This commit is contained in:
ryan-mangeno 2025-10-05 11:43:47 -04:00
commit f362878b1c
210 changed files with 3306 additions and 1090 deletions

View File

@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\

View File

@ -1,8 +1,8 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
ARG ROCM_VERSION=7.0
ARG AMDGPU_VERSION=7.0
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
@ -13,8 +13,7 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
@ -36,13 +35,10 @@ WORKDIR /app
COPY . .
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \

View File

@ -97,7 +97,7 @@ jobs:
ctest -L 'main|curl' --verbose --timeout 900
macOS-latest-cmake-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@ -362,11 +362,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-rpc
evict-old-files: 1d
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: ubuntu-latest-cmake-rpc
# evict-old-files: 1d
- name: Dependencies
id: depends
@ -387,8 +387,8 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
ubuntu-24-cmake-vulkan:
runs-on: ubuntu-24.04
steps:
- name: Clone
@ -398,20 +398,40 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
key: ubuntu-24-cmake-vulkan
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Cache Vulkan SDK
id: cache_vulkan_sdk
uses: actions/cache@v4
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Install Vulkan SDK
if: steps.cache_vulkan_sdk.outputs.cache-hit != 'true'
id: vulkan_sdk_install
run: |
mkdir -p vulkan_sdk
cd vulkan_sdk
curl --no-progress-meter https://sdk.lunarg.com/sdk/download/latest/linux/vulkan_sdk.tar.xz | tar -Jx --strip-components=1
- name: Build
id: cmake_build
run: |
source ./vulkan_sdk/setup-env.sh
cmake -B build \
-DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc)
@ -421,6 +441,7 @@ jobs:
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
@ -487,7 +508,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@ -1059,7 +1080,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
@ -1097,10 +1118,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/${{ env.ROCM_VERSION }}/pool/main/r/rocwmma-dev/rocwmma-dev_1.7.0.60402-120~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@ -1161,8 +1184,9 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `

View File

@ -75,7 +75,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@ -462,7 +462,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
@ -505,6 +505,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
@ -513,10 +514,15 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
@ -543,10 +549,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@ -601,7 +609,7 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `

View File

@ -59,6 +59,9 @@
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky

View File

@ -34,9 +34,9 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -f $OUT/*.log
rm -f $OUT/*.exit
rm -f $OUT/*.md
sd=`dirname $0`
cd $sd/../
@ -607,6 +607,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
@ -624,4 +625,6 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run ctest_with_model_release
fi
cat $OUT/README.md
exit $ret

View File

@ -1615,18 +1615,14 @@ static void add_rpc_devices(const std::string & servers) {
if (!rpc_reg) {
throw std::invalid_argument("failed to find RPC backend");
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
throw std::invalid_argument("failed to find RPC device add function");
typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
if (!ggml_backend_rpc_add_server_fn) {
throw std::invalid_argument("failed to find RPC add server function");
}
for (const auto & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
ggml_backend_device_register(dev);
} else {
throw std::invalid_argument("failed to register RPC device");
}
auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
ggml_backend_register(reg);
}
}
@ -1932,13 +1928,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_SWA_FULL"));
add_opt(common_arg(
{"--swa-checkpoints"}, "N",
string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
{"--ctx-checkpoints", "--swa-checkpoints"}, "N",
string_format("max number of context checkpoints to create per slot (default: %d)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
[](common_params & params, int value) {
params.n_swa_checkpoints = value;
params.n_ctx_checkpoints = value;
}
).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--kv-unified", "-kvu"},
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"

View File

@ -75,6 +75,35 @@ bool common_chat_msg_parser::add_tool_calls(const json & arr) {
}
return true;
}
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
if (!tool_call.is_object() || tool_call.size() != 1) {
return false;
}
// Get the tool name (the single key in the object)
auto it = tool_call.begin();
std::string name = it.key();
if (name.empty()) {
return false;
}
// Get the arguments (the nested object)
const json & args_json = it.value();
std::string arguments = "";
if (args_json.is_object()) {
arguments = args_json.dump();
} else if (args_json.is_string()) {
arguments = args_json;
} else if (!args_json.is_null()) {
// For other types, convert to string representation
arguments = args_json.dump();
}
return add_tool_call(name, "", arguments);
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));

View File

@ -64,6 +64,9 @@ class common_chat_msg_parser {
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
void finish();
bool consume_spaces();

View File

@ -625,6 +625,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
case COMMON_CHAT_FORMAT_MAGISTRAL: return "Magistral";
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
@ -638,6 +639,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
default:
throw std::runtime_error("Unknown chat format");
}
@ -801,6 +803,7 @@ static std::string apply(
}
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
tmpl_inputs.extra_context = inputs.extra_context;
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
if (additional_context) {
tmpl_inputs.extra_context.merge_patch(*additional_context);
}
@ -982,6 +985,65 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_MAGISTRAL;
data.preserved_tokens = {
"[THINK]",
"[/THINK]",
};
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function.at("name")},
}},
{"arguments", function.at("parameters")},
{"id", {
{"type", "string"},
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
data.preserved_tokens.push_back("[TOOL_CALLS]");
} else {
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
if (!inputs.grammar.empty()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar;
}
}
return data;
}
static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@ -992,6 +1054,18 @@ static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
parse_prefixed_json_tool_call_array(builder, prefix);
}
static void common_chat_parse_magistral(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("[THINK]", "[/THINK]");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
parse_prefixed_json_tool_call_array(builder, prefix);
}
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
@ -1264,6 +1338,75 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_APERTUS;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
if (!inputs.enable_thinking) {
data.prompt += "<|inner_suffix|>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <|tools_prefix|> format
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ function.at("name"), function.at("parameters") }
} },
{ "required", json::array({ function.at("name") }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
data.preserved_tokens = {
"<|system_start|>",
"<|system_end|>",
"<|developer_start|>",
"<|developer_end|>",
"<|user_start|>",
"<|user_end|>",
"<|assistant_start|>",
"<|assistant_end|>",
"<|inner_prefix|>",
"<|inner_suffix|>",
"<|tools_prefix|>",
"<|tools_suffix|>",
};
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@ -2323,6 +2466,37 @@ static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
builder.consume_spaces();
if (!builder.try_consume_literal("<|tools_suffix|>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
for (const auto & value : tool_calls_data.json) {
if (value.is_object()) {
builder.add_tool_call_short_form(value);
}
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
@ -2567,6 +2741,11 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Apertus format detection
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
return common_chat_params_init_apertus(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@ -2595,6 +2774,10 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_llama_3_x(tmpl, params, allow_python_tag_builtin_tools);
}
if (src.find("[THINK]") != std::string::npos && src.find("[/THINK]") != std::string::npos) {
return common_chat_params_init_magistral(tmpl, params);
}
// Plain handler (no tools)
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
return common_chat_params_init_without_tools(tmpl, params);
@ -2695,6 +2878,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
common_chat_parse_mistral_nemo(builder);
break;
case COMMON_CHAT_FORMAT_MAGISTRAL:
common_chat_parse_magistral(builder);
break;
case COMMON_CHAT_FORMAT_LLAMA_3_X:
common_chat_parse_llama_3_1(builder);
break;
@ -2734,6 +2920,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
case COMMON_CHAT_FORMAT_APERTUS:
common_chat_parse_apertus(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@ -101,6 +101,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_MAGISTRAL,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
@ -114,6 +115,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};

View File

@ -424,7 +424,7 @@ struct common_params {
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
int32_t n_ctx_checkpoints = 3; // max number of context checkpoints per slot
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT

