_imrope) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
template <bool forward, bool has_ff, typename T>
static __global__ void rope_multi(const T * x,
T * dst,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int32_t * pos,
const float freq_scale,
const float ext_factor,
const float attn_factor,
const rope_corr_dims corr_dims,
const float theta_scale,
const float * freq_factors,
const mrope_sections sections,
const bool is_imrope) {
const int i0 = 2 * (blockDim.y * blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
if (i0 >= ne00) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const uint32_t i3 = row_dst / (ne01 * ne02);
const uint32_t i2 = (row_dst - i3 * ne01 * ne02) / ne01;
const uint32_t i1 = row_dst - i3 * ne01 * ne02 - i2 * ne01;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
int idst = i0 / 2 + i1 * s1 + i2 * s2 + i3 * s3;
const int ix = i0 / 2 + i1 * s01 + i2 * s02 + i3 * s03;
if (i0 >= n_dims) {
dst[idst + i0/2 + 0] = x[ix + i0/2 + 0];
@ -200,27 +229,24 @@ static __global__ void rope_multi(
float theta_base = 0.0;
if (is_imrope) {
if (sector % 3 == 1 && sector < 3 * sections.v[1]) { // h
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
} else if (sector % 3 == 2 && sector < 3 * sections.v[2]) { // w
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
} else if (sector % 3 == 0 && sector < 3 * sections.v[0]) { // t
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
if (sector % 3 == 1 && sector < 3 * sections.v[1]) { // h
theta_base = pos[i2 + ne02 * 1] * powf(theta_scale, i0 / 2.0f);
} else if (sector % 3 == 2 && sector < 3 * sections.v[2]) { // w
theta_base = pos[i2 + ne02 * 2] * powf(theta_scale, i0 / 2.0f);
} else if (sector % 3 == 0 && sector < 3 * sections.v[0]) { // t
theta_base = pos[i2] * powf(theta_scale, i0 / 2.0f);
} else {
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
theta_base = pos[i2 + ne02 * 3] * powf(theta_scale, i0 / 2.0f);
}
} else {
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
theta_base = pos[i2] * powf(theta_scale, i0 / 2.0f);
} else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[i2 + ne02 * 1] * powf(theta_scale, i0 / 2.0f);
} else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[i2 + ne02 * 2] * powf(theta_scale, i0 / 2.0f);
} else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[i2 + ne02 * 3] * powf(theta_scale, i0 / 2.0f);
}
}
@ -238,37 +264,53 @@ static __global__ void rope_multi(
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_vision(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections) {
template <bool forward, bool has_ff, typename T>
static __global__ void rope_vision(const T * x,
T * dst,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int32_t * pos,
const float freq_scale,
const float ext_factor,
const float attn_factor,
const rope_corr_dims corr_dims,
const float theta_scale,
const float * freq_factors,
const mrope_sections sections) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
if (i0 >= ne00) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const uint32_t i3 = row_dst / (ne01 * ne02);
const uint32_t i2 = (row_dst - i3 * ne01 * ne02) / ne01;
const uint32_t i1 = row_dst - i3 * ne01 * ne02 - i2 * ne01;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
int idst = i0 / 2 + i1 * s1 + i2 * s2 + i3 * s3;
const int ix = i0 / 2 + i1 * s01 + i2 * s02 + i3 * s03;
const int sect_dims = sections.v[0] + sections.v[1];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
const int p = sector;
theta_base = pos[channel_x]*powf(theta_scale, p);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[i2] * powf(theta_scale, p);
} else if (sector >= sections.v[0] && sector < sec_w) {
const int p = sector - sections.v[0];
theta_base = pos[channel_x + ne2]*powf(theta_scale, p);
theta_base = pos[i2 + ne02] * powf(theta_scale, p);
}
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
@ -288,10 +330,15 @@ static __global__ void rope_vision(
template <bool forward, typename T, typename D>
static void rope_norm_cuda(const T * x,
D * dst,
const int ne0,
const int ne1,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int nr,
const int32_t * pos,
@ -304,31 +351,36 @@ static void rope_norm_cuda(const T * x,
const int64_t * row_indices,
const int set_rows_stride,
cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
GGML_ASSERT(ne00 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const int n_blocks_x = (ne00 + 2 * CUDA_ROPE_BLOCK_SIZE - 1) / (2 * CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
if (freq_factors == nullptr) {
rope_norm<forward, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale,
freq_factors, row_indices, set_rows_stride);
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, row_indices, set_rows_stride);
} else {
rope_norm<forward, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale,
freq_factors, row_indices, set_rows_stride);
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, row_indices, set_rows_stride);
}
}
template <bool forward, typename T, typename D>
static void rope_neox_cuda(const T * x,
D * dst,
const int ne0,
const int ne1,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int nr,
const int32_t * pos,
@ -341,55 +393,92 @@ static void rope_neox_cuda(const T * x,
const int64_t * row_indices,
const int set_rows_stride,
cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
GGML_ASSERT(ne00 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const int n_blocks_x = (ne00 + 2 * CUDA_ROPE_BLOCK_SIZE - 1) / (2 * CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
if (freq_factors == nullptr) {
rope_neox<forward, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale,
freq_factors, row_indices, set_rows_stride);
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, row_indices, set_rows_stride);
} else {
rope_neox<forward, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor, corr_dims, theta_scale,
freq_factors, row_indices, set_rows_stride);
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, row_indices, set_rows_stride);
}
}
template<bool forward, typename T>
static void rope_multi_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, const bool is_imrope, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
template <bool forward, typename T>
static void rope_multi_cuda(const T * x,
T * dst,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int nr,
const int32_t * pos,
const float freq_scale,
const float freq_base,
const float ext_factor,
const float attn_factor,
const rope_corr_dims corr_dims,
const float * freq_factors,
const mrope_sections sections,
const bool is_imrope,
cudaStream_t stream) {
GGML_ASSERT(ne00 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const int n_blocks_x = (ne00 + 2 * CUDA_ROPE_BLOCK_SIZE - 1) / (2 * CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float theta_scale = powf(freq_base, -2.0f / n_dims);
if (freq_factors == nullptr) {
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
} else {
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
}
}
template<bool forward, typename T>
static void rope_vision_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
template <bool forward, typename T>
static void rope_vision_cuda(const T * x,
T * dst,
const int ne00,
const int ne01,
const int ne02,
const int s01,
const int s02,
const int s03,
const int s1,
const int s2,
const int s3,
const int n_dims,
const int nr,
const int32_t * pos,
const float freq_scale,
const float freq_base,
const float ext_factor,
const float attn_factor,
const rope_corr_dims corr_dims,
const float * freq_factors,
const mrope_sections sections,
cudaStream_t stream) {
GGML_ASSERT(ne00 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const int n_blocks_x = (ne00 + 2 * CUDA_ROPE_BLOCK_SIZE - 1) / (2 * CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
// break down (head_dim, heads, seq) into (CUDA_ROPE_BLOCK_SIZE, x, heads * seq)
// where x ~= ceil(head_dim / CUDA_ROPE_BLOCK_SIZE);
@ -398,11 +487,11 @@ static void rope_vision_cuda(
if (freq_factors == nullptr) {
rope_vision<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
} else {
rope_vision<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
x, dst, ne00, ne01, ne02, s01, s02, s03, s1, s2, s3, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
}
}
@ -445,6 +534,11 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx,
const size_t s01 = src0->nb[1] / ggml_type_size(src0->type);
const size_t s02 = src0->nb[2] / ggml_type_size(src0->type);
const size_t s03 = src0->nb[3] / ggml_type_size(src0->type);
const size_t s1 = dst->nb[1] / ggml_type_size(dst->type);
const size_t s2 = dst->nb[2] / ggml_type_size(dst->type);
const size_t s3 = dst->nb[3] / ggml_type_size(dst->type);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
@ -495,57 +589,63 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx,
// compute
if (is_neox) {
if (src0->type == GGML_TYPE_F32 && dst_type == GGML_TYPE_F32) {
rope_neox_cuda<forward, float, float>((const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_neox_cuda<forward, float, float>((const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else if (src0->type == GGML_TYPE_F32 && dst_type == GGML_TYPE_F16) {
rope_neox_cuda<forward, float, half>((const float *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_neox_cuda<forward, float, half>((const float *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else if (src0->type == GGML_TYPE_F16 && dst_type == GGML_TYPE_F16) {
rope_neox_cuda<forward, half, half>((const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_neox_cuda<forward, half, half>((const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
if (src0->type == GGML_TYPE_F32) {
rope_multi_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
rope_multi_cuda<forward>((const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, s03, s1,
s2, s3, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor,
corr_dims, freq_factors, sections, is_imrope, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_multi_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
rope_multi_cuda<forward>((const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, s03, s1,
s2, s3, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor,
corr_dims, freq_factors, sections, is_imrope, stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_vision) {
if (src0->type == GGML_TYPE_F32) {
rope_vision_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
rope_vision_cuda<forward>((const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, s03, s1,
s2, s3, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor,
corr_dims, freq_factors, sections, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_vision_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
rope_vision_cuda<forward>((const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, s03, s1,
s2, s3, n_dims, nr, pos, freq_scale, freq_base, ext_factor, attn_factor,
corr_dims, freq_factors, sections, stream);
} else {
GGML_ABORT("fatal error");
}
} else {
if (src0->type == GGML_TYPE_F32 && dst_type == GGML_TYPE_F32) {
rope_norm_cuda<forward, float, float>((const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_norm_cuda<forward, float, float>((const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else if (src0->type == GGML_TYPE_F32 && dst_type == GGML_TYPE_F16) {
rope_norm_cuda<forward, float, half>((const float *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims,
nr, pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_norm_cuda<forward, float, half>((const float *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else if (src0->type == GGML_TYPE_F16 && dst_type == GGML_TYPE_F16) {
rope_norm_cuda<forward, half, half>((const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr,
pos, freq_scale, freq_base, ext_factor, attn_factor, corr_dims,
freq_factors, row_indices, set_rows_stride, stream);
rope_norm_cuda<forward, half, half>((const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02,
s03, s1, s2, s3, n_dims, nr, pos, freq_scale, freq_base,
ext_factor, attn_factor, corr_dims, freq_factors, row_indices,
set_rows_stride, stream);
} else {
GGML_ABORT("fatal error");
}

View File

@ -394,7 +394,7 @@ bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, con
[encoder endEncoding];
ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src);
ggml_metal_event_record(ctx_src, ev_cpy);
ggml_metal_event_encode_signal(ev_cpy, cmd_buf);
[cmd_buf commit];

View File

@ -1392,34 +1392,78 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_v
GGML_UNUSED(op);
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(
ggml_metal_library_t lib,
ggml_op op,
int32_t n_fuse,
bool row) {
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(ggml_metal_library_t lib, const ggml_tensor * op, int32_t n_fuse) {
char base[256];
char name[256];
const char * op_str = "undefined";
switch (op) {
case GGML_OP_ADD: op_str = "add"; break;
case GGML_OP_SUB: op_str = "sub"; break;
case GGML_OP_MUL: op_str = "mul"; break;
case GGML_OP_DIV: op_str = "div"; break;
int op_num = -1;
switch (op->op) {
case GGML_OP_ADD: op_num = 0; break;
case GGML_OP_SUB: op_num = 1; break;
case GGML_OP_MUL: op_num = 2; break;
case GGML_OP_DIV: op_num = 3; break;
default: GGML_ABORT("fatal error");
};
if (row) {
snprintf(base, 256, "kernel_%s_row_c4_fuse_%d", op_str, n_fuse);
} else {
snprintf(base, 256, "kernel_%s_fuse_%d", op_str, n_fuse);
}
const char * t0_str = ggml_type_name(op->src[0]->type);
const char * t1_str = ggml_type_name(op->src[1]->type);
const char * t_str = ggml_type_name(op->type);
snprintf(name, 256, "%s", base);
const bool is_c4 = (op->src[0]->ne[0] % 4 == 0) && (op->src[1]->ne[0] % 4 == 0);
const bool is_rb = ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && (ggml_nrows(op->src[1]) == 1) && ggml_nelements(op) < 65536;
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s%s", t0_str, t1_str, t_str, is_c4 ? "_4" : "");
snprintf(name, 256, "%s_op=%d_nf=%d_rb=%d", base, op_num, n_fuse, is_rb);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
ggml_metal_cv_set_int16(cv, n_fuse, FC_BIN + 1);
ggml_metal_cv_set_bool (cv, is_rb, FC_BIN + 2);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
res.c4 = is_c4;
res.cnt = is_rb;
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one(ggml_metal_library_t lib, ggml_op op) {
char base[256];
char name[256];
int op_num = -1;
switch (op) {
case GGML_OP_ADD: op_num = 0; break;
case GGML_OP_SUB: op_num = 1; break;
case GGML_OP_MUL: op_num = 2; break;
case GGML_OP_DIV: op_num = 3; break;
default: GGML_ABORT("fatal error");
};
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s", "f32", "f32", "f32");
snprintf(name, 256, "%s_op=%d_nf=%d", base, op_num, 1);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
ggml_metal_cv_set_int16(cv, 1, FC_BIN + 1);
ggml_metal_cv_set_bool (cv, false, FC_BIN + 2);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
return res;

View File

@ -53,6 +53,9 @@ struct ggml_metal_pipeline_with_params {
int nr1;
size_t smem;
bool c4;
bool cnt;
};
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline);
@ -134,7 +137,8 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse );
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one (ggml_metal_library_t lib, enum ggml_op op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);

View File

@ -346,10 +346,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nsg =*/ 0,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
/*.c4 =*/ false,
/*.cnt =*/ false,
};
res.pipeline = ggml_metal_pipelines_get(lib->pipelines, name);
@ -362,10 +364,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nsg =*/ 0,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
/*.c4 =*/ false,
/*.cnt =*/ false,
};
[lib->lock lock];
@ -1054,7 +1058,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
return ggml_is_contiguous_rows(op->src[0]) && ggml_is_contiguous_rows(op->src[1]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_REPEAT:
case GGML_OP_SCALE:

View File

@ -80,6 +80,7 @@
#define FC_SSM_CONV 900
#define FC_SOLVE_TRI 1000
#define FC_COUNT_EQUAL 1100
#define FC_BIN 1200
// op-specific constants
#define OP_FLASH_ATTN_EXT_NQPSG 8

View File

@ -707,7 +707,7 @@ int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
/*.o1 =*/ { 0 },
};
auto pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
auto pipeline = ggml_metal_library_get_pipeline_bin_one(lib, GGML_OP_ADD);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@ -2895,8 +2895,6 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
GGML_ASSERT(ggml_is_contiguous_rows(op->src[1]));
bool bcast_row = false;
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
@ -2990,18 +2988,7 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
struct ggml_metal_pipeline_with_params pipeline;
if (ggml_nelements(op->src[1]) == ne10 && ggml_is_contiguous(op->src[1]) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
// src1 is a row
GGML_ASSERT(ne11 == 1);
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, true);
bcast_row = true;
} else {
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, false);
}
pipeline = ggml_metal_library_get_pipeline_bin(lib, op, n_fuse);
if (n_fuse > 1) {
bid_dst = ggml_metal_get_buffer_id(ctx->node(idx + n_fuse - 1));
@ -3015,20 +3002,28 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
}
}
if (pipeline.c4) {
args.ne00 = ne00/4;
args.ne10 = ne10/4;
args.ne0 = ne0/4;
}
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_src1, 2);
ggml_metal_encoder_set_buffer (enc, bid_dst, 3);
if (bcast_row) {
const int64_t n = ggml_nelements(op)/4;
if (pipeline.cnt) {
const int n = pipeline.c4 ? ggml_nelements(op)/4 : ggml_nelements(op);
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
} else {
int nth = 32;
const int nth_max = MIN(256, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
while (16*nth < ne0 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
int nth = 1;
while (2*nth < args.ne0 && nth < nth_max) {
nth *= 2;
}

