merge
This commit is contained in:
commit
f362878b1c
|
|
@ -1,8 +1,8 @@
|
|||
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
|
||||
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
|
||||
|
||||
## Build Image
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
|
||||
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
|
||||
|
||||
ARG GGML_SYCL_F16=OFF
|
||||
RUN apt-get update && \
|
||||
|
|
@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
|
|||
&& cp requirements.txt /app/full \
|
||||
&& cp .devops/tools.sh /app/full/tools.sh
|
||||
|
||||
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
|
||||
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl\
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG ROCM_VERSION=6.4
|
||||
ARG AMDGPU_VERSION=6.4
|
||||
ARG ROCM_VERSION=7.0
|
||||
ARG AMDGPU_VERSION=7.0
|
||||
|
||||
# Target the ROCm build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
|
@ -13,8 +13,7 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
|||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||
# gfx906 is deprecated
|
||||
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
|
||||
|
||||
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
|
||||
|
|
@ -36,13 +35,10 @@ WORKDIR /app
|
|||
|
||||
COPY . .
|
||||
|
||||
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
|
||||
|
||||
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build \
|
||||
-DGGML_HIP=ON \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
|
||||
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
|
||||
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
|
||||
|
|
|
|||
|
|
@ -97,7 +97,7 @@ jobs:
|
|||
ctest -L 'main|curl' --verbose --timeout 900
|
||||
|
||||
macOS-latest-cmake-x64:
|
||||
runs-on: macos-13
|
||||
runs-on: macos-15-intel
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
@ -362,11 +362,11 @@ jobs:
|
|||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-latest-cmake-rpc
|
||||
evict-old-files: 1d
|
||||
# - name: ccache
|
||||
# uses: ggml-org/ccache-action@v1.2.16
|
||||
# with:
|
||||
# key: ubuntu-latest-cmake-rpc
|
||||
# evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
|
|
@ -387,8 +387,8 @@ jobs:
|
|||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ubuntu-22-cmake-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
ubuntu-24-cmake-vulkan:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
@ -398,20 +398,40 @@ jobs:
|
|||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-vulkan
|
||||
key: ubuntu-24-cmake-vulkan
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo add-apt-repository -y ppa:kisak/kisak-mesa
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
|
||||
|
||||
- name: Get latest Vulkan SDK version
|
||||
id: vulkan_sdk_version
|
||||
run: |
|
||||
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
|
||||
|
||||
- name: Cache Vulkan SDK
|
||||
id: cache_vulkan_sdk
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ./vulkan_sdk
|
||||
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
if: steps.cache_vulkan_sdk.outputs.cache-hit != 'true'
|
||||
id: vulkan_sdk_install
|
||||
run: |
|
||||
mkdir -p vulkan_sdk
|
||||
cd vulkan_sdk
|
||||
curl --no-progress-meter https://sdk.lunarg.com/sdk/download/latest/linux/vulkan_sdk.tar.xz | tar -Jx --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
source ./vulkan_sdk/setup-env.sh
|
||||
cmake -B build \
|
||||
-DGGML_VULKAN=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
|
@ -421,6 +441,7 @@ jobs:
|
|||
run: |
|
||||
cd build
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
export GGML_VK_DISABLE_F16=1
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 4200
|
||||
|
||||
|
|
@ -487,7 +508,7 @@ jobs:
|
|||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
|
|
@ -1059,7 +1080,7 @@ jobs:
|
|||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
steps:
|
||||
|
|
@ -1097,10 +1118,12 @@ jobs:
|
|||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
- name: Grab rocWMMA package
|
||||
id: grab_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
|
||||
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/${{ env.ROCM_VERSION }}/pool/main/r/rocwmma-dev/rocwmma-dev_1.7.0.60402-120~24.04_amd64.deb"
|
||||
7z x rocwmma.deb
|
||||
7z x data.tar
|
||||
|
||||
- name: Cache ROCm Installation
|
||||
id: cache-rocm
|
||||
|
|
@ -1161,8 +1184,9 @@ jobs:
|
|||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DROCM_DIR="${env:HIP_PATH}" `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON `
|
||||
|
|
|
|||
|
|
@ -75,7 +75,7 @@ jobs:
|
|||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
macOS-x64:
|
||||
runs-on: macos-13
|
||||
runs-on: macos-15-intel
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
@ -462,7 +462,7 @@ jobs:
|
|||
shell: bash
|
||||
|
||||
env:
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
|
||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
|