View File

@ -894,6 +894,9 @@ class TextModel(ModelBase):
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
res = "llada-moe"
if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
# ref: https://huggingface.co/ibm-granite/granite-docling-258M
res = "granite-docling"
if res is None:
logger.warning("\n")
@ -1328,6 +1331,7 @@ class MmprojModel(ModelBase):
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
@ -1350,7 +1354,8 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
# vision config
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
self.image_size = self.find_vparam(["image_size"])
self.gguf_writer.add_vision_image_size(self.image_size)
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
@ -2381,6 +2386,10 @@ class SmolVLMModel(MmprojModel):
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
self.gguf_writer.add_vision_use_gelu(True)
# Add the preprocessor longest edge size
preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
def tensor_force_quant(self, name, new_name, bid, n_dims):
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
@ -4253,7 +4262,8 @@ class Plamo2Model(TextModel):
# This logic matches modeling_plamo.py's is_mamba function
mamba_step = hparams.get("mamba_step", 2)
mamba_enabled = hparams.get("mamba_enabled", True)
mamba_layers = []
num_key_value_heads = []
num_attention_heads = []
if mamba_enabled:
for i in range(block_count):
@ -4263,17 +4273,21 @@ class Plamo2Model(TextModel):
else:
is_mamba = (i % mamba_step) != (mamba_step // 2)
if is_mamba:
mamba_layers.append(0)
num_key_value_heads.append(0)
num_attention_heads.append(0)
else:
mamba_layers.append(hparams.get("num_key_value_heads", 4))
num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
num_attention_heads.append(hparams.get("num_attention_heads", 32))
if mamba_layers:
self.gguf_writer.add_head_count_kv(mamba_layers)
if num_key_value_heads and num_attention_heads:
self.gguf_writer.add_head_count_kv(num_key_value_heads)
self.gguf_writer.add_head_count(num_attention_heads)
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
@ -8972,6 +8986,43 @@ class ModernBertModel(BertModel):
@ModelBase.register("ApertusForCausalLM")
class ApertusModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.APERTUS
undo_permute = False
_alpha_n = {}
_alpha_p = {}
_beta = {}
_eps = {}
def modify_tensors(self, data_torch, name, bid):
# Handle xIELU activation parameters
n_layers = self.hparams["num_hidden_layers"]
if name.endswith(".act_fn.alpha_n"):
self._alpha_n[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_n) == n_layers):
self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
return []
if name.endswith(".act_fn.alpha_p"):
self._alpha_p[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_p) == n_layers):
self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
return []
if name.endswith(".act_fn.beta"):
self._beta[bid] = data_torch.to("cpu").float().item()
if (len(self._beta) == n_layers):
self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
return []
if name.endswith(".act_fn.eps"):
self._eps[bid] = data_torch.to("cpu").float().item()
if (len(self._eps) == n_layers):
self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
return []
return super().modify_tensors(data_torch, name, bid)
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_name = "Mistral"
@ -9139,7 +9190,7 @@ class LazyTorchTensor(gguf.LazyBase):
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
return cast(torch.Tensor, lazy)
@classmethod

View File

@ -141,6 +141,7 @@ models = [
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "modern-bert", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-embedding-small-english-r2", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
]
# some models are known to be broken upstream, so we will skip them as exceptions