View File

@ -895,11 +895,13 @@ enum ggml_sort_order {
GGML_SORT_ORDER_DESC,
};
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
template <int F>
kernel void kernel_add_fuse_impl(
// OP: 0 - add, 1 - sub, 2 - mul, 3 - div
constant short FC_bin_op [[function_constant(FC_BIN + 0)]];
constant short FC_bin_f [[function_constant(FC_BIN + 1)]];
constant bool FC_bin_rb [[function_constant(FC_BIN + 2)]];
template <typename T0, typename T1, typename T>
kernel void kernel_bin_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
@ -907,138 +909,152 @@ kernel void kernel_add_fuse_impl(
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
#define FC_OP FC_bin_op
#define FC_F FC_bin_f
#define FC_RB FC_bin_rb
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
if (FC_RB) {
// row broadcast
const uint i0 = tgpig.x;
const uint i1 = i0%args.ne10;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
device const T0 * src0_row = (device const T0 *) (src0);
device T * dst_row = (device T *) (dst);
device const float * src1_ptr[F];
for (short j = 0; j < F; ++j) {
src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
if (FC_F == 1) {
device const T1 * src1_row = (device const T1 *) (src1 + args.o1[0]);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
if (FC_OP == 0) {
dst_row[i0] = src0_row[i0] + src1_row[i1];
}
float res = src0_ptr[i0];
if (FC_OP == 1) {
dst_row[i0] = src0_row[i0] - src1_row[i1];
}
#pragma unroll
for (short j = 0; j < F; ++j) {
res += src1_ptr[j][i10];
}
if (FC_OP == 2) {
dst_row[i0] = src0_row[i0] * src1_row[i1];
}
dst_ptr[i0] = res;
}
}
if (FC_OP == 3) {
dst_row[i0] = src0_row[i0] / src1_row[i1];
}
} else {
T0 res = src0_row[i0];
typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t;
if (FC_OP == 0) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res += ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
template [[host_name("kernel_add_fuse_1")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>;
template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>;
template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>;
template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>;
template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>;
template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>;
template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>;
template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>;
if (FC_OP == 1) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res -= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
kernel void kernel_sub_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
if (FC_OP == 2) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res *= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
if (FC_OP == 3) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res /= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) - *((device float *)(src1_ptr + i10*args.nb10));
}
}
kernel void kernel_mul_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
dst_row[i0] = res;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
if (i01 >= args.ne01) {
return;
}
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const T0 * src0_ptr = (device const T0 *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device T * dst_ptr = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
if (FC_F == 1) {
device const T1 * src1_ptr = (device const T1 *) (src1 + args.o1[0] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
if (FC_OP == 0) {
dst_ptr[i0] = src0_ptr[i0] + src1_ptr[i10];
}
if (FC_OP == 1) {
dst_ptr[i0] = src0_ptr[i0] - src1_ptr[i10];
}
if (FC_OP == 2) {
dst_ptr[i0] = src0_ptr[i0] * src1_ptr[i10];
}
if (FC_OP == 3) {
dst_ptr[i0] = src0_ptr[i0] / src1_ptr[i10];
}
}
} else {
device const T1 * src1_ptr[8];
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
src1_ptr[j] = (device const T1 *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
T res = src0_ptr[i0];
if (FC_OP == 0) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res += src1_ptr[j][i10];
}
}
if (FC_OP == 1) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res -= src1_ptr[j][i10];
}
}
if (FC_OP == 2) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res *= src1_ptr[j][i10];
}
}
if (FC_OP == 3) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res /= src1_ptr[j][i10];
}
}
dst_ptr[i0] = res;
}
}
}
#undef FC_OP
#undef FC_F
#undef FC_RB
}
kernel void kernel_div_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
typedef decltype(kernel_bin_fuse_impl<float, float, float>) kernel_bin_fuse_t;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = 1.0f / *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
template [[host_name("kernel_bin_fuse_f32_f32_f32")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float, float, float>;
template [[host_name("kernel_bin_fuse_f32_f32_f32_4")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float4, float4, float4>;
kernel void kernel_add_id(
constant ggml_metal_kargs_add_id & args,
@ -1057,7 +1073,7 @@ kernel void kernel_add_id(
const size_t nb1 = args.ne0 * sizeof(float);
const size_t nb2 = args.ne1 * nb1;
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
@ -1098,141 +1114,6 @@ template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
// assumption: src1 is a row
// broadcast src1 into src0
template <short F>
kernel void kernel_add_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res += ((device const float4 *) (src1 + args.o1[j]))[i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t;
template [[host_name("kernel_add_row_c4_fuse_1")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>;
template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>;
template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>;
template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>;
template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>;
template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>;
template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>;
template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>;
template <short F>
kernel void kernel_sub_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res -= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t;
template [[host_name("kernel_sub_row_c4_fuse_1")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_mul_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res *= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t;
template [[host_name("kernel_mul_row_c4_fuse_1")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_div_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res /= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t;
template [[host_name("kernel_div_row_c4_fuse_1")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
kernel void kernel_scale_f32(
constant ggml_metal_kargs_scale & args,
device const float * src0,
@ -5285,6 +5166,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E
// scan the blocks of the mask that are not masked
// 0 - masked (i.e. full of -INF, skip)
// 1 - not masked (i.e. at least one element of the mask is not -INF)
// 2 - all zero
kernel void kernel_flash_attn_ext_blk(
constant ggml_metal_kargs_flash_attn_ext_blk & args,
device const char * mask,
@ -5306,27 +5188,29 @@ kernel void kernel_flash_attn_ext_blk(
device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg;
// fast route
if (res == 0) {
if (simd_max(*mask_src) > -MAXHALF/2) {
res = 1;
}
}
// detailed check of the elements of the block
if ((C > NW || Q > 1) && res == 0) {
half m = -MAXHALF;
half mmin = MAXHALF;
half mmax = -MAXHALF;
FOR_UNROLL (short j = 0; j < Q; ++j) {
FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) {
m = max(m, mask_src[ii*NW]);
mmin = min(mmin, mask_src[ii*NW]);
mmax = max(mmax, mask_src[ii*NW]);
}
mask_src += args.nb31/2;
}
if (simd_max(m) > -MAXHALF/2) {
res = 1;
mmin = simd_min(mmin);
mmax = simd_max(mmax);
if (mmax > -MAXHALF) {
if (mmin == 0.0 && mmax == 0.0) {
res = 2;
} else {
res = 1;
}
}
}
@ -5568,9 +5452,13 @@ void kernel_flash_attn_ext_impl(
ic = 0;
}
char blk_cur = 1;
// read the mask into shared mem
if (FC_flash_attn_ext_has_mask) {
if (blk[ic0] == 0) {
blk_cur = blk[ic0];
if (blk_cur == 0) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
pm2[jj] += NW;
}
@ -5578,16 +5466,22 @@ void kernel_flash_attn_ext_impl(
continue;
}
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (blk_cur == 1) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (FC_flash_attn_ext_bc_mask) {
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
} else {
sm2[j*SH + tiisg] = pm2[jj][tiisg];
if (FC_flash_attn_ext_bc_mask) {
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
} else {
sm2[j*SH + tiisg] = pm2[jj][tiisg];
}
pm2[jj] += NW;
}
} else if (blk_cur == 2) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
pm2[jj] += NW;
}
pm2[jj] += NW;
}
#if 0
@ -5752,10 +5646,12 @@ void kernel_flash_attn_ext_impl(
}
// mqk = mqk + slope*mask
if (FC_flash_attn_ext_has_bias) {
s2 += s2_t(sm2[j*SH + tiisg])*slope;
} else {
s2 += s2_t(sm2[j*SH + tiisg]);
if (blk_cur != 2) {
if (FC_flash_attn_ext_has_bias) {
s2 += s2_t(sm2[j*SH + tiisg])*slope;
} else {
s2 += s2_t(sm2[j*SH + tiisg]);
}
}
M[jj] = simd_max(max(M[jj], max(s2[0], s2[1])));

View File

@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_ceil(x);
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {

View File

@ -4591,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_CEIL:
return true;
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
#if defined (GGML_SYCL_F16)

View File

@ -402,19 +402,19 @@ enum FaCodePath {
};
struct vk_fa_pipeline_state {
vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, bool use_mask_opt)
: HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), use_mask_opt(use_mask_opt) {}
vk_fa_pipeline_state(uint32_t HSK, uint32_t HSV, bool small_rows, bool small_cache, FaCodePath path, bool aligned, bool f32acc, uint32_t flags)
: HSK(HSK), HSV(HSV), small_rows(small_rows), small_cache(small_cache), path(path), aligned(aligned), f32acc(f32acc), flags(flags) {}
uint32_t HSK, HSV;
bool small_rows, small_cache;
FaCodePath path;
bool aligned;
bool f32acc;
bool use_mask_opt;
uint32_t flags;
bool operator<(const vk_fa_pipeline_state &b) const {
return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt) <
std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.use_mask_opt);
return std::tie(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags) <
std::tie(b.HSK, b.HSV, b.small_rows, b.small_cache, b.path, b.aligned, b.f32acc, b.flags);
}
};
@ -3193,7 +3193,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
return {fa_rows_cols(path, hsk, hsv, clamp, type, small_rows, small_cache)[0], 1, 1};
};
auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, bool use_mask_opt) -> std::vector<uint32_t> {
auto const &fa_spec_constants = [&](FaCodePath path, uint32_t hsk, uint32_t hsv, uint32_t clamp, ggml_type type, bool small_rows, bool small_cache, uint32_t flags) -> std::vector<uint32_t> {
// For large number of rows, 128 invocations seems to work best.
// For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we
// can't use 256 for D==80.
@ -3225,7 +3225,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
// AMD prefers loading K directly from global memory
const uint32_t k_load_shmem = device->vendor_id == VK_VENDOR_ID_NVIDIA && hsk < 256 ? 1 : 0;
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, use_mask_opt};
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split, device->subgroup_size, k_load_shmem, flags};
};
#define CREATE_FA(TYPE, NAMELC, FAPATH, SUFFIX) \
@ -3237,19 +3237,19 @@ static void ggml_vk_load_shaders(vk_device& device) {
FaCodePath path = fa.first.path; \
bool aligned = fa.first.aligned; \
bool f32acc = fa.first.f32acc; \
bool use_mask_opt = fa.first.use_mask_opt; \
uint32_t flags = fa.first.flags; \
if (path == FAPATH) { \
if (aligned) { \
if (f32acc) { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
} else { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,use_mask_opt), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,0,TYPE,small_rows,small_cache,flags), fa_align(FAPATH,HSK,HSV,TYPE,small_rows,small_cache), true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
} \
} else { \
if (f32acc) { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
} else { \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,use_mask_opt), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
ggml_vk_create_pipeline(device, fa.second, "flash_attn_f32_f16_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _len, flash_attn_f32_f16_ ## NAMELC ## _f16acc ## SUFFIX ## _data, "main", 7, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache), fa_spec_constants(FAPATH, HSK,HSV,1,TYPE,small_rows,small_cache,flags), 1, true, FAPATH==FA_COOPMAT1, (FAPATH==FA_COOPMAT1 ? device->subgroup_size : 0)); \
} \
} \
} \
@ -8595,10 +8595,26 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
// Only use mask opt when the mask is fairly large. This hasn't been tuned extensively.
bool use_mask_opt = mask && nem1 >= 32 && nem0 * nem1 > 32768;
vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, use_mask_opt);
uint32_t flags = (use_mask_opt ? 1 : 0) |
(mask != nullptr ? 2 : 0) |
(logit_softcap != 0 ? 4 : 0);
vk_fa_pipeline_state fa_pipeline_state(HSK, HSV, small_rows, small_cache, path, aligned, f32acc, flags);
vk_pipeline pipeline = nullptr;
@ -8678,18 +8694,6 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
}
}
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
const uint32_t n_head_kv = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
@ -8703,7 +8707,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
vk_subbuffer sinks_buf = sinks ? ggml_vk_tensor_subbuffer(ctx, sinks) : q_buf;
vk_subbuffer mask_opt_buf = use_mask_opt ? ggml_vk_subbuffer(ctx, ctx->prealloc_y, 0) : q_buf;
uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | ((mask != nullptr) << 16) | n_head_log2;
uint32_t mask_n_head_log2 = ((sinks != nullptr) << 24) | n_head_log2;
if (use_mask_opt)
{

View File

@ -127,7 +127,7 @@ void main() {
continue;
}
// Only load if the block is not all zeros
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) {
if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) {
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
@ -181,7 +181,7 @@ void main() {
}
}
if (p.logit_softcap != 0.0f) {
if (LOGIT_SOFTCAP) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
Sf[r][c] = p.logit_softcap * tanh(Sf[r][c]);
@ -189,7 +189,7 @@ void main() {
}
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0 && mask_opt_bits != MASK_OPT_ALL_ZERO) {
if (MASK_ENABLE && mask_opt_bits != MASK_OPT_ALL_ZERO) {
[[unroll]] for (uint32_t c = 0; c < cols_per_thread; ++c) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
float mvf = masksh[c * cols_per_iter + col_tid][r];

View File

@ -10,7 +10,11 @@ layout (constant_id = 5) const uint32_t Clamp = 0;
layout (constant_id = 6) const uint32_t D_split = 16;
layout (constant_id = 7) const uint32_t SubGroupSize = 32;
layout (constant_id = 8) const uint32_t K_LOAD_SHMEM = 0;
layout (constant_id = 9) const bool USE_MASK_OPT = false;
layout (constant_id = 9) const uint32_t Flags = 0;
const bool USE_MASK_OPT = (Flags & 1) != 0;
const bool MASK_ENABLE = (Flags & 2) != 0;
const bool LOGIT_SOFTCAP = (Flags & 4) != 0;
// Round up head sizes to a multiple of 16, for coopmat1/coopmat2 paths
const uint32_t HSK_pad = (HSK + 15) & ~15;
@ -60,7 +64,6 @@ layout (push_constant) uniform parameter {
} p;
#define SINK_ENABLE_BIT (1<<24)
#define MASK_ENABLE_BIT (1<<16)
#define N_LOG2_MASK 0xFFFF
layout (binding = 4) readonly buffer S {float data_s[];};
@ -237,3 +240,7 @@ void init_indices()
// and breaking the alignment detection.
m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV;
}
// Bias applied to softmax to stay in fp16 range.
// Based on ggml-cuda issue https://github.com/ggml-org/llama.cpp/issues/18606
const float FATTN_KQ_MAX_OFFSET = 3.0f*0.6931f;

View File

@ -160,7 +160,7 @@ void main() {
mask_cache[idx] = f16vec4(0);
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
if (MASK_ENABLE) {
if (USE_MASK_OPT && mask_opt_idx != j / 16) {
mask_opt_idx = j / 16;
@ -303,7 +303,7 @@ void main() {
coopMatStore(SfMat, sfsh, coord, sfshstride, gl_CooperativeMatrixLayoutRowMajor);
barrier();
if (p.logit_softcap != 0.0f) {
if (LOGIT_SOFTCAP) {
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) {
uint32_t c = (idx + tid) / (Br / 4);
uint32_t r = (idx + tid) % (Br / 4);
@ -314,7 +314,7 @@ void main() {
barrier();
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
if (MASK_ENABLE) {
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br / 4; idx += gl_WorkGroupSize.x) {
uint32_t c = (idx + tid) / (Br / 4);
uint32_t r = (idx + tid) % (Br / 4);