||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
|
||||
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||
|
||||
|
|
@ -505,6 +505,7 @@ jobs:
|
|||
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
|
||||
|
|
@ -513,10 +514,15 @@ jobs:
|
|||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
|
|
@ -543,10 +549,12 @@ jobs:
|
|||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Clone rocWMMA repository
|
||||
id: clone_rocwmma
|
||||
- name: Grab rocWMMA package
|
||||
id: grab_rocwmma
|
||||
run: |
|
||||
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
|
||||
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
|
||||
7z x rocwmma.deb
|
||||
7z x data.tar
|
||||
|
||||
- name: Cache ROCm Installation
|
||||
id: cache-rocm
|
||||
|
|
@ -601,7 +609,7 @@ jobs:
|
|||
cmake -G "Unix Makefiles" -B build -S . `
|
||||
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DGGML_BACKEND_DL=ON `
|
||||
-DGGML_NATIVE=OFF `
|
||||
|
|
|
|||
|
|
@ -59,6 +59,9 @@
|
|||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
|
||||
/ggml/src/ggml-hip/ @IMbackK
|
||||
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
|
||||
/ggml/src/ggml-impl.h @ggerganov @slaren
|
||||
/ggml/src/ggml-metal/ @ggerganov
|
||||
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
|
||||
|
|
|
|||
|
|
@ -34,9 +34,9 @@ mkdir -p "$2"
|
|||
OUT=$(realpath "$1")
|
||||
MNT=$(realpath "$2")
|
||||
|
||||
rm -f "$OUT/*.log"
|
||||
rm -f "$OUT/*.exit"
|
||||
rm -f "$OUT/*.md"
|
||||
rm -f $OUT/*.log
|
||||
rm -f $OUT/*.exit
|
||||
rm -f $OUT/*.md
|
||||
|
||||
sd=`dirname $0`
|
||||
cd $sd/../
|
||||
|
|
@ -607,6 +607,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
|||
fi
|
||||
|
||||
ret=0
|
||||
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
|
|
@ -624,4 +625,6 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
|||
test $ret -eq 0 && gg_run ctest_with_model_release
|
||||
fi
|
||||
|
||||
cat $OUT/README.md
|
||||
|
||||
exit $ret
|
||||
|
|
|
|||
|
|
@ -1615,18 +1615,14 @@ static void add_rpc_devices(const std::string & servers) {
|
|||
if (!rpc_reg) {
|
||||
throw std::invalid_argument("failed to find RPC backend");
|
||||
}
|
||||
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
|
||||
if (!ggml_backend_rpc_add_device_fn) {
|
||||
throw std::invalid_argument("failed to find RPC device add function");
|
||||
typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
|
||||
ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
|
||||
if (!ggml_backend_rpc_add_server_fn) {
|
||||
throw std::invalid_argument("failed to find RPC add server function");
|
||||
}
|
||||
for (const auto & server : rpc_servers) {
|
||||
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
|
||||
if (dev) {
|
||||
ggml_backend_device_register(dev);
|
||||
} else {
|
||||
throw std::invalid_argument("failed to register RPC device");
|
||||
}
|
||||
auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
|
||||
ggml_backend_register(reg);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1932,13 +1928,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
}
|
||||
).set_env("LLAMA_ARG_SWA_FULL"));
|
||||
add_opt(common_arg(
|
||||
{"--swa-checkpoints"}, "N",
|
||||
string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
|
||||
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
|
||||
{"--ctx-checkpoints", "--swa-checkpoints"}, "N",
|
||||
string_format("max number of context checkpoints to create per slot (default: %d)\n"
|
||||
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
|
||||
[](common_params & params, int value) {
|
||||
params.n_swa_checkpoints = value;
|
||||
params.n_ctx_checkpoints = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--kv-unified", "-kvu"},
|
||||
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
|
||||
|
|
|
|||
|
|
@ -75,6 +75,35 @@ bool common_chat_msg_parser::add_tool_calls(const json & arr) {
|
|||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
|
||||
if (!tool_call.is_object() || tool_call.size() != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Get the tool name (the single key in the object)
|
||||
auto it = tool_call.begin();
|
||||
std::string name = it.key();
|
||||
|
||||
if (name.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Get the arguments (the nested object)
|
||||
const json & args_json = it.value();
|
||||
std::string arguments = "";
|
||||
|
||||
if (args_json.is_object()) {
|
||||
arguments = args_json.dump();
|
||||
} else if (args_json.is_string()) {
|
||||
arguments = args_json;
|
||||
} else if (!args_json.is_null()) {
|
||||
// For other types, convert to string representation
|
||||
arguments = args_json.dump();
|
||||
}
|
||||
|
||||
return add_tool_call(name, "", arguments);
|
||||
}
|
||||
void common_chat_msg_parser::finish() {
|
||||
if (!is_partial_ && pos_ != input_.size()) {
|
||||
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
|
||||
|
|
|
|||
|
|
@ -64,6 +64,9 @@ class common_chat_msg_parser {
|
|||