View File

@ -145,12 +145,13 @@ The docker build option is currently limited to *Intel GPU* targets.
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
```
*Notes:*
@ -215,9 +216,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@ -225,6 +236,12 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@ -255,10 +272,11 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
@ -353,7 +371,7 @@ cmake --build build --config Release -j -v
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.

View File

@ -209,7 +209,6 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)

View File

@ -215,6 +215,8 @@ extern "C" {
// Backend registry
//
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Backend (reg) enumeration

View File

@ -7,26 +7,25 @@
extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 2
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device);
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices,
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);
#ifdef __cplusplus
}

View File

@ -576,6 +576,7 @@ extern "C" {
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_XIELU,
GGML_UNARY_OP_COUNT,
};
@ -1150,6 +1151,18 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// xIELU activation function
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
// that constrain the positive and negative source alpha values respectively
GGML_API struct ggml_tensor * ggml_xielu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha_n,
float alpha_p,
float beta,
float eps);
// gated linear unit ops
// A: n columns, r rows,
// result is n / 2 columns, r rows,
@ -1617,6 +1630,13 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);

View File

@ -392,12 +392,8 @@ static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
size_t max_size = 0;
for (int i = 0; i < alloc->n_chunks; i++) {
max_size += alloc->chunks[i]->max_size;
}
return max_size;
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc, int chunk) {
return chunk < alloc->n_chunks ? alloc->chunks[chunk]->max_size : 0;
}
@ -417,10 +413,8 @@ static void ggml_vbuffer_free(struct vbuffer * buf) {
free(buf);
}
static int ggml_vbuffer_n_chunks(struct vbuffer * buf) {
int n = 0;
while (n < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[n]) n++;
return n;
static size_t ggml_vbuffer_chunk_size(struct vbuffer * buf, int chunk) {
return buf->chunks[chunk] ? ggml_backend_buffer_get_size(buf->chunks[chunk]) : 0;
}
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
@ -885,12 +879,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
bool realloc = galloc->buffers[i] == NULL;
size_t new_size = 0;
for (int c = 0; c < galloc->buf_tallocs[i]->n_chunks; c++) {
size_t cur_chunk_size = galloc->buffers[i] ? ggml_vbuffer_chunk_size(galloc->buffers[i], c) : 0;
size_t new_chunk_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i], c);
new_size += new_chunk_size;
if (new_chunk_size > cur_chunk_size) {
realloc = true;
}
}
if (realloc) {
#ifndef NDEBUG
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif

View File

@ -209,9 +209,6 @@ extern "C" {
void * context;
};
// Internal backend registry API
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
// Add backend dynamic loading support to the backend
// Initialize the backend

View File

@ -2187,6 +2187,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_XIELU:
{
n_tasks = n_threads;
} break;

View File

@ -8637,7 +8637,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// n_head
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dt_soft_plus = ggml_softplus(dt[h]);
const float dA = expf(dt_soft_plus * A[h]);
const int g = h / (nh / ng); // repeat_interleave
@ -8734,7 +8734,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// n_head
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dt_soft_plus = ggml_softplus(dt[h]);
const int g = h / (nh / ng); // repeat_interleave
// dim
@ -8997,6 +8997,10 @@ void ggml_compute_forward_unary(
{
ggml_compute_forward_exp(params, dst);
} break;
case GGML_UNARY_OP_XIELU:
{
ggml_compute_forward_xielu(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");

View File

@ -52,6 +52,15 @@ static inline float op_sqrt(float x) {
return sqrtf(x);
}
static inline float op_xielu(float x, float alpha_n, float alpha_p, float beta, float eps) {
if (x > 0.0f) {
return alpha_p * x * x + beta * x;
} else {
const float min_x_eps = fminf(x, eps);
return (expm1f(min_x_eps) - x) * alpha_n + beta * x;
}
}
static inline float op_sin(float x) {
return sinf(x);
}
@ -121,6 +130,86 @@ static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
}
}
template <float (*op)(float, ggml_tensor *)>
static void unary_op_params(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op<op, float, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
// Extend vec_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static inline void vec_unary_op_functor(int64_t n, dst_t * y, const src0_t * x, Op op) {
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
for (int i = 0; i < n; i++) {
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
}
}
// Extend apply_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static void apply_unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(dst_t));
GGML_ASSERT(nb00 == sizeof(src0_t));
const auto [ir0, ir1] = get_thread_range(params, src0);
for (int64_t ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
vec_unary_op_functor(ne0, dst_ptr, src0_ptr, op);
}
}
// Generic dispatcher for functors
template <typename Op>
static void unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op_functor<Op, float, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op_functor<Op, ggml_fp16_t, ggml_fp16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op_functor<Op, ggml_bf16_t, ggml_bf16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_bf16_t, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_fp16_t, float>(params, dst, op);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_abs>(params, dst);
}
@ -184,3 +273,17 @@ void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor *
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_log>(params, dst);
}
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
const float alpha_n = ggml_get_op_params_f32(dst, 1);
const float alpha_p = ggml_get_op_params_f32(dst, 2);
const float beta = ggml_get_op_params_f32(dst, 3);
const float eps = ggml_get_op_params_f32(dst, 4);
const auto xielu_op_params = [alpha_n, alpha_p, beta, eps](float f) {
return op_xielu(f, alpha_n, alpha_p, beta, eps);
};
unary_op_functor(params, dst, xielu_op_params);
}

View File

@ -22,6 +22,7 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}

View File

@ -220,14 +220,6 @@ static const char * cu_get_error_str(CUresult err) {
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#define FP16_MMA_AVAILABLE
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
@ -262,27 +254,6 @@ static bool fast_fp16_hardware_available(const int cc) {
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
}
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) ||
GGML_CUDA_CC_IS_MTHREADS(cc)) {
return true;
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||

View File

@ -1,6 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile.cuh"
#include "fattn-wmma-f16.cuh"
// kq_stride == number of KQ rows to process per iteration
// kq_nbatch == number of K columns to load in parallel for KQ calculation
@ -190,10 +191,10 @@ static __global__ void flash_attn_tile(
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
#ifdef GGML_USE_WMMA_FATTN
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
#endif // GGML_USE_WMMA_FATTN
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,

View File

@ -535,8 +535,6 @@ void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_ten
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {

View File

@ -6,19 +6,19 @@
#include "fattn-common.cuh"
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#ifdef GGML_USE_WMMA_FATTN
#if !defined(GGML_USE_HIP)
#include <mma.h>
#ifdef GGML_USE_MUSA
#if defined(GGML_USE_MUSA)
namespace wmma = mtmusa::wmma;
#else // GGML_USE_MUSA
namespace wmma = nvcuda::wmma;
#endif // GGML_USE_MUSA
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
#elif defined(GGML_USE_HIP)
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !defined(GGML_USE_HIP)
#endif // FP16_MMA_AVAILABLE
#endif // GGML_USE_WMMA_FATTN
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, typename KQ_acc_t, bool use_logit_softcap>
@ -45,7 +45,7 @@ static __global__ void flash_attn_ext_f16(
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@ -481,7 +481,7 @@ static __global__ void flash_attn_ext_f16(
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
}
constexpr int get_max_power_of_2(int x) {

View File

@ -1,3 +1,49 @@
#include "common.cuh"
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#define GGML_USE_WMMA_FATTN
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
#define GGML_USE_WMMA_FATTN
#elif defined(CDNA)
#warning "rocwmma fattn on CDNA is broken on rocwmma v2.0.0, expect degraded performance"
#endif // defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
#if defined(RDNA3)
#define GGML_USE_WMMA_FATTN
#endif // defined(RDNA3)
#if defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
#define GGML_USE_WMMA_FATTN
#elif defined(RDNA4)
#warning "rocwmma fattn is not suported on RDNA4 on rocwmma < v2.0.0, expect degraded performance"
#endif // defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
// WMMA flash attention requires FP16 matrix instructions to be available for ggml code.
static bool ggml_cuda_should_use_wmma_fattn(const int cc) {
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_MTHREADS(cc)) {
return true;
} else if (GGML_CUDA_CC_IS_CDNA(cc)){
#if defined(GGML_HIP_ROCWMMA_FATTN) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -222,7 +222,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != K->ne[0]) {
return BEST_FATTN_KERNEL_NONE;
}
if (!fp16_mma_available(cc) && !turing_mma_available(cc)) {
if (!ggml_cuda_should_use_wmma_fattn(cc) && !turing_mma_available(cc)) {
return BEST_FATTN_KERNEL_NONE;
}
break;
@ -300,7 +300,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
}
// For large batch sizes, use the WMMA kernel if possible:
if (fp16_mma_available(cc)) {
if (ggml_cuda_should_use_wmma_fattn(cc)) {
return BEST_FATTN_KERNEL_WMMA_F16;
}

View File

@ -2334,6 +2334,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_ELU:
ggml_cuda_op_elu(ctx, dst);
break;
case GGML_UNARY_OP_XIELU:
ggml_cuda_op_xielu(ctx, dst);
break;
default:
return false;
}

View File

@ -13,7 +13,7 @@
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
*/