View File

@ -117,7 +117,7 @@ void main() {
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK_pad, gl_MatrixUseA>(Q);
Qf16 *= float16_t(p.scale);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> L, M;
@ -155,7 +155,7 @@ void main() {
for (uint32_t j = start_j; j < end_j; ++j) {
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv = coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
if (MASK_ENABLE) {
if (USE_MASK_OPT && mask_opt_idx != j / 16) {
mask_opt_idx = j / 16;
@ -197,14 +197,14 @@ void main() {
coopMatLoadTensorNV(K_T, data_k, k_offset, sliceTensorLayoutNV(tensorLayoutK, j * Bc, Bc, 0, HSK_pad), tensorViewTranspose DECODEFUNC);
S = coopMatMulAdd(Qf16, K_T, S);
if (p.logit_softcap != 0.0f) {
if (LOGIT_SOFTCAP) {
[[unroll]]
for (int k = 0; k < S.length(); ++k) {
S[k] = ACC_TYPE(p.logit_softcap)*tanh(S[k]);
}
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
if (MASK_ENABLE) {
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
}
@ -223,6 +223,8 @@ void main() {
coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce);
rowmax += coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(FATTN_KQ_MAX_OFFSET);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> Mold = M;
// M = max(rowmax, Mold)
@ -265,11 +267,8 @@ void main() {
// resize eM by using smear/reduce
coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce);
// multiply with fp16 accumulation, then add to O.
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
PV = coopMatMulAdd(P_A, V, PV);
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(PV);
O *= coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(eMdiag);
O = coopMatMulAdd(P_A, V, O);
}
// If there is split_k, then the split_k resolve shader does the final
@ -311,7 +310,7 @@ void main() {
if (sink > Mr[i]) {
ms = exp(Mr[i] - sink);
O[i] *= ms;
O[i] *= float16_t(ms);
} else {
vs = exp(sink - Mr[i]);
}
@ -325,15 +324,16 @@ void main() {
Ldiag[k] = (Ldiag[k] == 0.0) ? ACC_TYPE(0.0) : (ACC_TYPE(1.0) / Ldiag[k]);
}
O = Ldiag*O;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(Ldiag)*O_D;
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
[[unroll]] for (uint i = 0; i < O_D.length(); ++i) { O_D[i] = clamp(O_D[i], D_TYPE(-ACC_TYPE_MAX), D_TYPE(ACC_TYPE_MAX)); }
#endif
uint32_t o_offset = gqa_iq1*p.ne1*HSV + iq3*p.ne2*p.ne1*HSV;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
if (p.gqa_ratio > 1) {
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
} else {

View File

@ -465,4 +465,73 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_unary_shader(
return result;
}
/** Binary **/
struct ggml_webgpu_binary_pipeline_key {
int type;
int op;
bool inplace;
bool overlap;
bool operator==(const ggml_webgpu_binary_pipeline_key & other) const {
return type == other.type && op == other.op && inplace == other.inplace && overlap == other.overlap;
}
};
struct ggml_webgpu_binary_pipeline_key_hash {
size_t operator()(const ggml_webgpu_binary_pipeline_key & key) const {
size_t seed = 0;
ggml_webgpu_hash_combine(seed, key.type);
ggml_webgpu_hash_combine(seed, key.op);
ggml_webgpu_hash_combine(seed, key.inplace);
ggml_webgpu_hash_combine(seed, key.overlap);
return seed;
}
};
struct ggml_webgpu_binary_shader_lib_context {
ggml_webgpu_binary_pipeline_key key;
uint32_t max_wg_size;
};
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_binary_shader(
pre_wgsl::Preprocessor & preprocessor,
const char * shader_src,
const ggml_webgpu_binary_shader_lib_context & context) {
std::vector<std::string> defines;
std::string op_name = ggml_op_name((ggml_op) context.key.op);
std::string variant = op_name;
defines.push_back(std::string("OP_") + op_name);
switch (context.key.type) {
case GGML_TYPE_F32:
defines.push_back("TYPE_F32");
variant += "_f32";
break;
case GGML_TYPE_F16:
defines.push_back("TYPE_F16");
variant += "_f16";
break;
default:
GGML_ABORT("Unsupported type for binary shader");
}
if (context.key.inplace) {
defines.push_back("INPLACE");
variant += "_inplace";
} else if (context.key.overlap) {
defines.push_back("OVERLAP");
variant += "_overlap";
}
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
ggml_webgpu_processed_shader result;
result.wgsl = preprocessor.preprocess(shader_src, defines);
result.variant = variant;
ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions();
decisions->wg_size = context.max_wg_size;
result.decisions = decisions;
return result;
}
#endif // GGML_WEBGPU_SHADER_LIB_HPP

View File

@ -348,13 +348,12 @@ struct webgpu_context_struct {
std::unordered_map<ggml_webgpu_set_rows_pipeline_key, webgpu_pipeline, ggml_webgpu_set_rows_pipeline_key_hash>
set_rows_pipelines;
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::unordered_map<ggml_webgpu_binary_pipeline_key, webgpu_pipeline, ggml_webgpu_binary_pipeline_key_hash>
binary_pipelines;
std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
@ -823,6 +822,28 @@ static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) {
(ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b));
}
// Used to determine if two tensors share the same buffer and their byte ranges overlap,
static bool ggml_webgpu_tensor_overlap(ggml_tensor * a, ggml_tensor * b) {
return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) &&
ggml_webgpu_tensor_offset(a) < (ggml_webgpu_tensor_offset(b) + ggml_nbytes(b)) &&
ggml_webgpu_tensor_offset(b) < (ggml_webgpu_tensor_offset(a) + ggml_nbytes(a));
}
struct binary_overlap_flags {
bool inplace; // src0 == dst
bool overlap; // src1 == dst
};
static binary_overlap_flags ggml_webgpu_detect_binary_overlap(ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst) {
binary_overlap_flags flags = {};
flags.inplace = ggml_webgpu_tensor_equal(src0, dst);
flags.overlap = ggml_webgpu_tensor_overlap(src1, dst);
return flags;
}
static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
uint32_t ne = (uint32_t) ggml_nelements(dst);
@ -1375,14 +1396,42 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
}
static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst,
webgpu_pipeline & pipeline,
bool inplace) {
static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst) {
binary_overlap_flags flags = ggml_webgpu_detect_binary_overlap(src0, src1, dst);
ggml_webgpu_binary_pipeline_key pipeline_key = {
.type = dst->type,
.op = dst->op,
.inplace = flags.inplace,
.overlap = flags.overlap,
};
ggml_webgpu_binary_shader_lib_context shader_lib_ctx = {
.key = pipeline_key, .max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup
};
webgpu_pipeline pipeline;
auto it = ctx->binary_pipelines.find(pipeline_key);
if (it != ctx->binary_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_binary_shader(ctx->p, wgsl_binary, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->binary_pipelines.emplace(pipeline_key, pipeline);
}
ggml_webgpu_generic_shader_decisions decisions =
*static_cast<ggml_webgpu_generic_shader_decisions *>(pipeline.context);
uint32_t ne = (uint32_t) ggml_nelements(dst);
std::vector<uint32_t> params = {
(uint32_t) ggml_nelements(dst),
ne,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
@ -1399,24 +1448,30 @@ static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
(uint32_t) src1->ne[3],
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0) },
{ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1) }
};
if (!inplace) {
std::vector<wgpu::BindGroupEntry> entries;
entries.push_back({
.binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0),
});
entries.push_back({
.binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1),
});
if (!flags.inplace && !flags.overlap) {
entries.push_back({ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
}
uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
uint32_t wg_x = CEIL_DIV(ne, decisions.wg_size);
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
}
@ -2038,25 +2093,10 @@ static std::optional<webgpu_command> ggml_webgpu_encode_node(webgpu_context ctx,
return std::nullopt;
#endif
case GGML_OP_ADD:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipelines[node->type][inplace], inplace);
}
case GGML_OP_SUB:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipelines[node->type][inplace], inplace);
}
case GGML_OP_MUL:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipelines[node->type][inplace], inplace);
}
case GGML_OP_DIV:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipelines[node->type][inplace], inplace);
}
return ggml_webgpu_binary_op(ctx, src0, src1, node);
case GGML_OP_RMS_NORM:
return ggml_webgpu_rms_norm(ctx, src0, node);
case GGML_OP_ROPE:
@ -2665,58 +2705,6 @@ static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_cpy_f16_f16, "cpy_f16_f16", constants);
}
static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->add_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32, "add_f32", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16, "add_f16", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32_inplace, "add_f32_inplace", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16_inplace, "add_f16_inplace", constants);
}
static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->sub_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32, "sub_f32", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16, "sub_f16", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32_inplace, "sub_f32_inplace", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16_inplace, "sub_f16_inplace", constants);
}
static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->mul_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32, "mul_f32", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16, "mul_f16", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32_inplace, "mul_f32_inplace", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16_inplace, "mul_f16_inplace", constants);
}
static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->div_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32, "div_f32", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16, "div_f16", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32_inplace, "div_f32_inplace", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16_inplace, "div_f16_inplace", constants);
}
static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE);
@ -3018,10 +3006,6 @@ static webgpu_context initialize_webgpu_context(ggml_backend_dev_t dev) {
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
ggml_webgpu_init_get_rows_pipeline(webgpu_ctx);
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
ggml_webgpu_init_add_pipeline(webgpu_ctx);
ggml_webgpu_init_sub_pipeline(webgpu_ctx);
ggml_webgpu_init_mul_pipeline(webgpu_ctx);
ggml_webgpu_init_div_pipeline(webgpu_ctx);
ggml_webgpu_init_rms_norm_pipeline(webgpu_ctx);
ggml_webgpu_init_rope_pipeline(webgpu_ctx);
ggml_webgpu_init_glu_pipeline(webgpu_ctx);

View File

@ -1,188 +0,0 @@
#define(VARIANTS)
[
{
"SHADER_NAME": "add_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "+"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "add_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "+"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "add_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "+"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "add_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "+"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "mul_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "*"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "mul_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "*"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "mul_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "*"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "mul_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "*"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sub_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "-"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sub_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "-"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sub_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "-"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sub_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "-"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "div_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "/"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "div_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "/"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "div_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "/"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "div_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "/"
},
"DECLS": ["INPLACE"]
}
]
#end(VARIANTS)
#define(DECLS)
#decl(NOT_INPLACE)
fn update(dst_i: u32, src0_i: u32, src1_i: u32) {
dst[dst_i] = src0[src0_i] {{OP}} src1[src1_i];
}
@group(0) @binding(2)
var<storage, read_write> dst: array<{{TYPE}}>;
@group(0) @binding(3)
var<uniform> params: Params;
#enddecl(NOT_INPLACE)
#decl(INPLACE)
fn update(dst_i: u32, src0_i: u32, src1_i: u32) {
src0[dst_i] = src0[src0_i] {{OP}} src1[src1_i];
}
@group(0) @binding(2)
var<uniform> params: Params;
#enddecl(INPLACE)
#end(DECLS)
#define(SHADER)
enable f16;
#include "binary_head.tmpl"
@group(0) @binding(0)
var<storage, read_write> src0: array<{{TYPE}}>;
@group(0) @binding(1)
var<storage, read_write> src1: array<{{TYPE}}>;
DECLS
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x < params.ne) {
update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x));
}
}
#end(SHADER)

View File

@ -0,0 +1,107 @@
enable f16;
struct Params {
ne: u32,
// offsets in elements
offset_src0: u32,
offset_src1: u32,
offset_dst: u32,
stride_src1_0: u32,
stride_src1_1: u32,
stride_src1_2: u32,
stride_src1_3: u32,
a_ne0: u32,
a_ne1: u32,
a_ne2: u32,
b_ne0: u32,
b_ne1: u32,
b_ne2: u32,
b_ne3: u32,
};
fn src1_index(_i: u32) -> u32 {
var i = _i;
let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0);
i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0);
let a_i2 = i / (params.a_ne1 * params.a_ne0);
i = i % (params.a_ne1 * params.a_ne0);
let a_i1 = i / params.a_ne0;
let a_i0 = i % params.a_ne0;
// handle repetition of b
// index loops back to the beginning and repeats after elements are exhausted = modulo
let b_i0 = a_i0 % params.b_ne0;
let b_i1 = a_i1 % params.b_ne1;
let b_i2 = a_i2 % params.b_ne2;
let b_i3 = a_i3 % params.b_ne3;
// compute index for position in b's flat array
return b_i0 * params.stride_src1_0 +
b_i1 * params.stride_src1_1 +
b_i2 * params.stride_src1_2 +
b_i3 * params.stride_src1_3;
}
#ifdef TYPE_F32
#define DataType f32
#endif
#ifdef TYPE_F16
#define DataType f16
#endif
@group(0) @binding(0)
var<storage, read_write> src0: array<DataType>;
@group(0) @binding(1)
var<storage, read_write> src1 : array<DataType>;
#ifdef INPLACE
@group(0) @binding(2)
var<uniform> params: Params;
#elif defined(OVERLAP)
@group(0) @binding(2)
var<uniform> params: Params;
#else
@group(0) @binding(2)
var<storage, read_write> dst: array<DataType>;
@group(0) @binding(3)
var<uniform> params: Params;
#endif
fn op(a: DataType, b: DataType) -> DataType {
#ifdef OP_ADD
return a + b;
#elif defined(OP_SUB)
return a - b;
#elif defined(OP_MUL)
return a * b;
#elif defined(OP_DIV)
return a / b;
#endif
}
fn update(dst_i: u32, src0_i: u32, src1_i: u32){
let result = op(src0[src0_i], src1[src1_i]);
#ifdef INPLACE
src0[dst_i] = result;
#elif defined(OVERLAP)
src1[dst_i] = result;
#else
dst[dst_i] = result;
#endif
}
@compute @workgroup_size(WG_SIZE)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x < params.ne) {
update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x));
}
}

View File

@ -1,45 +0,0 @@
struct Params {
ne: u32,
// offsets in elements
offset_src0: u32,
offset_src1: u32,
offset_dst: u32,
stride_src1_0: u32,
stride_src1_1: u32,
stride_src1_2: u32,
stride_src1_3: u32,
a_ne0: u32,
a_ne1: u32,
a_ne2: u32,
b_ne0: u32,
b_ne1: u32,
b_ne2: u32,
b_ne3: u32,
};
fn src1_index(_i: u32) -> u32 {
var i = _i;
let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0);
i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0);
let a_i2 = i / (params.a_ne1 * params.a_ne0);
i = i % (params.a_ne1 * params.a_ne0);
let a_i1 = i / params.a_ne0;
let a_i0 = i % params.a_ne0;
// handle repetition of b
// index loops back to the beginning and repeats after elements are exhausted = modulo
let b_i0 = a_i0 % params.b_ne0;
let b_i1 = a_i1 % params.b_ne1;
let b_i2 = a_i2 % params.b_ne2;
let b_i3 = a_i3 % params.b_ne3;
// compute index for position in b's flat array
return b_i0 * params.stride_src1_0 +
b_i1 * params.stride_src1_1 +
b_i2 * params.stride_src1_2 +
b_i3 * params.stride_src1_3;
}