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
|
||||
bool add_tool_calls(const nlohmann::ordered_json & arr);
|
||||
|
||||
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
|
||||
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
|
||||
|
||||
void finish();
|
||||
|
||||
bool consume_spaces();
|
||||
|
|
|
|||
189
common/chat.cpp
189
common/chat.cpp
|
|
@ -625,6 +625,7 @@ const char * common_chat_format_name(common_chat_format format) {
|
|||
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
|
||||
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
|
||||
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
|
||||
case COMMON_CHAT_FORMAT_MAGISTRAL: return "Magistral";
|
||||
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
|
||||
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
|
||||
|
|
@ -638,6 +639,7 @@ const char * common_chat_format_name(common_chat_format format) {
|
|||
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
|
||||
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
|
||||
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
|
||||
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
|
||||
default:
|
||||
throw std::runtime_error("Unknown chat format");
|
||||
}
|
||||
|
|
@ -801,6 +803,7 @@ static std::string apply(
|
|||
}
|
||||
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
|
||||
tmpl_inputs.extra_context = inputs.extra_context;
|
||||
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
|
||||
if (additional_context) {
|
||||
tmpl_inputs.extra_context.merge_patch(*additional_context);
|
||||
}
|
||||
|
|
@ -982,6 +985,65 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
|||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_MAGISTRAL;
|
||||
data.preserved_tokens = {
|
||||
"[THINK]",
|
||||
"[/THINK]",
|
||||
};
|
||||
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
{"name", {
|
||||
{"type", "string"},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"arguments", function.at("parameters")},
|
||||
{"id", {
|
||||
{"type", "string"},
|
||||
{"pattern", "^[a-zA-Z0-9]{9}$"},
|
||||
}},
|
||||
}},
|
||||
{"required", json::array({"name", "arguments", "id"})},
|
||||
});
|
||||
});
|
||||
auto schema = json {
|
||||
{"type", "array"},
|
||||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||||
{"minItems", 1},
|
||||
};
|
||||
if (!inputs.parallel_tool_calls) {
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
|
||||
});
|
||||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
|
||||
data.preserved_tokens.push_back("[TOOL_CALLS]");
|
||||
} else {
|
||||
data.grammar_lazy = false;
|
||||
if (!inputs.json_schema.is_null()) {
|
||||
if (!inputs.grammar.empty()) {
|
||||
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
|
||||
}
|
||||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||||
} else {
|
||||
data.grammar = inputs.grammar;
|
||||
}
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
|
|
@ -992,6 +1054,18 @@ static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
|
|||
parse_prefixed_json_tool_call_array(builder, prefix);
|
||||
}
|
||||
|
||||
static void common_chat_parse_magistral(common_chat_msg_parser & builder) {
|
||||
builder.try_parse_reasoning("[THINK]", "[/THINK]");
|
||||
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
|
||||
parse_prefixed_json_tool_call_array(builder, prefix);
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
|
|
@ -1264,6 +1338,75 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
|
|||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// Generate the prompt using the apply() function with the template
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_APERTUS;
|
||||
|
||||
// Handle thinking tags appropriately based on inputs.enable_thinking
|
||||
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
data.prompt += "<|inner_suffix|>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
}
|
||||
}
|
||||
|
||||
// When tools are present, build grammar for the <|tools_prefix|> format
|
||||
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = true;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{ "type", "object" },
|
||||
{ "properties",
|
||||
{
|
||||
{ function.at("name"), function.at("parameters") }
|
||||
} },
|
||||
{ "required", json::array({ function.at("name") }) },
|
||||
});
|
||||
});
|
||||
auto schema = json{
|
||||
{ "type", "array" },
|
||||
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
|
||||
{ "minItems", 1 },
|
||||
};
|
||||
if (!inputs.parallel_tool_calls) {
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
builder.add_rule("root",
|
||||
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
|
||||
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
|
||||
});
|
||||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||||
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
|
||||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||||
std::string(data.thinking_forced_open ?