template <size_t n_experts, bool with_norm>
template <int n_experts, bool with_norm>
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
float * weights,
int32_t * ids,
@ -204,8 +204,6 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
cudaStream_t stream = ctx.stream();
const int n_expert_used = weights->ne[1];
if (with_norm) {

View File

@ -1,4 +1,5 @@
#include "unary.cuh"
#include "convert.cuh"
static __device__ __forceinline__ float op_abs(float x) {
return fabsf(x);
@ -375,6 +376,59 @@ void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
swiglu_oai_cuda(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), alpha, limit, stream);
}
/* CUDA kernel + launcher for xIELU */
template <typename T>
static __global__ void xielu_kernel(const T * x, T * dst, const int k, float alpha_n, float alpha_p, float beta, float eps) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
const float xi = ggml_cuda_cast<float>(x[i]);
const float gate_pos = (xi > 0.0f);
const float y_pos = alpha_p * xi * xi + beta * xi;
const float min_v_eps = fminf(xi, eps);
const float y_neg = (expm1f(min_v_eps) - xi) * alpha_n + beta * xi;
const float out = gate_pos * y_pos + (1.0f - gate_pos) * y_neg;
dst[i] = ggml_cuda_cast<T>(out);
}
template <typename T>
static void xielu_cuda(const T * x, T * dst, const int k, float alpha_n, float alpha_p, float beta, float eps, cudaStream_t stream) {
const int num_blocks = (k + CUDA_XIELU_BLOCK_SIZE) / CUDA_XIELU_BLOCK_SIZE;
xielu_kernel<<<num_blocks, CUDA_XIELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, alpha_n, alpha_p, beta, eps);
}
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const void * src0_d = src0->data;
void * dst_d = dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
const float alpha_n = ggml_get_op_params_f32(dst, 1);
const float alpha_p = ggml_get_op_params_f32(dst, 2);
const float beta = ggml_get_op_params_f32(dst, 3);
const float eps = ggml_get_op_params_f32(dst, 4);
if (src0->type == GGML_TYPE_F16) {
xielu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), alpha_n, alpha_p, beta, eps, stream);
} else {
xielu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), alpha_n, alpha_p, beta, eps, stream);
}
}
/* silu_back */
static __device__ __forceinline__ float op_silu_back(float grad, float x) {

View File

@ -16,6 +16,7 @@
#define CUDA_SIN_BLOCK_SIZE 256
#define CUDA_COS_BLOCK_SIZE 256
#define CUDA_GLU_BLOCK_SIZE 256
#define CUDA_XIELU_BLOCK_SIZE 256
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
@ -72,3 +73,5 @@ void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@ -6,6 +6,10 @@
#include <hip/hip_fp16.h>
#include <hip/hip_bf16.h>
#if defined(GGML_HIP_ROCWMMA_FATTN)
#include <rocwmma/rocwmma-version.hpp>
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N

View File

@ -39,12 +39,6 @@ endif()
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
if (GGML_HIP_ROCWMMA_FATTN)
CHECK_INCLUDE_FILE_CXX("rocwmma/rocwmma.hpp" FOUND_ROCWMMA)
if (NOT ${FOUND_ROCWMMA})
message(FATAL_ERROR "rocwmma has not been found")
endif()
endif()
if (${hip_VERSION} VERSION_LESS 6.1)
message(FATAL_ERROR "At least ROCM/HIP V6.1 is required")
@ -117,10 +111,6 @@ if (NOT GGML_HIP_MMQ_MFMA)
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
endif()
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
endif()
if (GGML_HIP_EXPORT_METRICS)
set(CMAKE_HIP_FLAGS "${CMAKE_HIP_FLAGS} -Rpass-analysis=kernel-resource-usage --save-temps")
endif()

View File

@ -102,6 +102,9 @@ static bool ggml_op_is_empty(enum ggml_op op) {
}
}
static inline float ggml_softplus(float input) {
return (input > 20.0f) ? input : logf(1 + expf(input));
}
//
// logging
//

View File

@ -112,7 +112,7 @@ static bool ggml_mem_ranges_add_dst(ggml_mem_ranges_t mrs, const ggml_tensor * t
}
bool ggml_mem_ranges_add(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (tensor->src[i]) {
ggml_mem_ranges_add_src(mrs, tensor->src[i]);
}
@ -173,7 +173,7 @@ static bool ggml_mem_ranges_check_dst(ggml_mem_ranges_t mrs, const ggml_tensor *
}
bool ggml_mem_ranges_check(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
for (int i = 0; i < GGML_MAX_DIMS; i++) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (tensor->src[i]) {
if (!ggml_mem_ranges_check_src(mrs, tensor->src[i])) {
return false;

View File

@ -56,7 +56,7 @@ if (MUSAToolkit_FOUND)
set_source_files_properties(${GGML_SOURCES_MUSA} PROPERTIES LANGUAGE CXX)
foreach(SOURCE ${GGML_SOURCES_MUSA})
set(COMPILE_FLAGS "-fsigned-char -x musa -mtgpu")
set(COMPILE_FLAGS "-Od3 -fno-strict-aliasing -ffast-math -fsigned-char -x musa -mtgpu -fmusa-flush-denormals-to-zero")
foreach(ARCH ${MUSA_ARCHITECTURES})
set(COMPILE_FLAGS "${COMPILE_FLAGS} --cuda-gpu-arch=mp_${ARCH}")
endforeach()

View File

@ -105,9 +105,12 @@ enum rpc_cmd {
RPC_CMD_INIT_TENSOR,
RPC_CMD_GET_ALLOC_SIZE,
RPC_CMD_HELLO,
RPC_CMD_DEVICE_COUNT,
RPC_CMD_COUNT,
};
static_assert(RPC_CMD_HELLO == 14, "RPC_CMD_HELLO must be always 14");
// Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
@ -117,7 +120,12 @@ struct rpc_msg_hello_rsp {
uint8_t patch;
};
struct rpc_msg_device_count_rsp {
uint32_t device_count;
};
struct rpc_msg_get_alloc_size_req {
uint32_t device;
rpc_tensor tensor;
};
@ -130,6 +138,7 @@ struct rpc_msg_init_tensor_req {
};
struct rpc_msg_alloc_buffer_req {
uint32_t device;
uint64_t size;
};
@ -138,10 +147,18 @@ struct rpc_msg_alloc_buffer_rsp {
uint64_t remote_size;
};
struct rpc_msg_get_alignment_req {
uint32_t device;
};
struct rpc_msg_get_alignment_rsp {
uint64_t alignment;
};
struct rpc_msg_get_max_size_req {
uint32_t device;
};
struct rpc_msg_get_max_size_rsp {
uint64_t max_size;
};
@ -192,6 +209,10 @@ struct rpc_msg_graph_compute_rsp {
uint8_t result;
};
struct rpc_msg_get_device_memory_req {
uint32_t device;
};
struct rpc_msg_get_device_memory_rsp {
uint64_t free_mem;
uint64_t total_mem;
@ -207,6 +228,7 @@ static ggml_guid_t ggml_backend_rpc_guid() {
struct ggml_backend_rpc_buffer_type_context {
std::string endpoint;
uint32_t device;
std::string name;
size_t alignment;
size_t max_size;
@ -214,6 +236,7 @@ struct ggml_backend_rpc_buffer_type_context {
struct ggml_backend_rpc_context {
std::string endpoint;
uint32_t device;
std::string name;
};
@ -608,7 +631,12 @@ static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, con
RPC_STATUS_ASSERT(status);
}
static bool ggml_backend_buffer_is_rpc(ggml_backend_buffer_t buffer) {
return buffer->iface.free_buffer == ggml_backend_rpc_buffer_free_buffer;
}
static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
if (ggml_backend_buffer_is_rpc(src->buffer)) {
// check if src and dst are on the same server
ggml_backend_buffer_t src_buffer = src->buffer;
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
@ -626,6 +654,8 @@ static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
RPC_STATUS_ASSERT(status);
return response.result;
}
return false;
}
static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
@ -653,7 +683,7 @@ static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t
static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
rpc_msg_alloc_buffer_req request = {size};
rpc_msg_alloc_buffer_req request = {buft_ctx->device, size};
rpc_msg_alloc_buffer_rsp response;
auto sock = get_socket(buft_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
@ -669,9 +699,10 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
}
}
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
static size_t get_alignment(const std::shared_ptr<socket_t> & sock, uint32_t device) {
rpc_msg_get_alignment_req request = {device};
rpc_msg_get_alignment_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.alignment;
}
@ -681,9 +712,10 @@ static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_typ
return buft_ctx->alignment;
}
static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
static size_t get_max_size(const std::shared_ptr<socket_t> & sock, uint32_t device) {
rpc_msg_get_max_size_req request = {device};
rpc_msg_get_max_size_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.max_size;
}
@ -700,7 +732,7 @@ static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_ty
auto sock = get_socket(buft_ctx->endpoint);
rpc_msg_get_alloc_size_req request;
request.device = buft_ctx->device;
request.tensor = serialize_tensor(tensor);
rpc_msg_get_alloc_size_rsp response;
@ -754,7 +786,7 @@ static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors,
tensors.push_back(serialize_tensor(tensor));
}
static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
uint32_t n_nodes = cgraph->n_nodes;
std::vector<rpc_tensor> tensors;
std::unordered_set<ggml_tensor*> visited;
@ -762,24 +794,29 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
add_tensor(cgraph->nodes[i], tensors, visited);
}
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
// | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
uint32_t n_tensors = tensors.size();
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
int output_size = 2*sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
output.resize(output_size, 0);
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
uint8_t * dest = output.data();
memcpy(dest, &device, sizeof(device));
dest += sizeof(device);
memcpy(dest, &n_nodes, sizeof(n_nodes));
dest += sizeof(n_nodes);
for (uint32_t i = 0; i < n_nodes; i++) {
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
memcpy(dest + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
}
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
*out_ntensors = n_tensors;
rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
dest += n_nodes * sizeof(uint64_t);
memcpy(dest, &n_tensors, sizeof(n_tensors));
dest += sizeof(n_tensors);
rpc_tensor * out_tensors = (rpc_tensor *)dest;
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
}
static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
std::vector<uint8_t> input;
serialize_graph(cgraph, input);
serialize_graph(rpc_ctx->device, cgraph, input);
rpc_msg_graph_compute_rsp response;
auto sock = get_socket(rpc_ctx->endpoint);
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
@ -804,12 +841,13 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .graph_optimize = */ NULL,
};
ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
std::string buft_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
// NOTE: buffer types are allocated and never freed; this is by design
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
auto it = buft_map.find(endpoint);
auto it = buft_map.find(buft_name);
if (it != buft_map.end()) {
return it->second;
}
@ -818,34 +856,37 @@ ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
return nullptr;
}
size_t alignment = get_alignment(sock);
size_t max_size = get_max_size(sock);