View File

@ -146,6 +146,8 @@ class Keys:
ALTUP_ACTIVE_IDX = "{arch}.altup.active_idx"
ALTUP_NUM_INPUTS = "{arch}.altup.num_inputs"
EMBD_LENGTH_PER_LAYER_INP = "{arch}.embedding_length_per_layer_input"
SWIGLU_CLAMP_EXP = "{arch}.swiglu_clamp_exp"
SWIGLU_CLAMP_SHEXP = "{arch}.swiglu_clamp_shexp"
DENSE_FEAT_IN_SIZE = "{arch}.{dense}_feat_in"
DENSE_FEAT_OUT_SIZE = "{arch}.{dense}_feat_out"
@ -179,20 +181,20 @@ class Keys:
TEMPERATURE_SCALE = "{arch}.attention.temperature_scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
FREQ_BASE = "{arch}.rope.freq_base"
FREQ_BASE_SWA = "{arch}.rope.freq_base_swa"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor"
SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor"
SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast"
SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow"
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
FREQ_BASE = "{arch}.rope.freq_base"
FREQ_BASE_SWA = "{arch}.rope.freq_base_swa"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor"
SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor"
SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast"
SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow"
class Split:
LLM_KV_SPLIT_NO = "split.no"
@ -207,6 +209,9 @@ class Keys:
GROUP_COUNT = "{arch}.ssm.group_count"
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
class KDA:
HEAD_DIM = "{arch}.kda.head_dim"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
@ -466,8 +471,10 @@ class MODEL_ARCH(IntEnum):
PANGU_EMBED = auto()
MISTRAL3 = auto()
MIMO2 = auto()
STEP35 = auto()
LLAMA_EMBED = auto()
MAINCODER = auto()
KIMI_LINEAR = auto()
class VISION_PROJECTOR_TYPE(IntEnum):
@ -558,6 +565,14 @@ class MODEL_TENSOR(IntEnum):
SSM_NORM = auto()
SSM_OUT = auto()
SSM_BETA_ALPHA = auto() # qwen3next
SSM_CONV1D_Q = auto() # Kimi Linear
SSM_CONV1D_K = auto() # Kimi Linear
SSM_CONV1D_V = auto() # Kimi Linear
SSM_F_A = auto() # Kimi Linear
SSM_F_B = auto() # Kimi Linear
SSM_BETA = auto() # Kimi Linear
SSM_G_A = auto() # Kimi Linear
SSM_G_B = auto() # Kimi Linear
TIME_MIX_W0 = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
@ -904,8 +919,10 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
MODEL_ARCH.MISTRAL3: "mistral3",
MODEL_ARCH.MIMO2: "mimo2",
MODEL_ARCH.STEP35: "step35",
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
MODEL_ARCH.MAINCODER: "maincoder",
MODEL_ARCH.KIMI_LINEAR: "kimi-linear",
}
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@ -993,6 +1010,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba",
MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear
MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear
MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear
MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear
MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear
MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear
MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear
MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
@ -3432,6 +3457,32 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.STEP35: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_GATE,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.LLAMA_EMBED: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@ -3468,6 +3519,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.KIMI_LINEAR: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_K_B,
MODEL_TENSOR.ATTN_V_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.SSM_CONV1D_Q,
MODEL_TENSOR.SSM_CONV1D_K,
MODEL_TENSOR.SSM_CONV1D_V,
MODEL_TENSOR.SSM_F_A,
MODEL_TENSOR.SSM_F_B,
MODEL_TENSOR.SSM_BETA,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_G_A,
MODEL_TENSOR.SSM_G_B,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_NORM,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO
}
@ -3785,12 +3877,12 @@ KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
# RoPE
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
# SSM
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
@ -3800,6 +3892,9 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
KEY_SSM_GROUP_COUNT = Keys.SSM.GROUP_COUNT
KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
# KDA
KEY_KDA_HEAD_DIM = Keys.KDA.HEAD_DIM
# tokenization
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE

View File

@ -824,6 +824,12 @@ class GGUFWriter:
def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
def add_swiglu_clamp_exp(self, values: Sequence[float]) -> None:
self.add_array(Keys.LLM.SWIGLU_CLAMP_EXP.format(arch=self.arch), values)
def add_swiglu_clamp_shexp(self, values: Sequence[float]) -> None:
self.add_array(Keys.LLM.SWIGLU_CLAMP_SHEXP.format(arch=self.arch), values)
def add_expert_group_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_GROUP_SCALE.format(arch=self.arch), value)
@ -980,6 +986,9 @@ class GGUFWriter:
def add_ssm_dt_b_c_rms(self, value: bool) -> None:
self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value)
def add_kda_head_dim(self, value: int) -> None:
self.add_uint32(Keys.KDA.HEAD_DIM.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)

View File

@ -359,6 +359,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_GATE: (
"model.layers.{bid}.self_attn.gate_proj", # afmoe
"model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate
),
# Feed-forward norm
@ -423,6 +424,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.router.gate", # afmoe
"layers.{bid}.gate", # mistral-large
"backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
"model.layers.{bid}.moe.gate", # step3.5
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@ -438,6 +440,8 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
"backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe
"model.layers.{bid}.mlp.e_score_correction", # exaone-moe
"model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi
"model.layers.{bid}.moe.router_bias", # step3.5 expert selection bias
),
# Feed-forward up
@ -492,6 +496,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
"model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
"model.layers.{bid}.moe.up_proj", # step3.5
),
MODEL_TENSOR.FFN_UP_SHEXP: (
@ -502,6 +507,8 @@ class TensorNameMap:
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
"layers.{bid}.shared_experts.w3", # mistral-large
"backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
"model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi
"model.layers.{bid}.share_expert.up_proj", # step3.5
),
MODEL_TENSOR.FFN_UP_CHEXP: (
@ -541,6 +548,7 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
"model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
"model.layers.{bid}.moe.gate_proj", # step3.5
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
@ -549,6 +557,8 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
"model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
"layers.{bid}.shared_experts.w1", # mistral-large
"model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi
"model.layers.{bid}.share_expert.gate_proj", # step3.5
),
MODEL_TENSOR.FFN_GATE_CHEXP: (
@ -603,6 +613,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
"model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
"model.layers.{bid}.moe.down_proj", # step3.5
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
@ -613,6 +624,8 @@ class TensorNameMap:
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
"layers.{bid}.shared_experts.w2", # mistral-large
"backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
"model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi
"model.layers.{bid}.share_expert.down_proj", # step3.5
),
MODEL_TENSOR.FFN_DOWN_CHEXP: (
@ -759,6 +772,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mixer.dt_proj", # plamo2
"model.layers.{bid}.linear_attn.dt_proj", # qwen3next
"backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
"model.layers.{bid}.self_attn.dt_proj", # kimi
),
MODEL_TENSOR.SSM_DT_NORM: (
@ -772,6 +786,7 @@ class TensorNameMap:
"model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.A_log", # plamo2
"model.layers.{bid}.linear_attn.A_log", # qwen3next
"model.layers.{bid}.self_attn.A_log", # kimi
),
MODEL_TENSOR.SSM_B_NORM: (
@ -797,6 +812,7 @@ class TensorNameMap:
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
"model.layers.{bid}.linear_attn.norm", # qwen3next
"backbone.layers.{bid}.mixer.norm", # mamba2
"model.layers.{bid}.self_attn.o_norm", # kimi
),
MODEL_TENSOR.SSM_OUT: (
@ -811,6 +827,31 @@ class TensorNameMap:
"model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
),
# Kimi Linear KDA (using SSM_ prefix for consistency)
MODEL_TENSOR.SSM_CONV1D_Q: (
"model.layers.{bid}.self_attn.q_conv1d",
),
MODEL_TENSOR.SSM_CONV1D_K: (
"model.layers.{bid}.self_attn.k_conv1d",
),
MODEL_TENSOR.SSM_CONV1D_V: (
"model.layers.{bid}.self_attn.v_conv1d",
),
MODEL_TENSOR.SSM_F_A: (
"model.layers.{bid}.self_attn.f_a_proj",
),
MODEL_TENSOR.SSM_F_B: (
"model.layers.{bid}.self_attn.f_b_proj",
),
MODEL_TENSOR.SSM_BETA: (
"model.layers.{bid}.self_attn.b_proj",
),
MODEL_TENSOR.SSM_G_A: (
"model.layers.{bid}.self_attn.g_a_proj",
),
MODEL_TENSOR.SSM_G_B: (
"model.layers.{bid}.self_attn.g_b_proj",
),
MODEL_TENSOR.TIME_MIX_W0: (
"model.layers.{bid}.attention.w0", # rwkv7
),

View File

@ -23,7 +23,7 @@ numpy = ">=1.17"
tqdm = ">=4.27"
pyyaml = ">=5.1"
requests = ">=2.25"
sentencepiece = { version = ">=0.1.98,<=0.2.0", optional = true }
sentencepiece = { version = ">=0.1.98,<0.3.0", optional = true }
PySide6 = { version = "^6.9", python = ">=3.9,<3.14", optional = true }
[tool.poetry.dev-dependencies]

View File

@ -17,7 +17,7 @@ classifiers = [
[tool.poetry.dependencies]
python = ">=3.9"
numpy = "^1.25.0"
sentencepiece = ">=0.1.98,<=0.2.0"
sentencepiece = ">=0.1.98,<0.3.0"
transformers = ">=4.35.2,<5.0.0"
protobuf = ">=4.21.0,<5.0.0"
gguf = { path = "./gguf-py" }

View File

@ -1,5 +1,5 @@
numpy~=1.26.4
sentencepiece~=0.2.0
sentencepiece>=0.1.98,<0.3.0
transformers>=4.57.1,<5.0.0

View File

@ -84,6 +84,7 @@ add_library(llama
models/internlm2.cpp
models/jais.cpp
models/jamba.cpp
models/kimi-linear.cpp
models/lfm2.cpp
models/llada-moe.cpp
models/llada.cpp
@ -134,6 +135,7 @@ add_library(llama
models/stablelm.cpp
models/starcoder.cpp
models/starcoder2.cpp
models/step35-iswa.cpp
models/t5-dec.cpp
models/t5-enc.cpp
models/wavtokenizer-dec.cpp

View File

@ -118,9 +118,11 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_STEP35, "step35" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_MAINCODER, "maincoder" },
{ LLM_ARCH_KIMI_LINEAR, "kimi-linear" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@ -162,6 +164,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
{ LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, "%s.expert_chunk_feed_forward_length" },
{ LLM_KV_SWIGLU_CLAMP_EXP, "%s.swiglu_clamp_exp" },
{ LLM_KV_SWIGLU_CLAMP_SHEXP, "%s.swiglu_clamp_shexp" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
@ -220,21 +224,21 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
{ LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" },
{ LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
{ LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" },
{ LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" },
{ LLM_KV_SPLIT_NO, "split.no" },
{ LLM_KV_SPLIT_COUNT, "split.count" },
@ -247,6 +251,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" },
{ LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
{ LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" },
{ LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" },
{ LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" },
@ -372,6 +378,15 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
{ LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" },
{ LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" },
{ LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" },
{ LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" },
{ LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" },
{ LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" },
{ LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" },
{ LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
@ -2300,6 +2315,35 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_STEP35:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_GPTJ:
case LLM_ARCH_UNKNOWN:
return {
@ -2322,6 +2366,54 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
};
case LLM_ARCH_KIMI_LINEAR:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
// Dense FFN (layer 0 only)
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
// MoE FFN (layers 1+)
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_EXP_PROBS_B,
// Shared experts
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
// KDA (using SSM_ enum prefix, keeping GGUF names for backward compat)
LLM_TENSOR_SSM_CONV1D_Q,
LLM_TENSOR_SSM_CONV1D_K,
LLM_TENSOR_SSM_CONV1D_V,
LLM_TENSOR_SSM_F_A,
LLM_TENSOR_SSM_F_B,
LLM_TENSOR_SSM_BETA,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_G_A,
LLM_TENSOR_SSM_G_B,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_NORM,
// MLA
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_KV_A_NORM,
};
default:
GGML_ABORT("unknown architecture for tensor mapping");
}
@ -2425,6 +2517,15 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
// Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime
{LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@ -2606,6 +2707,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_QWEN3NEXT:
case LLM_ARCH_KIMI_LINEAR:
return true;
default:
return false;

View File

@ -123,8 +123,10 @@ enum llm_arch {
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_MIMO2,
LLM_ARCH_STEP35,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_MAINCODER,
LLM_ARCH_KIMI_LINEAR,
LLM_ARCH_UNKNOWN,
};
@ -166,6 +168,8 @@ enum llm_kv {
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH,
LLM_KV_SWIGLU_CLAMP_EXP,
LLM_KV_SWIGLU_CLAMP_SHEXP,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
@ -251,6 +255,8 @@ enum llm_kv {
LLM_KV_SSM_GROUP_COUNT,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_KDA_HEAD_DIM,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
@ -399,6 +405,15 @@ enum llm_tensor {
LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
// Kimi Linear KDA (using SSM_ prefix for consistency)
LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight
LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight
LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight
LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A
LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B
LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient
LLM_TENSOR_SSM_G_A, // kimi: output gate projection A
LLM_TENSOR_SSM_G_B, // kimi: output gate projection B
LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,

View File

@ -2013,7 +2013,7 @@ void llama_context::output_reorder() {
//
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) {
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
}
uint32_t res = std::max<uint32_t>(1024u, 8u*model.n_tensors());

View File

@ -13,6 +13,8 @@
#include <cassert>
#include <cmath>
#include <cstring>
#include <numeric>
#include <sstream>
#include <unordered_set>
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
@ -533,6 +535,50 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) {
return res;
}
// TODO: Hybrid input classes are a bit redundant.
// Instead of creating a hybrid input, the graph can simply create 2 separate inputs.
// Refactoring is required in the future.
void llm_graph_input_mem_hybrid_k::set_input(const llama_ubatch * ubatch) {
mctx->get_attn()->set_input_k_idxs(inp_attn->self_k_idxs, ubatch);
mctx->get_attn()->set_input_kq_mask(inp_attn->self_kq_mask, ubatch, cparams.causal_attn);
const int64_t n_rs = mctx->get_recr()->get_n_rs();
if (inp_rs->s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(inp_rs->s_copy->buffer));
int32_t * data = (int32_t *) inp_rs->s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_rs; ++i) {
data[i] = mctx->get_recr()->s_copy(i);
}
}
}
bool llm_graph_input_mem_hybrid_k::can_reuse(const llm_graph_params & params) {
const auto * mctx = static_cast<const llama_memory_hybrid_context *>(params.mctx);
this->mctx = mctx;
bool res = true;
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
res &= inp_rs->s_copy_main->ne[0] == params.ubatch.n_seqs;
res &= inp_rs->s_copy_extra->ne[0] == mctx->get_recr()->get_n_rs() - params.ubatch.n_seqs;
res &= inp_rs->head == mctx->get_recr()->get_head();
res &= inp_rs->rs_z == mctx->get_recr()->get_rs_z();
return res;
}
void llm_graph_input_mem_hybrid_iswa::set_input(const llama_ubatch * ubatch) {
const auto * attn_ctx = mctx->get_attn();
@ -970,6 +1016,26 @@ ggml_tensor * llm_graph_context::build_ffn(
switch (type_op) {
case LLM_FFN_SILU:
if (gate && type_gate == LLM_FFN_PAR) {
// Step35: HF clamps gate (after SiLU) and up before multiplication
if (arch == LLM_ARCH_STEP35 && il >= 0) {
const float limit = hparams.swiglu_clamp_shexp[il];
constexpr float eps = 1e-6f;
if (limit > eps) {
ggml_tensor * gate_act = ggml_silu(ctx0, cur);
cb(gate_act, "ffn_silu", il);
gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit);
cb(gate_act, "ffn_silu_clamped", il);
tmp = ggml_clamp(ctx0, tmp, -limit, limit);
cb(tmp, "ffn_up_clamped", il);
cur = ggml_mul(ctx0, gate_act, tmp);
cb(cur, "ffn_swiglu_limited", il);
type_gate = LLM_FFN_SEQ;
break;
}
}
cur = ggml_swiglu_split(ctx0, cur, tmp);
cb(cur, "ffn_swiglu", il);
type_gate = LLM_FFN_SEQ;
@ -1272,6 +1338,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
switch (type_op) {
case LLM_FFN_SILU:
if (gate_exps) {
// Step35: per-layer clamp for routed experts
if (arch == LLM_ARCH_STEP35 && il >= 0) {
const float limit = hparams.swiglu_clamp_exp[il];
constexpr float eps = 1e-6f;
if (limit > eps) {
ggml_tensor * gate_act = ggml_silu(ctx0, cur);
cb(gate_act, "ffn_moe_silu", il);
gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit);
cb(gate_act, "ffn_moe_silu_clamped", il);
up = ggml_clamp(ctx0, up, -limit, limit);
cb(up, "ffn_moe_up_clamped", il);
cur = ggml_mul(ctx0, gate_act, up);
cb(cur, "ffn_moe_swiglu_limited", il);
break;
}
}
cur = ggml_swiglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_swiglu", il);
} else {
@ -2268,6 +2353,17 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}
llm_graph_input_mem_hybrid_k * llm_graph_context::build_inp_mem_hybrid_k() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
auto inp_rs = build_rs_inp_impl (ctx0, ubatch, mctx_cur->get_recr());
auto inp_attn = build_attn_inp_k_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
auto inp = std::make_unique<llm_graph_input_mem_hybrid_k>(cparams, std::move(inp_attn), std::move(inp_rs), mctx_cur);
return (llm_graph_input_mem_hybrid_k *) res->add_input(std::move(inp));
}
llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_iswa_context *>(mctx);