|
||||
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
|
||||
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
|
||||
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
|
||||
data.preserved_tokens = {
|
||||
"<|system_start|>",
|
||||
"<|system_end|>",
|
||||
"<|developer_start|>",
|
||||
"<|developer_end|>",
|
||||
"<|user_start|>",
|
||||
"<|user_end|>",
|
||||
"<|assistant_start|>",
|
||||
"<|assistant_end|>",
|
||||
"<|inner_prefix|>",
|
||||
"<|inner_suffix|>",
|
||||
"<|tools_prefix|>",
|
||||
"<|tools_suffix|>",
|
||||
};
|
||||
}
|
||||
return data;
|
||||
}
|
||||
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
|
|
@ -2323,6 +2466,37 @@ static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
|
|||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
|
||||
// Parse thinking tags
|
||||
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
// Look for tool calls
|
||||
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
|
||||
if (auto res = builder.try_find_regex(tool_call_regex)) {
|
||||
builder.move_to(res->groups[0].end);
|
||||
|
||||
auto tool_calls_data = builder.consume_json();
|
||||
if (tool_calls_data.json.is_array()) {
|
||||
builder.consume_spaces();
|
||||
if (!builder.try_consume_literal("<|tools_suffix|>")) {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
for (const auto & value : tool_calls_data.json) {
|
||||
if (value.is_object()) {
|
||||
builder.add_tool_call_short_form(value);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
}
|
||||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
|
||||
// Parse thinking tags first - this handles the main reasoning content
|
||||
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
|
||||
|
|
@ -2567,6 +2741,11 @@ static common_chat_params common_chat_templates_apply_jinja(
|
|||
return common_chat_params_init_nemotron_v2(tmpl, params);
|
||||
}
|
||||
|
||||
// Apertus format detection
|
||||
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
|
||||
return common_chat_params_init_apertus(tmpl, params);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||||
|
|
@ -2595,6 +2774,10 @@ static common_chat_params common_chat_templates_apply_jinja(
|
|||
return common_chat_params_init_llama_3_x(tmpl, params, allow_python_tag_builtin_tools);
|
||||
}
|
||||
|
||||
if (src.find("[THINK]") != std::string::npos && src.find("[/THINK]") != std::string::npos) {
|
||||
return common_chat_params_init_magistral(tmpl, params);
|
||||
}
|
||||
|
||||
// Plain handler (no tools)
|
||||
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||||
return common_chat_params_init_without_tools(tmpl, params);
|
||||
|
|
@ -2695,6 +2878,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
|||
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
|
||||
common_chat_parse_mistral_nemo(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_MAGISTRAL:
|
||||
common_chat_parse_magistral(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_LLAMA_3_X:
|
||||
common_chat_parse_llama_3_1(builder);
|
||||
break;
|
||||
|
|
@ -2734,6 +2920,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
|||
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
|
||||
common_chat_parse_nemotron_v2(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_APERTUS:
|
||||
common_chat_parse_apertus(builder);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -101,6 +101,7 @@ enum common_chat_format {
|
|||
COMMON_CHAT_FORMAT_CONTENT_ONLY,
|
||||
COMMON_CHAT_FORMAT_GENERIC,
|
||||
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
|
||||
COMMON_CHAT_FORMAT_MAGISTRAL,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
|
|
@ -114,6 +115,7 @@ enum common_chat_format {
|
|||
COMMON_CHAT_FORMAT_GPT_OSS,
|
||||
COMMON_CHAT_FORMAT_SEED_OSS,
|
||||
COMMON_CHAT_FORMAT_NEMOTRON_V2,
|
||||
COMMON_CHAT_FORMAT_APERTUS,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
|
|
|||
|
|
@ -424,7 +424,7 @@ struct common_params {
|
|||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
|
||||