size_t alignment = get_alignment(sock, device);
size_t max_size = get_max_size(sock, device);
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .device = */ device,
/* .name = */ buft_name,
/* .alignment = */ alignment,
/* .max_size = */ max_size
};
auto reg = ggml_backend_rpc_add_server(endpoint);
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
/* .device = */ ggml_backend_rpc_add_device(endpoint),
/* .device = */ ggml_backend_reg_dev_get(reg, device),
/* .context = */ buft_ctx
};
buft_map[endpoint] = buft;
buft_map[buft_name] = buft;
return buft;
}
ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
std::string dev_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .device = */ device,
/* .name = */ dev_name
};
auto reg = ggml_backend_rpc_add_server(endpoint);
ggml_backend_t backend = new ggml_backend {
/* .guid = */ ggml_backend_rpc_guid(),
/* .iface = */ ggml_backend_rpc_interface,
/* .device = */ ggml_backend_rpc_add_device(endpoint),
/* .device = */ ggml_backend_reg_dev_get(reg, device),
/* .context = */ ctx
};
return backend;
@ -855,37 +896,39 @@ bool ggml_backend_is_rpc(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
}
static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
static void get_device_memory(const std::shared_ptr<socket_t> & sock, uint32_t device, size_t * free, size_t * total) {
rpc_msg_get_device_memory_req request;
request.device = device;
rpc_msg_get_device_memory_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, &request, sizeof(request), &response, sizeof(response));
RPC_STATUS_ASSERT(status);
*free = response.free_mem;
*total = response.total_mem;
}
void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total) {
auto sock = get_socket(endpoint);
if (sock == nullptr) {
*free = 0;
*total = 0;
return;
}
get_device_memory(sock, free, total);
get_device_memory(sock, device, free, total);
}
// RPC server-side implementation
class rpc_server {
public:
rpc_server(ggml_backend_t backend, const char * cache_dir)
: backend(backend), cache_dir(cache_dir) {
rpc_server(std::vector<ggml_backend_t> backends, const char * cache_dir)
: backends(std::move(backends)), cache_dir(cache_dir) {
}
~rpc_server();
void hello(rpc_msg_hello_rsp & response);
void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
void get_alignment(rpc_msg_get_alignment_rsp & response);
void get_max_size(rpc_msg_get_max_size_rsp & response);
bool alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
bool get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response);
bool get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response);
bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
bool free_buffer(const rpc_msg_free_buffer_req & request);
bool buffer_clear(const rpc_msg_buffer_clear_req & request);
@ -906,7 +949,7 @@ private:
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
ggml_backend_t backend;
std::vector<ggml_backend_t> backends;
const char * cache_dir;
std::unordered_set<ggml_backend_buffer_t> buffers;
};
@ -919,6 +962,10 @@ void rpc_server::hello(rpc_msg_hello_rsp & response) {
}
bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
uint32_t dev_id = request.device;
if (dev_id >= backends.size()) {
return false;
}
ggml_backend_buffer_type_t buft;
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
@ -935,10 +982,10 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
return false;
}
LOG_DBG("[%s] buffer: %p, data: %p\n", __func__, (void*)tensor->buffer, tensor->data);
LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
if (tensor->buffer == nullptr) {
//No buffer allocated.
buft = ggml_backend_get_default_buffer_type(backend);
buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
} else {
buft = tensor->buffer->buft;
}
@ -948,33 +995,49 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
return true;
}
void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
bool rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
uint32_t dev_id = request.device;
if (dev_id >= backends.size()) {
return false;
}
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
response.remote_ptr = 0;
response.remote_size = 0;
if (buffer != nullptr) {
response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
response.remote_size = buffer->size;
LOG_DBG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n",
__func__, dev_id, request.size, response.remote_ptr, response.remote_size);
buffers.insert(buffer);
} else {
LOG_DBG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> failed\n", __func__, dev_id, request.size);
}
return true;
}
void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
bool rpc_server::get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response) {
uint32_t dev_id = request.device;
if (dev_id >= backends.size()) {
return false;
}
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
size_t alignment = ggml_backend_buft_get_alignment(buft);
LOG_DBG("[%s] alignment: %lu\n", __func__, alignment);
LOG_DBG("[%s] device: %d, alignment: %lu\n", __func__, dev_id, alignment);
response.alignment = alignment;
return true;
}
void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
bool rpc_server::get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response) {
uint32_t dev_id = request.device;
if (dev_id >= backends.size()) {
return false;
}
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
size_t max_size = ggml_backend_buft_get_max_size(buft);
LOG_DBG("[%s] max_size: %lu\n", __func__, max_size);
LOG_DBG("[%s] device: %d, max_size: %lu\n", __func__, dev_id, max_size);
response.max_size = max_size;
return true;
}
bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
@ -1332,23 +1395,33 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
// serialization format:
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
if (input.size() < sizeof(uint32_t)) {
// | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
if (input.size() < 2*sizeof(uint32_t)) {
return false;
}
const uint8_t * src = input.data();
uint32_t device;
memcpy(&device, src, sizeof(device));
src += sizeof(device);
if (device >= backends.size()) {
return false;
}
uint32_t n_nodes;
memcpy(&n_nodes, input.data(), sizeof(n_nodes));
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
memcpy(&n_nodes, src, sizeof(n_nodes));
src += sizeof(n_nodes);
if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
return false;
}
const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
const uint64_t * nodes = (const uint64_t *)src;
src += n_nodes*sizeof(uint64_t);
uint32_t n_tensors;
memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
memcpy(&n_tensors, src, sizeof(n_tensors));
src += sizeof(n_tensors);
if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
return false;
}
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
LOG_DBG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
const rpc_tensor * tensors = (const rpc_tensor *)src;
LOG_DBG("[%s] device: %u, n_nodes: %u, n_tensors: %u\n", __func__, device, n_nodes, n_tensors);
size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
@ -1380,7 +1453,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
return false;
}
}
ggml_status status = ggml_backend_graph_compute(backend, graph);
ggml_status status = ggml_backend_graph_compute(backends[device], graph);
response.result = status;
return true;
}
@ -1391,9 +1464,9 @@ rpc_server::~rpc_server() {
}
}
static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
sockfd_t sockfd, size_t free_mem, size_t total_mem) {
rpc_server server(backend, cache_dir);
static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
sockfd_t sockfd, const std::vector<size_t> & free_mem, const std::vector<size_t> & total_mem) {
rpc_server server(backends, cache_dir);
uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) {
return;
@ -1425,13 +1498,26 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
// HELLO command is handled above
return;
}
case RPC_CMD_DEVICE_COUNT: {
if (!recv_msg(sockfd, nullptr, 0)) {
return;
}
rpc_msg_device_count_rsp response;
response.device_count = backends.size();
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_ALLOC_BUFFER: {
rpc_msg_alloc_buffer_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_alloc_buffer_rsp response;
server.alloc_buffer(request, response);
if (!server.alloc_buffer(request, response)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
@ -1452,22 +1538,28 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
break;
}
case RPC_CMD_GET_ALIGNMENT: {
if (!recv_msg(sockfd, nullptr, 0)) {
rpc_msg_get_alignment_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_get_alignment_rsp response;
server.get_alignment(response);
if (!server.get_alignment(request, response)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_GET_MAX_SIZE: {
if (!recv_msg(sockfd, nullptr, 0)) {
rpc_msg_get_max_size_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
rpc_msg_get_max_size_rsp response;
server.get_max_size(response);
if (!server.get_max_size(request, response)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
@ -1593,12 +1685,19 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
break;
}
case RPC_CMD_GET_DEVICE_MEMORY: {
if (!recv_msg(sockfd, nullptr, 0)) {
rpc_msg_get_device_memory_req request;
if (!recv_msg(sockfd, &request, sizeof(request))) {
return;
}
auto dev_id = request.device;
if (dev_id >= backends.size()) {
return;
}
rpc_msg_get_device_memory_rsp response;
response.free_mem = free_mem;
response.total_mem = total_mem;
response.free_mem = free_mem[dev_id];
response.total_mem = total_mem[dev_id];
LOG_DBG("[get_device_mem] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", dev_id,
response.free_mem, response.total_mem);
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
@ -1612,16 +1711,41 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
}
}
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem) {
void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices,
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem) {
if (n_devices == 0 || devices == nullptr || free_mem == nullptr || total_mem == nullptr) {
fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
return;
}
std::vector<ggml_backend_t> backends;
std::vector<size_t> free_mem_vec(free_mem, free_mem + n_devices);
std::vector<size_t> total_mem_vec(total_mem, total_mem + n_devices);
printf("Starting RPC server v%d.%d.%d\n",
RPC_PROTO_MAJOR_VERSION,
RPC_PROTO_MINOR_VERSION,
RPC_PROTO_PATCH_VERSION);
printf(" endpoint : %s\n", endpoint);
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
printf("Devices:\n");
for (size_t i = 0; i < n_devices; i++) {
auto dev = devices[i];
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