View File

@ -433,6 +433,34 @@ public:
const llama_memory_hybrid_context * mctx;
};
class llm_graph_input_mem_hybrid_k : public llm_graph_input_i {
public:
llm_graph_input_mem_hybrid_k(
const llama_cparams & cparams,
std::unique_ptr<llm_graph_input_attn_k> inp_attn,
std::unique_ptr<llm_graph_input_rs> inp_rs,
const llama_memory_hybrid_context * mctx) :
inp_attn(std::move(inp_attn)),
inp_rs(std::move(inp_rs)),
cparams(cparams),
mctx(mctx) { }
virtual ~llm_graph_input_mem_hybrid_k() = default;
void set_input(const llama_ubatch * ubatch) override;
bool can_reuse(const llm_graph_params & params) override;
std::unique_ptr<llm_graph_input_attn_k> inp_attn;
std::unique_ptr<llm_graph_input_rs> inp_rs;
llm_graph_input_attn_k * get_attn() const { return inp_attn.get(); }
llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
const llama_cparams cparams;
const llama_memory_hybrid_context * mctx;
};
class llm_graph_input_mem_hybrid_iswa : public llm_graph_input_i {
public:
llm_graph_input_mem_hybrid_iswa(
@ -960,6 +988,7 @@ struct llm_graph_context {
//
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
llm_graph_input_mem_hybrid_k * build_inp_mem_hybrid_k() const;
llm_graph_input_mem_hybrid_iswa * build_inp_mem_hybrid_iswa() const;

View File

@ -139,6 +139,13 @@ uint32_t llama_hparams::n_embd_r() const {
return n_embd * (n_shortconv_l_cache - 1);
}
if (n_embd_head_kda != 0) {
// for Kimi KDA layers
// Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim
const uint32_t d_inner = n_head() * n_embd_head_kda; // 32 * 128 = 4096
return 3 * (ssm_d_conv > 0 ? ssm_d_conv - 1 : 3) * d_inner;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
// Corresponds to Mamba's conv_states size
@ -151,6 +158,13 @@ uint32_t llama_hparams::n_embd_s() const {
return n_embd * wkv_head_size;
}
if (n_embd_head_kda != 0) {
// for Kimi KDA layers
// Full recurrent state: head_dim * head_dim * n_head
// h tensor shape for delta attention: [head_dim, head_dim, n_head]
return n_embd_head_kda * n_embd_head_kda * n_head(); // 128 * 128 * 32 = 524288
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

View File

@ -137,6 +137,9 @@ struct llama_hparams {
uint32_t ssm_dt_rank = 0;
uint32_t ssm_n_group = 0;
// for Kimi Linear KDA
uint32_t n_embd_head_kda = 0;
// for hybrid state space models
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
@ -203,6 +206,11 @@ struct llama_hparams {
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
// Step35: optional per-layer clamps for (Swi)GLU
std::array<float, LLAMA_MAX_LAYERS> swiglu_clamp_exp; // clamping for expert FFN
std::array<float, LLAMA_MAX_LAYERS> swiglu_clamp_shexp; // shared expert
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
// dense_first means whether the pattern is start with a dense layer
// note that if n_pattern == 0, all layers are SWA

View File

@ -218,7 +218,9 @@ llama_memory_context_ptr llama_kv_cache_iswa::init_update(llama_context * lctx,
}
bool llama_kv_cache_iswa::get_can_shift() const {
return kv_base->get_size() == kv_swa->get_size();
return kv_base->get_can_shift() &&
kv_swa->get_can_shift() &&
kv_base->get_size() == kv_swa->get_size();
}
void llama_kv_cache_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {

View File

@ -974,6 +974,10 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch &
}
bool llama_kv_cache::get_can_shift() const {
// Step35 uses per-layer RoPE dims; K-shift assumes a single global n_rot.
if (model.arch == LLM_ARCH_STEP35) {
return false;
}
return true;
}

View File

@ -125,10 +125,12 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
case LLM_TYPE_48B_A3B: return "48B.A3B";
case LLM_TYPE_80B_A3B: return "80B.A3B";
case LLM_TYPE_100B_A6B: return "100B.A6B";
case LLM_TYPE_102B_A12B: return "102B.A12B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
case LLM_TYPE_196B_A11B: return "196B.A11B";
case LLM_TYPE_230B_A10B: return "230B.A10B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
case LLM_TYPE_300B_A47B: return "300B.A47B";
@ -559,6 +561,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
std::fill(hparams.swiglu_clamp_exp.begin(), hparams.swiglu_clamp_exp.end(), 0.0f);
std::fill(hparams.swiglu_clamp_shexp.begin(), hparams.swiglu_clamp_shexp.end(), 0.0f);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
@ -2454,6 +2458,66 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_KDA_HEAD_DIM, hparams.n_embd_head_kda);
// MLA qk_rope_head_dim (for reference)
// qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192
// Mark KDA layers as recurrent using n_head_kv pattern (like Jamba)
// Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention)
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; // KDA layers are recurrent
}
// MoE parameters - Kimi uses moe_intermediate_size = 1024
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
switch (hparams.n_layer) {
case 27: type = LLM_TYPE_48B_A3B; break; // Kimi-Linear-48B-A3B
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_STEP35:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
// MoE + SWA parameters
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
// Step35 uses sigmoid gating by default (if not set in GGUF)
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
}
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer);
ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_EXP, hparams.swiglu_clamp_exp, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_SHEXP, hparams.swiglu_clamp_shexp, hparams.n_layer, false);
switch (hparams.n_layer) {
case 45: type = LLM_TYPE_196B_A11B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
default: throw std::runtime_error("unsupported model architecture");
}
@ -6789,6 +6853,141 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
// Check for KDA specific tensors to determine layer type or if it's a mixed model
// Assuming KDA layer if KDA tensors are present
// KDA uses head_dim = 128 (from linear_attn_config.head_dim)
const int64_t n_embd_head_k_kda = hparams.n_embd_head_kda;
const int64_t n_embd_head_v_kda = hparams.n_embd_head_kda;
const int64_t ssm_d_conv = hparams.ssm_d_conv;
// Try loading KDA specific tensors (using SSM_ prefix)
// Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1)
// 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner]
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_q_conv) {
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED);
}
if (layer.ssm_q_conv) {
// KDA Layer - Conv1d weights may be 3D or 4D
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_k_conv) {
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0);
}
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_v_conv) {
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0);
}
// q, k, v projections
// Python: q_proj, k_proj, v_proj
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0);
// KDA specific projections
// f_a_proj, f_b_proj
layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim
layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size
// b_proj (beta mixing coefficient)
layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0);
// A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization) Note: -exp(A_log) is applied in convert_hf_to_gguf.py
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_a) {
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
}
// dt_bias - shape [n_embd_head_k_kda * n_head] = [4096]
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_embd_head_k_kda * n_head}, 0);
// g_a_proj, g_b_proj (output gate)
layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0);
layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0);
// o_norm (reusing SSM_NORM)
layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated
// o_proj
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0);
} else {
// MLA Layer - use MLA-specific head dimensions
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
if (layer.attn_q_a_norm) {
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
} else {
// Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla]
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
}
// Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA)
// Note: hparams.n_rot may be 72 (from conversion) but actual is 64
const int64_t qk_rope_head_dim = hparams.n_rot; // From config: qk_rope_head_dim
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0);
// Support Legacy GGUFs that don't split wkv_b (MLA KV cache disabled)
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, TENSOR_NOT_REQUIRED);
if (!layer.wkv_b) { // MLA KV cache enabled
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_k_mla - qk_rope_head_dim, kv_lora_rank, n_head}, 0);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
}
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
// MoE intermediate size (different from dense FFN)
const int64_t n_ff_exp = hparams.n_ff_exp;
// Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE
// first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE
if (i < (int) hparams.n_layer_dense_lead) {
// Dense FFN layer - use normal n_ff
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
// MoE layer - use n_ff_exp (1024) instead of n_ff (9216)
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
// Shared experts use moe_intermediate_size * num_shared_experts
// Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024
// Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd]
const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1);
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
}
}
} break;
case LLM_ARCH_COGVLM:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -6977,6 +7176,72 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_STEP35:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
// STEP35 supports per-layer partial RoPE dims; rope factors are stored as a single shared tensor
// ("rope_freqs.weight") and ggml uses only the first (n_rot_l/2) entries per layer.
uint32_t n_rot_max = 0;
for (int i = 0; i < n_layer; ++i) {
n_rot_max = std::max(n_rot_max, hparams.n_rot);
}
if (n_rot_max == 0) {
n_rot_max = n_rot;
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
const uint32_t n_head_l = hparams.n_head(i);
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED);
// optional rope factors (llama3) / longrope tensors
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
} else {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_l}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v * n_head_l, n_embd}, 0);
// head-wise attention gate (Step35 self_attn.g_proj)
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_head_l}, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
// dense MLP (leading dense blocks)
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
// MoE routed experts + selection bias (router_bias)
const int64_t n_ff_exp = hparams.n_ff_exp;
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
// shared expert MLP
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_MAINCODER:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -8124,6 +8389,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_mimo2_iswa>(*this, params);
} break;
case LLM_ARCH_KIMI_LINEAR:
{
llm = std::make_unique<llm_build_kimi_linear>(*this, params);
} break;
case LLM_ARCH_STEP35:
{
llm = std::make_unique<llm_build_step35_iswa>(*this, params);
} break;
default:
GGML_ABORT("fatal error");
}
@ -8273,6 +8546,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_KIMI_LINEAR:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values
@ -8369,6 +8643,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_AFMOE:
case LLM_ARCH_QWEN3NEXT:
case LLM_ARCH_MIMO2:
case LLM_ARCH_STEP35:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:

View File

@ -118,10 +118,12 @@ enum llm_type {
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
LLM_TYPE_31B_A3_5B,
LLM_TYPE_48B_A3B, // Kimi Linear
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_102B_A12B, // Solar-Open
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_196B_A11B, // Step3.5-Flash
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
@ -411,6 +413,18 @@ struct llama_layer {
struct ggml_tensor * ffn_act_beta = nullptr;
struct ggml_tensor * ffn_act_eps = nullptr;
// Kimi Linear KDA (using ssm_ prefix for consistency)
// Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias
struct ggml_tensor * ssm_q_conv = nullptr;
struct ggml_tensor * ssm_k_conv = nullptr;
struct ggml_tensor * ssm_v_conv = nullptr;
struct ggml_tensor * ssm_f_a = nullptr;
struct ggml_tensor * ssm_f_b = nullptr;
struct ggml_tensor * ssm_beta = nullptr;
struct ggml_tensor * ssm_g_a = nullptr;
struct ggml_tensor * ssm_g_b = nullptr;
struct ggml_tensor * ssm_o_norm = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View File

@ -787,9 +787,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
// do not quantize Mamba's small yet 2D weights
// do not quantize Mamba /Kimi's small conv1d weights
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
quantize &= name.find("ssm_conv1d") == std::string::npos;
quantize &= name.find("shortconv.conv.weight") == std::string::npos;
// do not quantize RWKV's small yet 2D weights

View File

@ -1752,26 +1752,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
// Kimi-K2 uses custom tokenization without traditional BPE merges
const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2");
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
if (!is_kimi_k2) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
// Kimi-K2 doesn't need merges, skip
LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__);
} else {
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
bpe_ranks.emplace(std::make_pair(first, second), i);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
}
bpe_ranks.emplace(std::make_pair(first, second), i);
}
}
// default special tokens
@ -2226,6 +2233,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|end_of_text|>" // granite
|| t.first == "<EOT>"
|| t.first == "_<EOT>"
|| t.first == "[EOT]" // Kimi-K2
|| t.first == "<end▁of▁sentence>" // DeepSeek
|| t.first == "<end_of_utterance>" // smoldocling
) {
@ -2322,6 +2330,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<fim-pad>"
|| t.first == "<fim_pad>" // Granite
|| t.first == "<PAD>"
|| t.first == "[PAD]" // Kimi-K2
) {
special_fim_pad_id = t.second;
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@ -2424,6 +2433,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|eom_id|>"
|| t.first == "<EOT>"
|| t.first == "_<EOT>"
|| t.first == "[EOT]" // Kimi-K2
|| t.first == "[EOS]" // Kimi-K2
|| t.first == "<|end_of_text|>"
|| t.first == "<end_of_utterance>" // smoldocling
|| t.first == "<end▁of▁sentence>" // deepseek-ocr