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
|
||||
int32_t n_ctx_checkpoints = 3; // max number of context checkpoints per slot
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
|
|
|
|||
|
|
@ -894,6 +894,9 @@ class TextModel(ModelBase):
|
|||
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
|
||||
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
|
||||
res = "llada-moe"
|
||||
if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
|
||||
# ref: https://huggingface.co/ibm-granite/granite-docling-258M
|
||||
res = "granite-docling"
|
||||
|
||||
if res is None:
|
||||
logger.warning("\n")
|
||||
|
|
@ -1328,6 +1331,7 @@ class MmprojModel(ModelBase):
|
|||
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
|
||||
|
||||
# load preprocessor config
|
||||
self.preprocessor_config = {}
|
||||
if not self.is_mistral_format:
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
|
@ -1350,7 +1354,8 @@ class MmprojModel(ModelBase):
|
|||
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
|
||||
|
||||
# vision config
|
||||
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
|
||||
self.image_size = self.find_vparam(["image_size"])
|
||||
self.gguf_writer.add_vision_image_size(self.image_size)
|
||||
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
|
||||
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
|
||||
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
|
||||
|
|
@ -2381,6 +2386,10 @@ class SmolVLMModel(MmprojModel):
|
|||
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
|
||||
self.gguf_writer.add_vision_use_gelu(True)
|
||||
|
||||
# Add the preprocessor longest edge size
|
||||
preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
|
||||
self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
|
||||
|
||||
def tensor_force_quant(self, name, new_name, bid, n_dims):
|
||||
if ".embeddings." in name:
|
||||
return gguf.GGMLQuantizationType.F32
|
||||
|
|
@ -4253,7 +4262,8 @@ class Plamo2Model(TextModel):
|
|||
# This logic matches modeling_plamo.py's is_mamba function
|
||||
mamba_step = hparams.get("mamba_step", 2)
|
||||
mamba_enabled = hparams.get("mamba_enabled", True)
|
||||
mamba_layers = []
|
||||
num_key_value_heads = []
|
||||
num_attention_heads = []
|
||||
|
||||
if mamba_enabled:
|
||||
for i in range(block_count):
|
||||
|
|
@ -4263,17 +4273,21 @@ class Plamo2Model(TextModel):
|
|||
else:
|
||||
is_mamba = (i % mamba_step) != (mamba_step // 2)
|
||||
if is_mamba:
|
||||
mamba_layers.append(0)
|
||||
num_key_value_heads.append(0)
|
||||
num_attention_heads.append(0)
|
||||
else:
|
||||
mamba_layers.append(hparams.get("num_key_value_heads", 4))
|
||||
num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
|
||||
num_attention_heads.append(hparams.get("num_attention_heads", 32))
|
||||
|
||||
if mamba_layers:
|
||||
self.gguf_writer.add_head_count_kv(mamba_layers)
|
||||
if num_key_value_heads and num_attention_heads:
|
||||
self.gguf_writer.add_head_count_kv(num_key_value_heads)
|
||||
self.gguf_writer.add_head_count(num_attention_heads)
|
||||
|
||||
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
|
||||
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
|
||||
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
|
||||
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
|
||||
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
|
||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
|
||||
|
||||
|
|
@ -8972,6 +8986,43 @@ class ModernBertModel(BertModel):
|
|||
|
||||
|
||||
|
||||
@ModelBase.register("ApertusForCausalLM")
|
||||
class ApertusModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.APERTUS
|
||||
undo_permute = False
|
||||
|
||||
_alpha_n = {}
|
||||
_alpha_p = {}
|
||||
_beta = {}
|
||||
_eps = {}
|
||||
|
||||
def modify_tensors(self, data_torch, name, bid):
|
||||
# Handle xIELU activation parameters
|
||||
n_layers = self.hparams["num_hidden_layers"]
|
||||
if name.endswith(".act_fn.alpha_n"):
|
||||