total_mem[i] / 1024 / 1024, free_mem[i] / 1024 / 1024);
auto backend = ggml_backend_dev_init(dev, nullptr);
if (!backend) {
fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
return;
}
backends.push_back(backend);
ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
if (reg) {
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
ggml_backend_set_n_threads_fn(backend, n_threads);
}
}
}
std::string host;
int port;
@ -1649,22 +1773,27 @@ void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint
fprintf(stderr, "Failed to accept client connection\n");
return;
}
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
printf("Accepted client connection\n");
fflush(stdout);
rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
rpc_serve_client(backends, cache_dir, client_socket->fd, free_mem_vec, total_mem_vec);
printf("Client connection closed\n");
fflush(stdout);
}
#ifdef _WIN32
WSACleanup();
#endif
for (auto backend : backends) {
ggml_backend_free(backend);
}
}
// device interface
struct ggml_backend_rpc_device_context {
std::string endpoint;
uint32_t device;
std::string name;
std::string description;
};
static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
@ -1676,15 +1805,13 @@ static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
return ctx->name.c_str();
return ctx->description.c_str();
}
static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
GGML_UNUSED(dev);
ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), ctx->device, free, total);
}
static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
@ -1710,7 +1837,7 @@ static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggm
static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
return ggml_backend_rpc_init(ctx->endpoint.c_str());
return ggml_backend_rpc_init(ctx->endpoint.c_str(), ctx->device);
GGML_UNUSED(params);
}
@ -1718,7 +1845,7 @@ static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const
static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str(), ctx->device);
GGML_UNUSED(dev);
}
@ -1736,7 +1863,7 @@ static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_b
}
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
return buft_ctx->endpoint == dev_ctx->endpoint;
return buft_ctx->endpoint == dev_ctx->endpoint && buft_ctx->device == dev_ctx->device;
}
static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
@ -1759,28 +1886,34 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
// backend reg interface
static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
return "RPC";
struct ggml_backend_rpc_reg_context {
std::string name;
std::vector<ggml_backend_dev_t> devices;
};
GGML_UNUSED(reg);
static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
return ctx ? ctx->name.c_str() : "RPC";
}
static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
return 0;
GGML_UNUSED(reg);
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
return ctx ? ctx->devices.size() : 0;
}
static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
GGML_UNUSED(reg);
GGML_UNUSED(index);
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
if (ctx == nullptr) {
GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_rpc_add_server instead");
} else {
GGML_ASSERT(index < ctx->devices.size());
return ctx->devices[index];
}
}
static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
return (void *)ggml_backend_rpc_add_device;
if (std::strcmp(name, "ggml_backend_rpc_add_server") == 0) {
return (void *)ggml_backend_rpc_add_server;
}
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
return (void *)ggml_backend_rpc_start_server;
@ -1807,30 +1940,61 @@ ggml_backend_reg_t ggml_backend_rpc_reg(void) {
return &ggml_backend_rpc_reg;
}
ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (dev_map.find(endpoint) != dev_map.end()) {
return dev_map[endpoint];
static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
auto sock = get_socket(endpoint);
rpc_msg_device_count_rsp response;
bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
RPC_STATUS_ASSERT(status);
return response.device_count;
}
ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
static const ggml_backend_reg_i ggml_backend_rpc_reg_interface = {
/* .get_name = */ ggml_backend_rpc_reg_get_name,
/* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
/* .get_device = */ ggml_backend_rpc_reg_get_device,
/* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
};
ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint) {
static std::unordered_map<std::string, ggml_backend_reg_t> reg_map;
static std::mutex mutex;
static uint32_t dev_id = 0;
std::lock_guard<std::mutex> lock(mutex);
if (reg_map.find(endpoint) != reg_map.end()) {
return reg_map[endpoint];
}
uint32_t dev_count = ggml_backend_rpc_get_device_count(endpoint);
if (dev_count == 0) {
return nullptr;
}
ggml_backend_rpc_reg_context * ctx = new ggml_backend_rpc_reg_context;
ctx->name = "RPC[" + std::string(endpoint) + "]";
for (uint32_t ind = 0; ind < dev_count; ind++) {
std::string dev_name = "RPC" + std::to_string(dev_id);
std::string dev_desc = std::string(endpoint);
ggml_backend_rpc_device_context * dev_ctx = new ggml_backend_rpc_device_context {
/* .endpoint = */ endpoint,
/* .name = */ "RPC[" + std::string(endpoint) + "]",
/* .device = */ ind,
/* .name = */ dev_name,
/* .description = */ dev_desc
};
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_rpc_device_i,
/* .reg = */ ggml_backend_rpc_reg(),
/* .context = */ ctx,
/* .context = */ dev_ctx,
};
dev_map[endpoint] = dev;
return dev;
ctx->devices.push_back(dev);
dev_id++;
}
ggml_backend_reg_t reg = new ggml_backend_reg {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_rpc_reg_interface,
/* .context = */ ctx
};
reg_map[endpoint] = reg;
return reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)

View File

@ -1,5 +1,6 @@
cmake_minimum_required(VERSION 3.19)
cmake_policy(SET CMP0114 NEW)
cmake_policy(SET CMP0116 NEW)
find_package(Vulkan COMPONENTS glslc REQUIRED)
@ -54,25 +55,25 @@ if (Vulkan_FOUND)
# Test all shader extensions
test_shader_extension_support(
"GL_KHR_cooperative_matrix"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_coopmat_support.comp"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/coopmat.comp"
"GGML_VULKAN_COOPMAT_GLSLC_SUPPORT"
)
test_shader_extension_support(
"GL_NV_cooperative_matrix2"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_coopmat2_support.comp"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/coopmat2.comp"
"GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT"
)
test_shader_extension_support(
"GL_EXT_integer_dot_product"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_integer_dot_support.comp"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/integer_dot.comp"
"GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT"
)
test_shader_extension_support(
"GL_EXT_bfloat16"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/bfloat16.comp"
"GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT"
)
@ -160,7 +161,6 @@ if (Vulkan_FOUND)
set (_ggml_vk_genshaders_dir "${CMAKE_BINARY_DIR}/$<CONFIG>")
set (_ggml_vk_genshaders_cmd "${_ggml_vk_genshaders_dir}/vulkan-shaders-gen${_ggml_vk_host_suffix}")
set (_ggml_vk_header "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp")
set (_ggml_vk_source "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp")
set (_ggml_vk_input_dir "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders")
set (_ggml_vk_output_dir "${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv")
@ -176,24 +176,35 @@ if (Vulkan_FOUND)
add_custom_command(
OUTPUT ${_ggml_vk_header}
${_ggml_vk_source}
COMMAND ${_ggml_vk_genshaders_cmd}
--glslc ${Vulkan_GLSLC_EXECUTABLE}
--input-dir ${_ggml_vk_input_dir}
--output-dir ${_ggml_vk_output_dir}
--target-hpp ${_ggml_vk_header}
--target-cpp ${_ggml_vk_source}
--no-clean
DEPENDS ${_ggml_vk_shaders_gen_sources}
vulkan-shaders-gen
COMMENT "Generate vulkan shaders header"
)
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_header})
DEPENDS ${_ggml_vk_shader_files}
foreach (file_full ${_ggml_vk_shader_files})
get_filename_component(file ${file_full} NAME)
set (_ggml_vk_target_cpp "${CMAKE_CURRENT_BINARY_DIR}/${file}.cpp")
add_custom_command(
OUTPUT ${_ggml_vk_target_cpp}
DEPFILE ${_ggml_vk_target_cpp}.d
COMMAND ${_ggml_vk_genshaders_cmd}
--glslc ${Vulkan_GLSLC_EXECUTABLE}
--source ${file_full}
--output-dir ${_ggml_vk_output_dir}
--target-hpp ${_ggml_vk_header}
--target-cpp ${_ggml_vk_target_cpp}
DEPENDS ${file_full}
${_ggml_vk_shaders_gen_sources}
vulkan-shaders-gen
COMMENT "Generate vulkan shaders"
COMMENT "Generate vulkan shaders for ${file}"
)
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_source} ${_ggml_vk_header})
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_target_cpp})
endforeach()
else()
message(WARNING "Vulkan not found")

View File

@ -393,6 +393,7 @@ struct vk_device_struct {
vk::PhysicalDeviceProperties properties;
std::string name;
uint64_t max_memory_allocation_size;
uint64_t max_buffer_size;
uint64_t suballocation_block_size;
bool fp16;
bool bf16;
@ -1563,6 +1564,12 @@ typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx
static void ggml_backend_vk_free(ggml_backend_t backend);
static VkDeviceSize ggml_vk_get_max_buffer_range(const ggml_backend_vk_context * ctx, const vk_buffer &buf, const VkDeviceSize offset) {
const VkDeviceSize range = std::min(VkDeviceSize{buf->size - offset},
VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
return range;
}
// Wait for ctx->fence to be signaled.
static void ggml_vk_wait_for_fence(ggml_backend_vk_context * ctx) {
// Use waitForFences while most of the graph executes. Hopefully the CPU can sleep
@ -2012,8 +2019,8 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list) {
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")");
if (size > device->max_memory_allocation_size) {
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit");
if (size > device->max_buffer_size) {
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device buffer size limit");
}
vk_buffer buf = std::make_shared<vk_buffer_struct>();
@ -2159,8 +2166,8 @@ static void ggml_vk_destroy_buffer(vk_buffer& buf) {
buf.reset();
}
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
return { buf, 0, VK_WHOLE_SIZE };
static vk_subbuffer ggml_vk_subbuffer(const ggml_backend_vk_context* ctx, const vk_buffer& buf, size_t offset = 0) {
return { buf, offset, ggml_vk_get_max_buffer_range(ctx, buf, offset) };
}
static void ggml_vk_sync_buffers(ggml_backend_vk_context* ctx, vk_context& subctx) {
@ -2614,8 +2621,6 @@ static void ggml_vk_load_shaders(vk_device& device) {
const uint32_t D_lsb = D ^ (D & (D-1));
uint32_t D_split = std::min(std::min(device->subgroup_size, 8u), D_lsb / 4);