772
src/models/kimi-linear.cpp Normal file
View File

@ -0,0 +1,772 @@
#include "models.h"
#include "ggml.h"
#define CHUNK_SIZE 64
// Causal Conv1d function for Q,K,V
// When qkv is 0, it is Q, 1 is K, 2 is V
static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_tensor * conv_states_all, ggml_tensor * conv_state_all, int64_t qkv, ggml_tensor * x, ggml_tensor * proj_w, ggml_tensor * conv_w, int64_t d_conv, int64_t head_dim, int64_t n_head, int64_t n_seq_tokens, int64_t n_seqs, int64_t n_tokens, int64_t kv_head) {
const int64_t d_inner = head_dim * n_head;
const int64_t conv_state_size = (d_conv - 1) * d_inner;
const int64_t n_embd_r_total = 3 * conv_state_size; // Q + K + V
// conv_state_all is [n_embd_r_total, n_seqs], split into Q, K, V
// Each conv state is [(d_conv-1) * d_inner] per sequence, need to reshape to [d_conv-1, d_inner, n_seqs]
// Memory layout: for each seq, Q state is first conv_state_size elements, then K, then V
// conv_state_all has stride: nb[0] = element_size, nb[1] = n_embd_r_total * element_size
// View Q conv state: offset 0, size conv_state_size per seq
// conv_state_all is [n_embd_r_total, n_seqs] with memory layout:
// state[i + seq * n_embd_r_total] where i = conv_step + channel * (d_conv-1) + {0, conv_state_size, 2*conv_state_size} for Q/K/V
// We want [d_conv-1, d_inner, n_seqs] view:
// nb1 = (d_conv-1) * element_size (stride between channels)
// nb2 = n_embd_r_total * element_size (stride between seqs)
ggml_tensor * conv_state_x = ggml_view_3d(ctx0, conv_state_all, d_conv - 1, d_inner, n_seqs,
(d_conv - 1) * ggml_element_size(conv_state_all), // nb1: stride between channels
n_embd_r_total * ggml_element_size(conv_state_all), // nb2: stride between seqs
qkv * conv_state_size * ggml_element_size(conv_state_all));
// Causal Conv1d function for Q,K,V
// When qkv is 0, it is Q, 1 is K, 2 is V
// Step 1: Q, K, V projections -> [d_inner, n_tokens]
ggml_tensor * x_proj = ggml_mul_mat(ctx0, proj_w, x);
// Reshape input: {d_inner, n_tokens} -> {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * x_3d = ggml_reshape_3d(ctx0, x_proj, d_inner, n_seq_tokens, n_seqs);
// Concat Q conv state and current input: {d_conv-1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv_state_x, ggml_transpose(ctx0, x_3d), 0);
// Save last (d_conv-1) columns back to Q conv state
ggml_tensor * last_conv_x = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs,
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv_x,
ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs,
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all))));
// Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner]
// GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv]
// vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step]
// ggml_ssm_conv computes: c[conv_step + channel * d_conv]
// GGUF layout: [d_conv, 1, d_inner] or [d_conv, 1, d_inner, 1] -> reshape to [d_conv, d_inner]
// Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv
ggml_tensor * conv_weight = ggml_reshape_2d(ctx0, conv_w, d_conv, d_inner);
// Apply conv1d
// ggml_ssm_conv output: {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * Xcur = ggml_ssm_conv(ctx0, conv_x, conv_weight);
// Reshape to 2D for bias add: {d_inner, n_tokens}
Xcur = ggml_reshape_2d(ctx0, Xcur, d_inner, n_tokens);
Xcur = ggml_silu(ctx0, Xcur);
return ggml_reshape_4d(ctx0, Xcur, head_dim, n_head, n_seq_tokens, n_seqs);
}
llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "model.embed_tokens", -1);
// Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
// So we don't need inp_pos
auto * inp_kv = !hparams.is_mla() ? build_inp_mem_hybrid() : nullptr;
auto * inp_k = hparams.is_mla() ? build_inp_mem_hybrid_k() : nullptr;
auto * inp_rs = hparams.is_mla() ? inp_k->get_recr() : inp_kv->get_recr();
auto * inp_attn_kv = !hparams.is_mla() ? inp_kv->get_attn() : nullptr;
auto * inp_attn_k = hparams.is_mla() ? inp_k->get_attn() : nullptr;
// Output ids for selecting which tokens to output
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * chunked_causal_mask =
ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
GGML_TRI_TYPE_LOWER);
ggml_tensor * chunked_identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
ggml_tensor * chunked_diag_mask = ggml_add(ctx0, chunked_causal_mask, chunked_identity);
ggml_build_forward_expand(gf, chunked_causal_mask);
ggml_build_forward_expand(gf, chunked_identity);
ggml_build_forward_expand(gf, chunked_diag_mask);
// Kimi dimension constants
const int64_t n_head = hparams.n_head();
const int64_t head_dim = hparams.n_embd_head_kda;
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = n_head * head_dim; // 32 * 128 = 4096
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
// Verify batch consistency for recurrent layers
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
// MLA params
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
const int64_t kv_lora_rank = hparams.n_lora_kv;
// qk_rope_head_dim = 64 (from Kimi config) which is hparams.n_rot
// Confirmed from tensor shape: wkv_a_mqa [2304, 576] = [n_embd, kv_lora_rank + qk_rope_head_dim]
const int64_t n_embd_head_qk_rope = hparams.n_rot; // config.qk_rope_head_dim
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; // 192 - 64 = 128
// Attention scale for MLA
const float kq_scale_mla = 1.0f / sqrtf((float)n_embd_head_k_mla);
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers[il];
ggml_tensor * inpSA = inpL;
// Attention Norm
cur = build_norm(inpL, layer.attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// Check layer type by checking which tensors exist
// KDA layers have ssm_a_log tensor, MLA layers have wkv_a_mqa tensor
bool is_kda = (layer.ssm_a != nullptr);
bool is_mla = (layer.wkv_a_mqa != nullptr);
if (is_kda) {
// === KDA Layer (Kimi Delta Attention) with Recurrent State ===
// Reference: vLLM kda.py
const auto * mctx_cur = inp_rs->mctx;
const auto kv_head = mctx_cur->get_head();
// Get conv states from r_l tensor (Q, K, V each have separate state)
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
cb(conv_states_all, "conv_states_all", il);
ggml_tensor * conv_state_all = build_rs(inp_rs, conv_states_all, hparams.n_embd_r(), n_seqs);
ggml_tensor * Qcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 0, cur, layer.wq, layer.ssm_q_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
ggml_tensor * Kcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 1, cur, layer.wk, layer.ssm_k_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
ggml_tensor * Vcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 2, cur, layer.wv, layer.ssm_v_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
// g1 = -exp(A_log) * softplus(f_b(f_a(x)) + dt_bias)
ggml_tensor * f_a = ggml_mul_mat(ctx0, layer.ssm_f_a, cur);
ggml_tensor * g1 = ggml_mul_mat(ctx0, layer.ssm_f_b, f_a);
cb(g1, "g1 f_b(f_a(cur))", il);
g1 = ggml_add(ctx0, g1, layer.ssm_dt_b);
g1 = ggml_softplus(ctx0, g1);
g1 = ggml_reshape_3d(ctx0, g1, head_dim, n_head, n_tokens);
// A_log shape is [1, n_head] or [1, n_head, 1, 1], need to broadcast to [head_dim, n_head, n_tokens]. No need to -exp(a_log) because it was done in convert_hf_to_gguf.py
// Reshape to [1, n_head, 1] for broadcasting with g1 [head_dim, n_head, n_tokens]
ggml_tensor * A = ggml_reshape_3d(ctx0, layer.ssm_a, 1, n_head, 1);
g1 = ggml_mul(ctx0, g1, A);
cb(g1, "kda_g1", il);
// Compute beta (mixing coefficient)
ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur);
beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs);
cb(beta, "kda_beta", il);
// Reshape for KDA recurrence
// {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs);
// Get SSM state and compute KDA recurrence using ggml_kda_scan
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * state = build_rs(inp_rs, ssm_states_all, hparams.n_embd_s(), n_seqs);
state = ggml_reshape_4d(ctx0, state, head_dim, head_dim, n_head, n_seqs);
// Choose between build_kda_chunking and build_kda_recurrent based on n_tokens
std::pair<ggml_tensor *, ggml_tensor *> attn_out = n_seq_tokens == 1 ?
build_kda_autoregressive(Qcur, Kcur, Vcur, g1, beta, state, il) :
build_kda_chunking(Qcur, Kcur, Vcur, g1, beta, state, chunked_causal_mask, chunked_identity, chunked_diag_mask, il);
ggml_tensor * output = attn_out.first;
ggml_tensor * new_state = attn_out.second;
cb(output, "attn_output", il);
cb(new_state, "new_state", il);
// Update the recurrent states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, new_state,
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
// Output gating g2 = g_b(g_a(x))
ggml_tensor * cur_2d = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
ggml_tensor * g_a = ggml_mul_mat(ctx0, layer.ssm_g_a, cur_2d);
ggml_tensor * g2 = ggml_mul_mat(ctx0, layer.ssm_g_b, g_a);
cb(g2, "g2 g_b(g_a(cur_2d))", il);
g2 = ggml_reshape_3d(ctx0, g2, head_dim, n_head, n_seq_tokens * n_seqs);
// Apply o_norm with sigmoid gating
// Note: Kimi model uses sigmoid gating, not SiLU (despite FusedRMSNormGated default being swish)
// Formula: output = RMSNorm(x) * sigmoid(g)
ggml_tensor * attn_out_final = ggml_reshape_3d(ctx0, output, head_dim, n_head, n_seq_tokens * n_seqs);
ggml_tensor * normed = build_norm(attn_out_final, layer.ssm_o_norm, nullptr, LLM_NORM_RMS, il);
cb(normed, "kda_normed", il);
ggml_tensor * gate = ggml_sigmoid(ctx0, g2);
ggml_tensor * gated = ggml_mul(ctx0, normed, gate);
// Output projection
gated = ggml_cont_2d(ctx0, gated, d_inner, n_tokens);
cur = ggml_mul_mat(ctx0, layer.wo, gated);
cb(cur, "kda_out", il);
} else if (is_mla) {
// === MLA Layer (Multi-head Latent Attention) without KV Cache ===
// Reference: vLLM mla.py
// Step 1: Q projection and reshape
// vLLM Kimi: q = q_proj(hidden_states), then view as [n_tokens, n_head, qk_head_dim]
// Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.wq, cur);
// Step 2: KV compression
// kv_cmpr_pe = kv_a_proj_with_mqa(hidden_states) -> [kv_lora_rank + qk_rope_head_dim, n_tokens]
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, layer.wkv_a_mqa, cur);
// Split: kv_cmpr = kv_lora[:kv_lora_rank], k_pe = kv_lora[kv_lora_rank:]
ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
// Note: Kimi MLA does NOT apply RoPE (rotary_emb=None in vLLM)
// k_pe is used directly without RoPE
// Normalize kv_c
kv_cmpr = build_norm(kv_cmpr, layer.attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
if (layer.wk_b && layer.wv_b) { // MLA KV cache enabled
// extract q_nope
ggml_tensor * q_nope =
ggml_view_3d(ctx0, Qcur, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, 0);
cb(q_nope, "q_nope", il);
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(
ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, ggml_row_size(Qcur->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, layer.wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn_k, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, layer.wv_b, kq_scale_mla, il);
cb(cur, "mla_out", il);
} else { // MLA KV cache disabled. Fall back to MHA KV cache.
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k_mla, n_head, n_tokens);
cb(Qcur, "mla_Q", il);
// KV decompression: kv = kv_b_proj(kv_c_normed)
ggml_tensor * kv = ggml_mul_mat(ctx0, layer.wkv_b, kv_cmpr);
const int64_t kv_per_head = n_embd_head_qk_nope + n_embd_head_v_mla;
// Split kv into k_nope and v
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, kv_per_head),
ggml_row_size(kv->type, kv_per_head * n_head), 0);
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens,
ggml_row_size(kv->type, kv_per_head),
ggml_row_size(kv->type, kv_per_head * n_head),
ggml_row_size(kv->type, n_embd_head_qk_nope));
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "mla_V", il);
// Concatenate k_nope + k_pe (broadcast k_pe to all heads)
// K = [k_nope, k_pe] where k_nope is [qk_nope_head_dim, n_head, n_tokens]
// and k_pe is [qk_rope_head_dim, 1, n_tokens] broadcast to all heads
// Need to broadcast k_pe from [qk_rope, 1, n_tokens] to [qk_rope, n_head, n_tokens]
ggml_tensor * k_pe_target = ggml_new_tensor_3d(ctx0, k_pe->type, n_embd_head_qk_rope, n_head, n_tokens);
ggml_tensor * k_pe_repeated = ggml_repeat(ctx0, k_pe, k_pe_target);
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe_repeated, k_nope, 0);
cb(Kcur, "mla_K", il);
// Direct softmax attention (with MHA KV cache)
// Use build_attn with inp_attn for proper mask handling
cur = build_attn(inp_attn_kv, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale_mla, il);
cb(cur, "mla_out", il);
}
} else {
// Unknown layer type - this should not happen
GGML_ABORT("Kimi layer is neither KDA nor MLA - missing required tensors");
}
// On last layer, select only the output tokens
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Residual
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FFN Norm
cur = build_norm(ffn_inp, layer.ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
layer.ffn_up, NULL, NULL,
layer.ffn_gate, NULL, NULL,
layer.ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE layer
// Kimi uses moe_renormalize=True and routed_scaling_factor (stored as expert_weights_scale) = 2.446
ggml_tensor * moe_out = build_moe_ffn(cur,
layer.ffn_gate_inp,
layer.ffn_up_exps,
layer.ffn_gate_exps,
layer.ffn_down_exps,
layer.ffn_exp_probs_b,
hparams.n_expert,
hparams.n_expert_used,
LLM_FFN_SILU, true,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// Shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
layer.ffn_up_shexp, NULL, NULL,
layer.ffn_gate_shexp, NULL, NULL,
layer.ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
// Residual
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
// Final Norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// Output
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
/*
This is a ggml implementation of the naive_chunk_kda function of
https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/kda/naive.py
*/
std::pair<ggml_tensor *, ggml_tensor *> llm_build_kimi_linear::build_kda_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(gk->ne[0] == S_v && gk->ne[1] == H_v && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
// TODO: can this ever be false?
const bool use_qk_l2norm = true;
if (use_qk_l2norm) {
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
}
const float scale = 1.0f / sqrtf(S_v);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(gk, "gk_in", il);
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
cb(q, "q_perm", il);
cb(k, "k_perm", il);
cb(v, "v_perm", il);
cb(beta, "beta_perm", il);
cb(gk, "gk_perm", il);
cb(state, "state_in", il);
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
// Do padding
const int64_t chunk_size = CHUNK_SIZE;
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
gk = ggml_pad(ctx0, gk, 0, pad, 0, 0);
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
cb(q, "q_pad", il);
cb(k, "k_pad", il);
cb(v, "v_pad", il);
cb(beta, "beta_pad", il);
cb(gk, "gk_pad", il);
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
cb(v_beta, "v_beta", il);
cb(k_beta, "k_beta", il);
const int64_t HB = H_k * n_seqs;
q = ggml_cont_4d(ctx0, q, S_k, chunk_size, n_chunks, HB);
k = ggml_cont_4d(ctx0, k, S_k, chunk_size, n_chunks, HB);
k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, HB);
v = ggml_cont_4d(ctx0, v, S_v, chunk_size, n_chunks, HB);
v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, HB);
gk = ggml_cont_4d(ctx0, gk, S_k, chunk_size, n_chunks, HB);
beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, HB);
// switch for cumsum
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 1, 0, 2, 3), chunk_size, S_k, n_chunks, HB);
cb(gk, "gk", il);
ggml_tensor * gk_cumsum = ggml_cumsum(ctx0, gk);
cb(gk_cumsum, "gk_cumsum", il);
/*
Compute Akk and Aqk loop together
Akk loop:
for i in range(BT):
k_i = k[..., i, :] # k_i [B,H,NT,S]
g_i = g[..., i:i+1, :] # g_i [B,H,NT,1,S]
A[..., i] = torch.einsum('... c d, ... d -> ... c', k * (g - g_i).exp(), k_i)
Aqk loop:
for j in range(BT):
k_j = k[:, :, i, j]
g_j = g[:, :, i, j:j+1, :]
A[..., j] = torch.einsum('... c d, ... d -> ... c', q_i * (g_i - g_j).exp(), k_j)
*/
const int64_t CHB = n_chunks * H_k * n_seqs;
ggml_tensor * gkcs_i = ggml_reshape_4d(ctx0, gk_cumsum, chunk_size, 1, S_k, CHB); // [chunk_size, 1, S_k, CHB]
ggml_tensor * gkcs_j = ggml_reshape_4d(ctx0, gkcs_i, 1, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB]
ggml_tensor * gkcs_j_bc = ggml_repeat_4d(ctx0, gkcs_j, chunk_size, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB] -> [chunk_size, chunk_size, S_k, CHB]
// decay_mask [chunk_size,chunk_size,S_k,CHB]
ggml_tensor * decay_mask = ggml_sub(ctx0, gkcs_j_bc, gkcs_i);
cb(decay_mask, "decay_mask", il);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
cb(decay_mask, "decay_masked", il);
decay_mask = ggml_exp(ctx0, decay_mask);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
// decay_mask [S_k,BT_j,BT_i,CHB] *Note* second and third chunk_sizes are switched
decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB);
ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, chunk_size, 1, CHB);
ggml_tensor * k_j = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB);
ggml_tensor * q_i = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB);
ggml_tensor * decay_k_i = ggml_mul(ctx0, decay_mask, k_i);
ggml_tensor * decay_q_i = ggml_mul(ctx0, decay_mask, q_i);
// decay_k_i [S.BT,BT,CHB] @ k_j [S,1,BT,CHB] = Akk [BT,1,BT,CHB]
ggml_tensor * Akk = ggml_mul_mat(ctx0, decay_k_i, k_j);
ggml_tensor * Aqk = ggml_mul_mat(ctx0, decay_q_i, k_j);
Akk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Akk, chunk_size, chunk_size, n_chunks, HB)));
Aqk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Aqk, chunk_size, chunk_size, n_chunks, HB)));
cb(Akk, "Akk", il);
cb(Aqk, "Aqk", il);
Akk = ggml_mul(ctx0, Akk, beta);
Akk = ggml_neg(ctx0, ggml_mul(ctx0, Akk, causal_mask));
cb(Akk, "attn_pre_solve", il);
Aqk = ggml_mul(ctx0, Aqk, diag_mask);
Aqk = ggml_scale(ctx0, Aqk, scale); // scale q
cb(Aqk, "Aqk_masked", il);
// for i in range(1, chunk_size):
// row = attn[..., i, :i].clone()
// sub = attn[..., :i, :i].clone()
// attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2)
// attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device)
//
// We reduce this to a linear triangular solve: AX = B, where B = attn, A = I - tril(A)
ggml_tensor * attn_lower = ggml_mul(ctx0, Akk, causal_mask);
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, Akk, true, true, false);
Akk = ggml_mul(ctx0, lin_solve, causal_mask);
Akk = ggml_add(ctx0, Akk, identity);
cb(Akk, "attn_solved", il);
// switch back for downstream
gk_cumsum = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk_cumsum, 1, 0, 2, 3), S_k, chunk_size, n_chunks, HB);
ggml_tensor * gkexp = ggml_exp(ctx0, gk_cumsum);
cb(gk_cumsum, "gk_cumsum", il);
// u = (A*beta[..., None, :]) @ v aka U_[t]
ggml_tensor * vb = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), Akk);
ggml_tensor * kbeta_gkexp = ggml_mul(ctx0, k_beta, gkexp);
cb(kbeta_gkexp, "kbeta_gkexp", il);
ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gkexp)), Akk);
cb(k_cumdecay, "k_cumdecay", il);
ggml_tensor * core_attn_out = nullptr;
ggml_tensor * new_state = ggml_dup(ctx0, state);
cb(new_state, "new_state", il);
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
// extract one chunk worth of data
auto chunkify = [=](ggml_tensor * t) {
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
};
auto chunkify_A = [=](ggml_tensor * t) {
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, chunk_size, 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
};
// k [S,BT,NT,H*B] => k_chunk [S,BT,1,H*B]
ggml_tensor * k_chunk = chunkify(k);
ggml_tensor * q_chunk = chunkify(q);
ggml_tensor * vb_chunk = chunkify(vb);
// gk_cumsum [S,BT,NT,H*B] => gk_cs_chunk [S,BT,1,H*B]
ggml_tensor * gk_cs_chunk = chunkify(gk_cumsum);
ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
ggml_tensor * gkexp_chunk = ggml_exp(ctx0, gk_cs_chunk);
ggml_tensor * Aqk_chunk = chunkify_A(Aqk);
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
// new_state [S,S,1,H*B] k_cumdecay_chunk [S,BT,1,H*B]
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state or W_[t] @ S_[t]
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
// v_new = v_i - v_prime or U_[t] - W_[t]*S_[t]
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, vb_chunk, v_prime), v_prime);
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
// q_chunk [S,BT,1,H*B] gkexp_chunk [S,BT,1,H*B]
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
// or Gamma_[t]*Q_]t] @ S
ggml_tensor * q_gk_exp = ggml_mul(ctx0, q_chunk, gkexp_chunk);
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_gk_exp);
attn_inter = ggml_scale(ctx0, attn_inter, scale); // scale q
// v_new_t [S,BT,1,H*B] Aqk [BT,BT,1,H*B]
// core_attn_out[:, :, i] = attn_inter + attn @ v_new or A' @ (U_[t] - W_[t]*S_[t])
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, Aqk_chunk);
// o[:, :, i] = (q_i * g_i.exp()) @ S + A @ v_i
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
ggml_tensor * gk_cum_last =
ggml_cont(ctx0, ggml_view_4d(ctx0, gk_cs_chunk, gk_cs_chunk->ne[0], 1, gk_cs_chunk->ne[2], gk_cs_chunk->ne[3],
gk_cs_chunk->nb[1], gk_cs_chunk->nb[2], gk_cs_chunk->nb[3],
gk_cs_chunk->nb[1] * (gk_cs_chunk->ne[1] - 1)));
ggml_tensor * gkexp_last = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, gk_cum_last)));
ggml_tensor * gk_diff = ggml_neg(ctx0, ggml_sub(ctx0, gk_cs_chunk, gk_cum_last));
ggml_tensor * gk_diff_exp = ggml_exp(ctx0, gk_diff);
ggml_tensor * key_gkdiff = ggml_mul(ctx0, k_chunk, gk_diff_exp);
// rearrange((g_i[:,:,-1:] - g_i).exp()*k_i, 'b h c k -> b h k c') @ (U_[t] - W_[t] @ S)
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gkdiff)));
new_state = ggml_add(ctx0,
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gkexp_last, gkexp_last->ne[0], gkexp_last->ne[1], H_v, n_seqs)),
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
}
core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(core_attn_out->type, S_v),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
output_tokens = ggml_cont(ctx0, output_tokens);
// permute back to (S_v, H_v, n_tokens, n_seqs)
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
output_tokens = ggml_cont(ctx0, output_tokens);
cb(new_state, "output_state", il);
return {output_tokens, new_state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_kimi_linear::build_kda_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
int il) {
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(gk));
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(gk->ne[0] == S_k && gk->ne[1] == H_k && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_k && state->ne[2] == H_v && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(gk, "gk_in", il);
// g [H,1,B,1] g_t [1,H,B,1] => [1,1,H,B]
// gk [S,H,1,B] => [S,1,H,B] gk_t [1,S,H,B]
// beta [H,1,1,B] beta_t [1,H,1,B] => [1,1,H,B]
gk = ggml_reshape_4d(ctx0, gk, S_k, 1, H_k, n_seqs);
ggml_tensor * gk_t = ggml_cont(ctx0, ggml_transpose(ctx0, gk));
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
// Apply exponential to gk_t
gk_t = ggml_exp(ctx0, gk_t);
// Apply the gated delta rule for the single timestep
// last_recurrent_state = last_recurrent_state * gk_t
// S = S * g_i[..., None].exp()
state = ggml_mul(ctx0, state, gk_t);
ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
// state [S,S,H,B] k [S,1,H,B] k_state [S_v,1,H,B]
k = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs);
ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k);
// v_i - (k_i[..., None] * S).sum(-2)
v = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
ggml_tensor * v_diff = ggml_sub(ctx0, v, k_state);
// b_i[..., None] * k_i
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta_t);
// S = S + torch.einsum('b h k, b h v -> b h k v', b_i[..., None] * k_i, v_i - (k_i[..., None] * S).sum(-2))
// v_diff_t [1,S_v,H,B] k_beta_t [1,S_k,H,B] state [S_v,S_k,H,B]
state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta))));
q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs);
state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q);
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
cb(core_attn_out, "output_tokens", il);
cb(state, "new_state", il);
return {core_attn_out, state};
}