self._alpha_n[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._alpha_n) == n_layers):
|
||||
self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
|
||||
return []
|
||||
if name.endswith(".act_fn.alpha_p"):
|
||||
self._alpha_p[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._alpha_p) == n_layers):
|
||||
self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
|
||||
return []
|
||||
if name.endswith(".act_fn.beta"):
|
||||
self._beta[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._beta) == n_layers):
|
||||
self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
|
||||
return []
|
||||
if name.endswith(".act_fn.eps"):
|
||||
self._eps[bid] = data_torch.to("cpu").float().item()
|
||||
if (len(self._eps) == n_layers):
|
||||
self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
|
||||
return []
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
class MistralModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
model_name = "Mistral"
|
||||
|
|
@ -9139,7 +9190,7 @@ class LazyTorchTensor(gguf.LazyBase):
|
|||
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
|
||||
dtype = cls._dtype_str_map[st_slice.get_dtype()]
|
||||
shape: tuple[int, ...] = tuple(st_slice.get_shape())
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
|
|
|
|||
|
|
@ -141,6 +141,7 @@ models = [
|
|||
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
|
||||
{"name": "modern-bert", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-embedding-small-english-r2", },
|
||||
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
|
||||
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
|
|
|
|||
|
|
@ -145,12 +145,13 @@ The docker build option is currently limited to *Intel GPU* targets.
|
|||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP32
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
|
||||
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
|
||||
|
||||
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
|
||||
Check the [documentation for Docker](../docker.md) to see the available images.
|
||||
|
||||
|
|
@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
|
|||
# First, find all the DRI cards
|
||||
ls -la /dev/dri
|
||||
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
|
|
@ -215,9 +216,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
|||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
SYCL backend depends on:
|
||||
- Intel® oneAPI DPC++/C++ compiler/running-time.
|
||||
- Intel® oneAPI DPC++/C++ library (oneDPL).
|
||||
- Intel® oneAPI Deep Neural Network Library (oneDNN).
|
||||
- Intel® oneAPI Math Kernel Library (oneMKL).
|
||||
|
||||
- **For Intel GPU**
|
||||
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
|
||||
|
||||
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
|
||||
|
||||
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
|
||||
|
||||
|
|
@ -225,6 +236,12 @@ Following guidelines/code snippets assume the default installation values. Other
|
|||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|
||||
|
||||
|Verified release|
|
||||
|-|
|
||||
|2025.2.1|
|
||||
|2025.1|
|
||||
|2024.1|
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
|
@ -255,10 +272,11 @@ sycl-ls
|
|||
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
|
||||
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
|
||||
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
|
@ -353,7 +371,7 @@ cmake --build build --config Release -j -v
|
|||
|
||||
#### Retrieve and prepare model
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
|
||||
|
||||
##### Check device
|
||||
|
||||
|
|
@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
|
|||
|
||||
3. Install Intel® oneAPI Base toolkit
|
||||
|
||||
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
SYCL backend depends on:
|
||||
- Intel® oneAPI DPC++/C++ compiler/running-time.
|
||||
- Intel® oneAPI DPC++/C++ library (oneDPL).
|
||||
- Intel® oneAPI Deep Neural Network Library (oneDNN).
|
||||
- Intel® oneAPI Math Kernel Library (oneMKL).