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((GGML_KQ_MASK_PAD % rows_cols[0]) == 0);
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split};
};
@ -3855,17 +3860,27 @@ static vk_device ggml_vk_get_device(size_t idx) {
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
device->max_memory_allocation_size = std::stoul(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
device->max_memory_allocation_size = std::stoull(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
} else if (maintenance4_support) {
device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
} else {
device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
}
const char* GGML_VK_FORCE_MAX_BUFFER_SIZE = getenv("GGML_VK_FORCE_MAX_BUFFER_SIZE");
if (GGML_VK_FORCE_MAX_BUFFER_SIZE != nullptr) {
device->max_buffer_size = std::stoull(GGML_VK_FORCE_MAX_BUFFER_SIZE);
} else if (maintenance4_support) {
device->max_buffer_size = props4.maxBufferSize;
} else {
device->max_buffer_size = device->max_memory_allocation_size;
}
const char* GGML_VK_SUBALLOCATION_BLOCK_SIZE = getenv("GGML_VK_SUBALLOCATION_BLOCK_SIZE");
if (GGML_VK_SUBALLOCATION_BLOCK_SIZE != nullptr) {
device->suballocation_block_size = std::stoul(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
device->suballocation_block_size = std::stoull(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
} else {
// Limit batching of allocations to 1GB by default to avoid fragmentation issues
device->suballocation_block_size = 1024*1024*1024;
@ -6150,9 +6165,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
}
const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) ||
(split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) {
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
(split_k > 1 && split_k_size > ctx->device->properties.limits.maxStorageBufferRange)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
@ -6227,7 +6242,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
}
if (x_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
} else if (qx_needs_dequant) {
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
@ -6239,7 +6254,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -6250,7 +6265,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true);
ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne * ne12 * ne13, true);
ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -6272,14 +6287,11 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
y_sz_total = CEIL_DIV(y_sz_total, 144) * 144;
}
// No bounds checking is needed for dst. This is basically VK_WHOLE_SIZE but clamped to maxStorageBufferRange.
VkDeviceSize d_range = std::min(VkDeviceSize{d_D->size - d_buf_offset}, VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
// compute
ggml_vk_matmul(
ctx, subctx, pipeline,
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz_total },
{ d_D, d_buf_offset, d_range }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
ggml_vk_subbuffer(ctx, d_D, d_buf_offset), { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
ne01, ne11, ne10,
ne10, ne10, stride_d, stride_batch_x, stride_batch_y, stride_batch_d,
split_k, ne12*ne13, ne02, ne12, r2, r3, padded_n
@ -6446,8 +6458,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144;
}
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
@ -6512,7 +6524,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
}
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
}
if (y_non_contig) {
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
@ -6521,7 +6533,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -6532,7 +6544,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true);
ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne * ne12 * ne13, true);
ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -6931,8 +6943,8 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
@ -6999,7 +7011,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
}
if (x_non_contig) {
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
} else if (qx_needs_dequant) {
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
@ -7012,7 +7024,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -7145,8 +7157,8 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
if (
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
GGML_ABORT("Requested preallocation size is too large");
}
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
@ -7212,7 +7224,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
if (x_non_contig) {
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
}
if (y_non_contig) {
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
@ -7221,7 +7233,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
if (ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
ctx->prealloc_y_last_tensor_used = src1;
}
@ -7457,8 +7469,6 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
if (((HSK | HSV) % 16) != 0 && path == FA_COOPMAT2) {
aligned = false;
}
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
GGML_ASSERT((nem1 % GGML_KQ_MASK_PAD) == 0);
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
@ -7498,7 +7508,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
// Reserve space for split_k temporaries. For each split x batch, we need to store the O matrix (D x ne1)
// and the per-row m and L values (ne1 rows). We store all the matrices first, followed by the rows.
const uint64_t split_k_size = split_k > 1 ? (HSV * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k * ne3 : 0;
if (split_k_size > ctx->device->max_memory_allocation_size) {
if (split_k_size > ctx->device->properties.limits.maxStorageBufferRange) {
GGML_ABORT("Requested preallocation size is too large");
}
if (ctx->prealloc_size_split_k < split_k_size) {
@ -7620,12 +7630,12 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
ggml_vk_subbuffer(ctx, d_Q, q_buf_offset),
ggml_vk_subbuffer(ctx, d_K, k_buf_offset),
ggml_vk_subbuffer(ctx, d_V, v_buf_offset),
ggml_vk_subbuffer(ctx, d_M, m_buf_offset),
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0),
},
// We only use split_k when group query attention is enabled, which means
// there's no more than one tile of rows (i.e. workgroups_x would have been
@ -7637,21 +7647,21 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
const std::array<uint32_t, 5> pc2 = { HSV, (uint32_t)ne1, (uint32_t)ne3, split_k, (sinks != nullptr) };
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_flash_attn_split_k_reduce,
{
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0),
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
ggml_vk_subbuffer(ctx, d_D, d_buf_offset),
},
pc2, { (uint32_t)ne1, HSV, (uint32_t)ne3 });
ctx->prealloc_split_k_need_sync = true;
} else {
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
ggml_vk_subbuffer(ctx, d_Q, q_buf_offset),
ggml_vk_subbuffer(ctx, d_K, k_buf_offset),
ggml_vk_subbuffer(ctx, d_V, v_buf_offset),
ggml_vk_subbuffer(ctx, d_M, m_buf_offset),
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
ggml_vk_subbuffer(ctx, d_D, d_buf_offset),
},
pc, { workgroups_x, workgroups_y, workgroups_z });
}
@ -8360,18 +8370,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
}
uint64_t x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0;
uint64_t y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 : 0;
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
uint64_t d_sz = ggml_type_size(dst->type) * ned;
vk_buffer d_D = dst_buf_ctx->dev_buffer;
// Workaround for tiny tensor inputs on ROPE
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
y_sz = VK_WHOLE_SIZE;
}
GGML_ASSERT(d_D != nullptr);
uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
if(!src0_uma) {
@ -8396,26 +8396,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
if (x_buf_offset + x_sz >= d_X->size) {
x_sz = VK_WHOLE_SIZE;
}
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
y_sz = VK_WHOLE_SIZE;
}
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = VK_WHOLE_SIZE;
}
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = VK_WHOLE_SIZE;
}
}
std::array<uint32_t, 3> elements;
// Single call if dimension 2 is contiguous
@ -8606,19 +8586,31 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
break;
}
if (!op_supports_incontiguous) {
if (x_sz != VK_WHOLE_SIZE) {
x_sz *= ne02 * ne03;
uint64_t x_sz, y_sz, z_sz, d_sz;
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
if (x_buf_offset + x_sz >= d_X->size) {
x_sz = ggml_vk_get_max_buffer_range(ctx, d_X, x_buf_offset);
}
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
y_sz *= ne12 * ne13;
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
y_sz = ggml_vk_get_max_buffer_range(ctx, d_Y, y_buf_offset);
}
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
z_sz *= ne22 * ne23;
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = ggml_vk_get_max_buffer_range(ctx, d_Z, z_buf_offset);
}
if (d_sz != VK_WHOLE_SIZE) {
d_sz *= ned2 * ned3;
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = ggml_vk_get_max_buffer_range(ctx, d_D, d_buf_offset);
}
} else {
x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0 * ne02 * ne03;
y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 * ne12 * ne13 : 0;
z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 * ne22 * ne23 : 0;
d_sz = ggml_type_size(dst->type) * ned * ned2 * ned3;
}
if (op == GGML_OP_ADD || op == GGML_OP_RMS_NORM) {
@ -8628,7 +8620,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
{ vk_subbuffer{ d_X, x_buf_offset, x_sz },
vk_subbuffer{ d_Y, y_buf_offset, y_sz },
vk_subbuffer{ d_D, d_buf_offset, d_sz },
vk_subbuffer{ d_A, a_buf_offset, VK_WHOLE_SIZE },
ggml_vk_subbuffer(ctx, d_A, a_buf_offset),
}, pc, elements);
} else if (op == GGML_OP_GLU) {
// Empty src1 is possible in glu, but the shader needs a buffer
@ -8821,18 +8813,18 @@ static void ggml_vk_multi_add(ggml_backend_vk_context * ctx, vk_context& subctx,
static_assert(MAX_PARAMETER_COUNT == 12);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{ buf[0], offset[0], VK_WHOLE_SIZE },
vk_subbuffer{ buf[1], offset[1], VK_WHOLE_SIZE },
vk_subbuffer{ buf[2], offset[2], VK_WHOLE_SIZE },
vk_subbuffer{ buf[3], offset[3], VK_WHOLE_SIZE },
vk_subbuffer{ buf[4], offset[4], VK_WHOLE_SIZE },
vk_subbuffer{ buf[5], offset[5], VK_WHOLE_SIZE },
vk_subbuffer{ buf[6], offset[6], VK_WHOLE_SIZE },
vk_subbuffer{ buf[7], offset[7], VK_WHOLE_SIZE },
vk_subbuffer{ buf[8], offset[8], VK_WHOLE_SIZE },
vk_subbuffer{ buf[9], offset[9], VK_WHOLE_SIZE },
vk_subbuffer{ buf[10], offset[10], VK_WHOLE_SIZE },
vk_subbuffer{ buf[11], offset[11], VK_WHOLE_SIZE },
ggml_vk_subbuffer(ctx, buf[0], offset[0]),
ggml_vk_subbuffer(ctx, buf[1], offset[1]),
ggml_vk_subbuffer(ctx, buf[2], offset[2]),
ggml_vk_subbuffer(ctx, buf[3], offset[3]),