View File

@ -288,6 +288,33 @@ struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_kimi_linear : public llm_graph_context_mamba {
llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
int il);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
const llama_model & model;
};
struct llm_build_lfm2 : public llm_graph_context {
const llama_model & model;
@ -556,6 +583,10 @@ struct llm_build_starcoder : public llm_graph_context {
llm_build_starcoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_step35_iswa : public llm_graph_context {
llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_dec : public llm_graph_context {
llm_build_t5_dec(const llama_model & model, const llm_graph_params & params);
};

168
src/models/step35-iswa.cpp Normal file
View File

@ -0,0 +1,168 @@
#include "models.h"
llm_build_step35_iswa::llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const uint32_t n_head_l = hparams.n_head(il);
const uint32_t n_head_kv_l = hparams.n_head_kv(il);
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
cur = inpL;
// dump pre-attn RMSNorm input to pinpoint layer boundary issues
cb(cur, "attn_norm_in", il);
// self-attention
{
cur = build_norm(cur, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
// Q/K per-head RMSNorm (Step35 q_norm / k_norm)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
// RoPE (partial rotary factors per layer)
const bool is_swa = hparams.is_swa(il);
ggml_tensor * rope_factors = is_swa ? nullptr : model.get_rope_factors(cparams, il);
const int64_t n_rot_l = is_swa ? hparams.n_rot : (hparams.n_rot / 2);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
const float kq_scale = 1.0f / sqrtf(float(n_embd_head_k));
ggml_tensor * attn_out = build_attn(inp_attn,
nullptr, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(attn_out, "attn_out", il);
// head-wise attention gate: sigmoid(g_proj(x)) in torch
if (model.layers[il].wqkv_gate) {
ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, cur); // [n_head_l, n_tokens]
cb(gate, "attn_gate", il);
gate = ggml_sigmoid(ctx0, gate);
cb(gate, "attn_gate_sigmoid", il);
// reshape + broadcast to [n_embd_head_v, n_head_l, n_tokens]
ggml_tensor * attn_3d = ggml_reshape_3d(ctx0, attn_out, n_embd_head_v, n_head_l, n_tokens);
ggml_tensor * gate_3d = ggml_reshape_3d(ctx0, gate, 1, n_head_l, n_tokens);
cb(gate_3d, "attn_gate_3d", il);
attn_3d = ggml_mul(ctx0, attn_3d, gate_3d);
cb(attn_3d, "attn_gated_3d", il);
attn_out = ggml_reshape_2d(ctx0, attn_3d, n_embd_head_v * n_head_l, n_tokens);
cb(attn_out, "attn_gated", il);
}
// output projection
cur = build_lora_mm(model.layers[il].wo, attn_out);
cb(cur, "attn_proj", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward
if (model.layers[il].ffn_gate_inp == nullptr) {
// dense MLP
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, nullptr,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, nullptr,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, nullptr,
nullptr,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE routed experts
const bool norm_w = hparams.expert_weights_norm;
const float w_scale = hparams.expert_weights_scale;
const bool scale_w = w_scale != 0.0f;
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU,
norm_w, scale_w, w_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// shared expert MLP (always added on MoE layers in Step35)
ggml_tensor * sh_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, nullptr, nullptr,
model.layers[il].ffn_gate_shexp, nullptr, nullptr,
model.layers[il].ffn_down_shexp, nullptr, nullptr,
nullptr,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(sh_out, "ffn_shared_out", il);
cur = ggml_add(ctx0, moe_out, sh_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@ -497,49 +497,26 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
return bpe_offsets;
}
// use std::wregex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
std::wregex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
template <typename CharT>
static std::vector<size_t> unicode_regex_split_stl(const std::basic_string<CharT> & text, const std::basic_string<CharT> & regex, const std::vector<size_t> & offsets) {
using BidirIt = typename std::basic_string<CharT>::const_iterator;
#ifdef _MSC_VER
// Bypass bug in MSVC: https://github.com/ggml-org/llama.cpp/issues/17830
constexpr auto regex_flags = std::regex_constants::ECMAScript;
#else
constexpr auto regex_flags = std::regex_constants::optimize | std::regex_constants::nosubs;
#endif
std::basic_regex<CharT> expr(regex, regex_flags);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
std::wcregex_iterator end;
std::regex_iterator<BidirIt> it(text.begin() + start, text.begin() + start + offset, expr);
std::regex_iterator<BidirIt> end;
int64_t start_idx = 0;
while (it != end) {
std::wcmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// use std::regex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::regex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
std::cregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::cmatch match = *it;
std::match_results<BidirIt> match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}

View File

@ -11,7 +11,9 @@ function(llama_build source)
add_executable(${TEST_TARGET} ${TEST_SOURCES})
target_link_libraries(${TEST_TARGET} PRIVATE common)
install(TARGETS ${TEST_TARGET} RUNTIME)
if (LLAMA_TESTS_INSTALL)
install(TARGETS ${TEST_TARGET} RUNTIME)
endif()
endfunction()
function(llama_test target)
@ -100,7 +102,9 @@ function(llama_build_and_test source)
endif()
add_executable(${TEST_TARGET} ${TEST_SOURCES})
install(TARGETS ${TEST_TARGET} RUNTIME)
if (LLAMA_TESTS_INSTALL)
install(TARGETS ${TEST_TARGET} RUNTIME)
endif()
target_link_libraries(${TEST_TARGET} PRIVATE common)
add_test(

View File

@ -5894,33 +5894,36 @@ struct test_pad_ext : public test_case {
const int rp2;
const int lp3;
const int rp3;
const bool v;
const int tfrm; // 0 - none, 1 - non-cont, 2 - perm
const bool circular;
std::string vars() override {
return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v, circular);
return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, tfrm, circular);
}
test_pad_ext(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
bool v = false, bool circular = false)
int tfrm = 0, bool circular = false)
: type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3),
v(v), circular(circular) {}
tfrm(tfrm), circular(circular) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_set_name(a, "a");
if (v) {
if (tfrm == 1) {
a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view of a");
} else if (tfrm == 2) {
a = ggml_permute(ctx, a, 2, 1, 0, 3);
ggml_set_name(a, "permuted a");
}
ggml_tensor * out = circular
? ggml_pad_ext_circular(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
: ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
: ggml_pad_ext (ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
ggml_set_name(out, "out");
return out;
@ -8198,10 +8201,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 200, 64, 4, 4 }));
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 384, 64, 4, 4 }));
for (bool v : {false, true}) {
for (int tfrm : {0, 1, 2}) {
for (bool circular : {false, true}) {
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v, circular));
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v, circular));
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, tfrm, circular));
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, tfrm, circular));
}
}
@ -8231,6 +8234,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
if (type_KV != GGML_TYPE_F16 && hsk != 64 && hsk != 72) continue;
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
// run fewer test cases permuted