ggml_vk_subbuffer(ctx, buf[4], offset[4]),
ggml_vk_subbuffer(ctx, buf[5], offset[5]),
ggml_vk_subbuffer(ctx, buf[6], offset[6]),
ggml_vk_subbuffer(ctx, buf[7], offset[7]),
ggml_vk_subbuffer(ctx, buf[8], offset[8]),
ggml_vk_subbuffer(ctx, buf[9], offset[9]),
ggml_vk_subbuffer(ctx, buf[10], offset[10]),
ggml_vk_subbuffer(ctx, buf[11], offset[11]),
}, pc, elements);
}
@ -10006,7 +9998,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
ggml_vk_ctx_begin(ctx->device, subctx);
for (size_t i = 0; i < num_it; i++) {
ggml_vk_matmul(
ctx, subctx, p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k),
ctx, subctx, p, ggml_vk_subbuffer(ctx, d_X), ggml_vk_subbuffer(ctx, d_Y), ggml_vk_subbuffer(ctx, d_D), ggml_vk_subbuffer(ctx, ctx->prealloc_split_k),
m, n, k,
k, k, m, k*m, k*n, m*n,
split_k, batch, batch, batch, 1, 1, n
@ -10317,7 +10309,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
//
// vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
// ggml_vk_ctx_begin(ctx->device, subctx);
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(x_buf), ggml_vk_subbuffer(qx_buf), ne);
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, x_buf), ggml_vk_subbuffer(ctx, qx_buf), ne);
// ggml_vk_ctx_end(subctx);
//
// auto begin = std::chrono::high_resolution_clock::now();

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_binary_head.comp"
#include "types.glsl"
#include "generic_binary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;

View File

@ -6,8 +6,8 @@
#extension GL_KHR_shader_subgroup_basic : enable
#endif
#include "types.comp"
#include "generic_binary_head.comp"
#include "types.glsl"
#include "generic_binary_head.glsl"
const uint num_threads = 256;

View File

@ -2,7 +2,7 @@
#extension GL_EXT_control_flow_attributes : require
#include "types.comp"
#include "types.glsl"
layout (push_constant) uniform parameter
{

View File

@ -1,7 +1,7 @@
#version 450
#include "generic_head.comp"
#include "types.comp"
#include "generic_head.glsl"
#include "types.glsl"
#extension GL_EXT_control_flow_attributes : enable

View File

@ -1,7 +1,7 @@
#version 450
#extension GL_EXT_control_flow_attributes : enable
#include "types.comp"
#include "types.glsl"
layout(constant_id = 0) const int BLOCK_SIZE = 1024;
layout(constant_id = 1) const int BLOCK_SIZE_LOG2 = 10;

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "types.glsl"
#include "generic_unary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_binary_head.comp"
#include "types.glsl"
#include "generic_binary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "types.glsl"
#include "generic_unary_head.glsl"
#extension GL_EXT_control_flow_attributes : require

View File

@ -1,6 +1,6 @@
#version 450
#include "types.comp"
#include "types.glsl"
layout (push_constant) uniform parameter
{

View File

@ -11,7 +11,7 @@
# extension GL_KHR_shader_subgroup_shuffle : enable
#endif
#include "types.comp"
#include "types.glsl"
// shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j
layout(binding = 0) readonly buffer A {

View File

@ -1,6 +1,6 @@
#version 450
#include "types.comp"
#include "types.glsl"
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; // src0 - kernel: [K, Cout, Cin]
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; // src1 - input: [L, Cin]

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "types.glsl"
#include "generic_unary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,8 +1,8 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "dequant_funcs.comp"
#include "types.glsl"
#include "generic_unary_head.glsl"
#include "dequant_funcs.glsl"
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_MXFP4)
// 16 invocations needed for init_iq_shmem

View File

@ -1,7 +1,7 @@
#version 450
#include "rte.comp"
#include "types.comp"
#include "rte.glsl"
#include "types.glsl"
#if defined(SET_ROWS) && QUANT_K == 1
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
@ -14,7 +14,7 @@ const uint BLOCK_SIZE = 32;
layout (binding = 0) readonly buffer S {float data_s[];};
#if defined(SET_ROWS)
#include "generic_binary_head.comp"
#include "generic_binary_head.glsl"
layout (binding = 1) readonly buffer C {B_TYPE data_i[];};
layout (binding = 2) writeonly buffer Q {A_TYPE data_q[];};
@ -25,7 +25,7 @@ layout (binding = 2) writeonly buffer Q {A_TYPE data_q[];};
#endif
#else
#include "generic_unary_head.comp"
#include "generic_unary_head.glsl"
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
#endif

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "types.glsl"
#include "generic_unary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;

View File

@ -2,8 +2,8 @@
#extension GL_EXT_control_flow_attributes : enable
#include "types.comp"
#include "generic_head.comp"
#include "types.glsl"
#include "generic_head.glsl"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -2,7 +2,7 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#endif
#include "types.comp"
#include "types.glsl"
#if defined(A_TYPE_PACKED16)
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};

View File

@ -1,5 +1,5 @@
#include "types.comp"
#include "types.glsl"
layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ4_0 {
block_q4_0_packed16 block;

View File

@ -10,4 +10,4 @@ layout (push_constant) uniform parameter
uint nel;
} p;
#include "types.comp"
#include "types.glsl"

View File

@ -2,7 +2,7 @@
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;

View File

@ -1,6 +1,6 @@
#version 450
#include "dequant_head.comp"
#include "dequant_head.glsl"
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

View File

@ -10,7 +10,7 @@ layout (push_constant) uniform parameter
uint n_past;
} p;
#include "types.comp"
#include "types.glsl"
layout(local_size_x = 1, local_size_y = 512, local_size_z = 1) in;

View File

@ -1,7 +1,7 @@
#version 450
#include "types.comp"
#include "generic_binary_head.comp"
#include "types.glsl"
#include "generic_binary_head.glsl"
const uint num_threads = 256;

View File

@ -1,8 +1,8 @@
#version 450
#include "rte.comp"
#include "generic_head.comp"
#include "types.comp"
#include "rte.glsl"
#include "generic_head.glsl"
#include "types.glsl"
#extension GL_EXT_control_flow_attributes : enable

View File

@ -8,8 +8,8 @@
#extension GL_KHR_shader_subgroup_shuffle : enable
#include "types.comp"
#include "flash_attn_base.comp"
#include "types.glsl"
#include "flash_attn_base.glsl"
const uint32_t HSK_per_thread = HSK / D_split;
const uint32_t HSV_per_thread = HSV / D_split;
@ -153,12 +153,13 @@ void main() {
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
uint32_t c = (idx + tid) % Bc;
uint32_t r = (idx + tid) / Bc;
if (idx + tid < Bc * Br) {
if (!KV_bounds_check || j * Bc + c < KV) {
if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) {
masksh[c][r] = float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]);
} else {
masksh[c][r] = float(0);

View File

@ -10,8 +10,8 @@
#extension GL_KHR_memory_scope_semantics : enable
#extension GL_KHR_cooperative_matrix : enable
#include "types.comp"
#include "flash_attn_base.comp"
#include "types.glsl"
#include "flash_attn_base.glsl"
const uint32_t HSK_per_thread = HSK / D_split;
const uint32_t HSV_per_thread = HSV / D_split;
@ -201,11 +201,13 @@ void main() {
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
uint32_t c = (idx + tid) % Bc;
uint32_t r = (idx + tid) / Bc;
if (idx + tid < Bc * Br || idx + gl_WorkGroupSize.x <= Bc * Br) {
if (!KV_bounds_check || j * Bc + c < KV) {
if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) {
sfsh[c * sfshstride + r] += ACC_TYPE(slope[r] * float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]));
}
}
@ -356,8 +358,8 @@ void main() {
}
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
float sink = perElemOpGetSink(r, 0u, ACC_TYPE(0), iq2);
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
float sink = perElemOpGetSink(tile_row(r), 0u, ACC_TYPE(0), iq2);
float ms = 1.0f;
float vs = 1.0f;

View File

@ -16,9 +16,9 @@
#extension GL_KHR_shader_subgroup_vote : enable
#extension GL_EXT_null_initializer : enable
#include "types.comp"
#include "dequant_funcs_cm2.comp"
#include "flash_attn_base.comp"
#include "types.glsl"
#include "dequant_funcs_cm2.glsl"
#include "flash_attn_base.glsl"
layout (binding = 0) readonly buffer Q {uint8_t data_q[];};
layout (binding = 1) readonly buffer K {uint8_t data_k[];};
@ -154,7 +154,10 @@ void main() {
}
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
if (nem1_bounds_check) {
tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV);
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV);
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
@ -163,6 +166,19 @@ void main() {
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
} else {
tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
// Don't clamp against nem1 when GQA is enabled
uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1;
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV);
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv;
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
}
}
// Clear padding elements to -inf, so they don't contribute to rowmax

View File

@ -1,6 +1,6 @@
#version 450
#include "glu_head.comp"
#include "glu_head.glsl"
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
@ -10,4 +10,4 @@ float op(float a, float b) {
return 0.5f*a*(2.0f - 2.0f / (exp(2 * val) + 1)) * b;
}
#include "glu_main.comp"
#include "glu_main.glsl"

View File

@ -1,6 +1,6 @@
#version 450
#include "glu_head.comp"
#include "glu_head.glsl"
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
// ref: https://www.johndcook.com/blog/python_erf/
@ -24,4 +24,4 @@ float op(float a, float b) {
return 0.5f * a * (1.0f + erf_approx) * b;
}
#include "glu_main.comp"
#include "glu_main.glsl"

View File

@ -1,6 +1,6 @@
#version 450
#include "glu_head.comp"
#include "glu_head.glsl"
const float GELU_QUICK_COEF = -1.702f;
@ -8,4 +8,4 @@ float op(float a, float b) {
return a * (1.0f / (1.0f + exp(GELU_QUICK_COEF * a))) * b;
}
#include "glu_main.comp"
#include "glu_main.glsl"

View File

@ -1,7 +1,7 @@
#version 450
#include "generic_head.comp"
#include "types.comp"
#include "generic_head.glsl"
#include "types.glsl"
#extension GL_EXT_control_flow_attributes : enable

View File

@ -1,7 +1,7 @@
#version 450
#include "generic_head.comp"
#include "types.comp"
#include "generic_head.glsl"
#include "types.glsl"
#extension GL_EXT_control_flow_attributes : enable

View File

@ -1,7 +1,7 @@
#version 450
#include "generic_head.comp"
#include "types.comp"
#include "generic_head.glsl"
#include "types.glsl"
#extension GL_EXT_control_flow_attributes : enable

Some files were not shown because too many files have changed in this diff Show More