View File

@ -10,6 +10,7 @@
#include "ggml-backend.h"
#include "gguf.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
@ -23,7 +24,6 @@
#include <limits>
#include <array>
#include <functional>
#include <algorithm>
struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
@ -1118,9 +1118,8 @@ struct clip_model_loader {
case PROJECTOR_TYPE_LFM2:
{
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
// ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
// config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
hparams.set_limit_image_tokens(64, 1024);
// ref: https://huggingface.co/LiquidAI/LFM2.5-VL-1.6B/blob/main/processor_config.json
hparams.set_limit_image_tokens(64, 256);
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_LIGHTONOCR:
@ -3112,6 +3111,119 @@ private:
}
};
// ref: https://github.com/huggingface/transformers/blob/v5.1.0/src/transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py
// some of the logic is similar to llava_uhd, but with different hyperparameters and some logic is unique (e.g. grid layout)
struct lfm2_vl_image_processor {
// ref: https://huggingface.co/LiquidAI/LFM2.5-VL-1.6B/blob/main/processor_config.json
static constexpr int min_tiles = 2;
static constexpr int max_tiles = 10;
static constexpr float max_pixels_tolerance = 2.0f;
static constexpr int tile_size = 512;
static llava_uhd::slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
llava_uhd::slice_instructions inst;
const auto & params = ctx->model.hparams;
const int align_size = params.patch_size * params.n_merge;
inst.interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR;
inst.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR;
inst.overview_size = img_tool::calc_size_preserved_ratio(original_size, align_size, params.image_min_pixels, params.image_max_pixels);
// tile if either dimension exceeds tile_size with tolerance
const bool needs_tiling = original_size.width > tile_size * max_pixels_tolerance || original_size.height > tile_size * max_pixels_tolerance;
if (!needs_tiling) {
inst.refined_size = clip_image_size{0, 0};
inst.grid_size = clip_image_size{0, 0};
return inst;
}
const clip_image_size grid = get_grid_layout(original_size.height, original_size.width);
inst.grid_size = grid;
inst.refined_size = clip_image_size{tile_size * grid.width, tile_size * grid.height};
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
__func__,
original_size.width, original_size.height,
inst.overview_size.width, inst.overview_size.height,
inst.refined_size.width, inst.refined_size.height,
grid.width, grid.height);
for (int row = 0; row < grid.height; row++) {
for (int col = 0; col < grid.width; col++) {
llava_uhd::slice_coordinates slice;
slice.x = col * tile_size;
slice.y = row * tile_size;
slice.size = clip_image_size{tile_size, tile_size};
inst.slices.push_back(slice);
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%d x %d\n",
__func__, (int)inst.slices.size() - 1,
slice.x, slice.y, slice.size.width, slice.size.height);
}
}
return inst;
}
private:
static clip_image_size find_closest_aspect_ratio(
float aspect_ratio,
const std::vector<clip_image_size> & target_ratios,
int width, int height) {
float best_ratio_diff = std::numeric_limits<float>::max();
clip_image_size best_ratio = {1, 1};
const float area = static_cast<float>(width * height);
for (const auto & ratio : target_ratios) {
const float target_aspect_ratio = static_cast<float>(ratio.width) / ratio.height;
const float ratio_diff = std::abs(aspect_ratio - target_aspect_ratio);
if (ratio_diff < best_ratio_diff) {
best_ratio_diff = ratio_diff;
best_ratio = ratio;
} else if (ratio_diff == best_ratio_diff) {
const float target_area = static_cast<float>(tile_size * tile_size * ratio.width * ratio.height);
if (area > 0.5f * target_area) {
best_ratio = ratio;
}
}
}
return best_ratio;
}
static std::vector<clip_image_size> get_target_ratios() {
std::vector<clip_image_size> ratios;
for (int n = min_tiles; n <= max_tiles; n++) {
for (int w = 1; w <= n; w++) {
for (int h = 1; h <= n; h++) {
if (w * h >= min_tiles && w * h <= max_tiles) {
bool found = false;
for (const auto & r : ratios) {
if (r.width == w && r.height == h) {
found = true;
break;
}
}
if (!found) {
ratios.push_back({w, h});
}
}
}
}
}
std::sort(ratios.begin(), ratios.end(), [](const clip_image_size & a, const clip_image_size & b) {
return a.width * a.height < b.width * b.height;
});
return ratios;
}
static clip_image_size get_grid_layout(int height, int width) {
const float aspect_ratio = static_cast<float>(width) / height;
const auto ratios = get_target_ratios();
return find_closest_aspect_ratio(aspect_ratio, ratios, width, height);
}
};
static std::vector<std::pair<int, int>> ds_build_target_ratios(const int min_num, const int max_num) {
std::vector<std::pair<int, int>> ratios;
for (int n = min_num; n <= max_num; ++n) {
@ -3379,6 +3491,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
} break;
case PROJECTOR_TYPE_LFM2:
{
auto const inst = lfm2_vl_image_processor::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
}
res_imgs->grid_x = inst.grid_size.width;
res_imgs->grid_y = inst.grid_size.height;
} break;
case PROJECTOR_TYPE_KIMIVL:
{
GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
@ -3390,8 +3516,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
clip_image_u8 resized_img;
const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));

View File

@ -85,6 +85,7 @@ enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_MINICPMV_2_6,
MTMD_SLICE_TMPL_LLAMA4,
MTMD_SLICE_TMPL_IDEFICS3,
MTMD_SLICE_TMPL_LFM2,
};
const char * mtmd_default_marker() {
@ -307,9 +308,19 @@ struct mtmd_context {
img_end = "<|im_end|>";
} else if (proj == PROJECTOR_TYPE_LFM2) {
img_beg = "<|image_start|>";
img_end = "<|image_end|>";
// multi-tile:
// <|image_start|>
// <|img_row_1_col_1|> (tile) <|img_row_1_col_2|> (tile) ...
// <|img_thumbnail|> (thumbnail)
// <|image_end|>
// single-tile:
// <|image_start|> (image) <|image_end|>
img_beg = "<|image_start|>";
img_end = "<|image_end|>";
slice_tmpl = MTMD_SLICE_TMPL_LFM2;
sli_img_start_tmpl = "<|img_row_%d_col_%d|>";
tok_ov_img_start = {lookup_token("<|img_thumbnail|>")};
ov_img_first = false;
} else if (proj == PROJECTOR_TYPE_GLM4V) {
img_beg = "<|begin_of_image|>";
img_end = "<|end_of_image|>";
@ -562,11 +573,13 @@ struct mtmd_tokenizer {
}
// handle llava-uhd style preprocessing
const bool has_tiling_grid = batch_f32.grid_x > 0 && batch_f32.grid_y > 0;
if (
ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_IDEFICS3
|| (ctx->slice_tmpl == MTMD_SLICE_TMPL_LFM2 && has_tiling_grid)
) {
const int n_col = batch_f32.grid_x;
const int n_row = batch_f32.grid_y;

View File

@ -119,27 +119,48 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights]\n", executable);
printf(" [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--tensor-type] [--tensor-type-file] [--prune-layers] [--keep-split] [--override-kv]\n");
printf(" [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--tensor-type] [--tensor-type-file]\n");
printf(" [--prune-layers] [--keep-split] [--override-kv]\n");
printf(" model-f32.gguf [model-quant.gguf] type [nthreads]\n\n");
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --tensor-type TENSOR=TYPE: quantize this tensor to this ggml_type. example: --tensor-type attn_q=q8_0\n");
printf(" Advanced option to selectively quantize tensors. May be specified multiple times.\n");
printf(" --tensor-type-file tensor_type.txt: list of tensors to quantize to specific ggml_type. example: --tensor-type-file tensor_type_list.txt\n");
printf(" Advanced option to selectively quantize a long list of tensors. Format to be tensor_name=ggml_type, separated by spaces/newline.\n");
printf(" --prune-layers L0,L1,L2...comma-separated list of layer numbers to prune from the model\n");
printf(" Advanced option to remove all tensors from the given layers\n");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --allow-requantize\n");
printf(" allow requantizing tensors that have already been quantized\n");
printf(" WARNING: this can severely reduce quality compared to quantizing\n");
printf(" from 16bit or 32bit!\n");
printf(" --leave-output-tensor\n");
printf(" leave output.weight un(re)quantized\n");
printf(" increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure\n");
printf(" disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name\n");
printf(" use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name\n");
printf(" use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name\n");
printf(" do not use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type\n");
printf(" use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type\n");
printf(" use this ggml_type for the token embeddings tensor\n");
printf(" --tensor-type tensor_name=ggml_type\n");
printf(" quantize this tensor to this ggml_type\n");
printf(" this is an advanced option to selectively quantize tensors. may be specified multiple times.\n");
printf(" example: --tensor-type attn_q=q8_0\n");
printf(" --tensor-type-file tensor_types.txt\n");
printf(" list of tensors to quantize to a specific ggml_type\n");
printf(" this is an advanced option to selectively quantize a long list of tensors.\n");
printf(" the file should use the same format as above, separated by spaces or newlines.\n");
printf(" --prune-layers L0,L1,L2...\n");
printf(" comma-separated list of layer numbers to prune from the model\n");
printf(" WARNING: this is an advanced option, use with care.\n");
printf(" --keep-split\n");
printf(" generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("\nAllowed quantization types:\n");
printf(" override model metadata by key in the quantized model. may be specified multiple times.\n");
printf(" WARNING: this is an advanced option, use with care.\n\n");
printf("note: --include-weights and --exclude-weights cannot be used together\n\n");
printf("-----------------------------------------------------------------------------\n");
printf(" allowed quantization types\n");
printf("-----------------------------------------------------------------------------\n\n");
for (const auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
printf(" %2d or ", it.ftype);

View File

@ -1,12 +1,7 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml-rpc.h"
#ifdef _WIN32
# define NOMINMAX
# define DIRECTORY_SEPARATOR '\\'
# include <locale>
# include <windows.h>
# include <fcntl.h>
# include <io.h>
@ -15,23 +10,43 @@
# include <unistd.h>
# include <sys/stat.h>
#endif
#include <codecvt>
#include <string>
#include <stdio.h>
#include <vector>
#include <filesystem>
#include <algorithm>
#include <thread>
#include <regex>
namespace fs = std::filesystem;
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif
// NOTE: this is copied from common.cpp to avoid linking with libcommon
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// NOTE: this is copied from common.cpp to avoid linking with libcommon
// returns true if successful, false otherwise
static bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@ -44,9 +59,16 @@ static bool fs_create_directory_with_parents(const std::string & path) {
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
pos_slash += 1;
// skip the drive letter, in some systems it can return an access denied error
if (subpath.length() == 2 && subpath[1] == ':') {
continue;
}
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
if (!success) {
const DWORD error = GetLastError();
@ -60,8 +82,6 @@ static bool fs_create_directory_with_parents(const std::string & path) {
return false;
}
}
pos_slash += 1;
}
return true;
@ -115,13 +135,27 @@ static std::string fs_get_cache_directory() {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
} else if (std::getenv("HOME")) {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
} else {
#if defined(__linux__)
/* no $HOME is defined, fallback to getpwuid */
struct passwd *pw = getpwuid(getuid());
if ((!pw) || (!pw->pw_dir)) {
throw std::runtime_error("Failed to find $HOME directory");
}
cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif

View File

@ -740,6 +740,11 @@ private:
slots.clear();
const bool can_spec = common_speculative_is_compat(ctx);
if (!can_spec) {
SRV_WRN("%s", "speculative decoding not supported by this context\n");
}
// initialize slots
for (int i = 0; i < params_base.n_parallel; i++) {
server_slot slot;
@ -752,7 +757,7 @@ private:
slot.prompt.tokens.has_mtmd = mctx != nullptr;
// try speculative decoding
{
if (can_spec) {
slot.spec = common_speculative_init(params_base.speculative, slot.ctx);
if (slot.spec) {
if (mctx) {
@ -2502,7 +2507,8 @@ private:
slot.n_prompt_tokens_processed++;
// process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
const int n_last = std::min(n_batch, 512);
if (do_checkpoint && slot.task->n_tokens() == slot.prompt.n_tokens() + n_last) {
break;
}
}
@ -3578,6 +3584,8 @@ void server_routes::init_routes() {
auto res = create_response();
std::vector<raw_buffer> files;
json body = convert_responses_to_chatcmpl(json::parse(req.body));
SRV_DBG("%s\n", "Request converted: OpenAI Responses -> OpenAI Chat Completions");
SRV_DBG("converted request: %s\n", body.dump().c_str());
json body_parsed = oaicompat_chat_params_parse(
body,
meta->chat_params,
@ -3594,6 +3602,8 @@ void server_routes::init_routes() {
auto res = create_response();
std::vector<raw_buffer> files;
json body = convert_anthropic_to_oai(json::parse(req.body));
SRV_DBG("%s\n", "Request converted: Anthropic -> OpenAI Chat Completions");
SRV_DBG("converted request: %s\n", body.dump().c_str());
json body_parsed = oaicompat_chat_params_parse(
body,
meta->chat_params,
@ -3610,6 +3620,8 @@ void server_routes::init_routes() {
auto res = create_response();
std::vector<raw_buffer> files;
json body = convert_anthropic_to_oai(json::parse(req.body));
SRV_DBG("%s\n", "Request converted: Anthropic -> OpenAI Chat Completions");
SRV_DBG("converted request: %s\n", body.dump().c_str());
json body_parsed = oaicompat_chat_params_parse(
body,
meta->chat_params,

View File

@ -80,7 +80,6 @@ json task_params::to_json(bool only_metrics) const {
{"speculative.type", common_speculative_type_to_str(speculative.type)},
{"speculative.ngram_size_n", speculative.ngram_size_n},
{"speculative.ngram_size_m", speculative.ngram_size_m},
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
@ -144,7 +143,6 @@ json task_params::to_json(bool only_metrics) const {
{"speculative.type", common_speculative_type_to_str(speculative.type)},
{"speculative.ngram_size_n", speculative.ngram_size_n},
{"speculative.ngram_size_m", speculative.ngram_size_m},
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
@ -257,12 +255,10 @@ task_params server_task::params_from_json_cmpl(
params.speculative.ngram_size_n = json_value(data, "speculative.ngram_size_n", defaults.speculative.ngram_size_n);
params.speculative.ngram_size_m = json_value(data, "speculative.ngram_size_m", defaults.speculative.ngram_size_m);
params.speculative.ngram_check_rate = json_value(data, "speculative.ngram_c_rate", defaults.speculative.ngram_check_rate);
params.speculative.ngram_min_hits = json_value(data, "speculative.ngram_m_hits", defaults.speculative.ngram_min_hits);
params.speculative.ngram_size_n = std::max(std::min(1, (int) params.speculative.ngram_size_n), 1024);
params.speculative.ngram_size_m = std::max(std::min(1, (int) params.speculative.ngram_size_m), 1024);
params.speculative.ngram_check_rate = std::max(std::min(1, (int) params.speculative.ngram_check_rate), 1024);
params.speculative.ngram_min_hits = std::max(std::min(1, (int) params.speculative.ngram_min_hits), 1024);
// Use OpenAI API logprobs only if n_probs wasn't provided

View File

@ -34,7 +34,7 @@ $ build/bin/llama-quantize models/outetts-0.2-0.5B-f16.gguf \
```
The quantized model will be `models/outetts-0.2-0.5B-q8_0.gguf`.
Next we do something simlar for the audio decoder. First download or checkout
Next we do something similar for the audio decoder. First download or checkout
the model for the voice decoder:
```console
$ pushd models
@ -42,7 +42,7 @@ $ git clone --branch main --single-branch --depth 1 https://huggingface.co/novat
$ cd WavTokenizer-large-speech-75token && git lfs install && git lfs pull
$ popd
```
This model file is PyTorch checkpoint (.ckpt) and we first need to convert it to
This model file is a PyTorch checkpoint (.ckpt) and we first need to convert it to
huggingface format:
```console
(venv) python tools/tts/convert_pt_to_hf.py \