|
||||
|
||||
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
|
||||
|
||||
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
|
||||
|
||||
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
|
||||
|
||||
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
|
||||
|
||||
|
|
|
|||
|
|
@ -209,7 +209,6 @@ option(GGML_HIP "ggml: use HIP"
|
|||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
|
||||
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
|
||||
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
|
||||
|
|
|
|||
|
|
@ -215,6 +215,8 @@ extern "C" {
|
|||
// Backend registry
|
||||
//
|
||||
|
||||
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
|
||||
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
|
||||
// Backend (reg) enumeration
|
||||
|
|
|
|||
|
|
@ -7,26 +7,25 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define RPC_PROTO_MAJOR_VERSION 2
|
||||
#define RPC_PROTO_MAJOR_VERSION 3
|
||||
#define RPC_PROTO_MINOR_VERSION 0
|
||||
#define RPC_PROTO_PATCH_VERSION 0
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device);
|
||||
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem);
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
|
||||
size_t n_threads, size_t n_devices,
|
||||
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
|||
|
|
@ -576,6 +576,7 @@ extern "C" {
|
|||
GGML_UNARY_OP_HARDSIGMOID,
|
||||
GGML_UNARY_OP_EXP,
|
||||
GGML_UNARY_OP_GELU_ERF,
|
||||
GGML_UNARY_OP_XIELU,
|
||||
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
|
|
@ -1150,6 +1151,18 @@ extern "C" {
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// xIELU activation function
|
||||
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
|
||||
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
|
||||
// that constrain the positive and negative source alpha values respectively
|
||||
GGML_API struct ggml_tensor * ggml_xielu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float alpha_n,
|
||||
float alpha_p,
|
||||
float beta,
|
||||
float eps);
|
||||
|
||||
// gated linear unit ops
|
||||
// A: n columns, r rows,
|
||||
// result is n / 2 columns, r rows,
|
||||
|
|
@ -1617,6 +1630,13 @@ extern "C" {
|
|||
float scale,
|
||||
float max_bias);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * mask,
|
||||
float scale,
|
||||
float max_bias);
|
||||
|
||||
GGML_API void ggml_soft_max_add_sinks(
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * sinks);
|
||||
|
|
|
|||
|
|
@ -392,12 +392,8 @@ static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
|
|||
free(alloc);
|
||||
}
|
||||
|
||||
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
|
||||
size_t max_size = 0;
|
||||
for (int i = 0; i < alloc->n_chunks; i++) {
|
||||
max_size += alloc->chunks[i]->max_size;
|
||||
}
|
||||
return max_size;
|
||||
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc, int chunk) {
|
||||
return chunk < alloc->n_chunks ? alloc->chunks[chunk]->max_size : 0;
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -417,10 +413,8 @@ static void ggml_vbuffer_free(struct vbuffer * buf) {
|
|||
free(buf);
|
||||
}
|
||||
|
||||
static int ggml_vbuffer_n_chunks(struct vbuffer * buf) {
|
||||
int n = 0;
|
||||
while (n < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[n]) n++;
|
||||
return n;
|
||||
static size_t ggml_vbuffer_chunk_size(struct vbuffer * buf, int chunk) {
|
||||
return buf->chunks[chunk] ? ggml_backend_buffer_get_size(buf->chunks[chunk]) : 0;
|
||||
}
|
||||
|
||||
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
|
||||
|
|
@ -885,12 +879,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
|||
}
|
||||
}
|
||||
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
|
||||
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
||||
|
||||
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
|
||||
if (new_size > cur_size || galloc->buffers[i] == NULL) {
|
||||
bool realloc = galloc->buffers[i] == NULL;
|
||||
size_t new_size = 0;
|
||||
for (int c = 0; c < galloc->buf_tallocs[i]->n_chunks; c++) {
|
||||
size_t cur_chunk_size = galloc->buffers[i] ? ggml_vbuffer_chunk_size(galloc->buffers[i], c) : 0;
|
||||
size_t new_chunk_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i], c);
|
||||
new_size += new_chunk_size;
|
||||
if (new_chunk_size > cur_chunk_size) {
|
||||
realloc = true;
|
||||
}
|
||||
}
|
||||
if (realloc) {
|
||||
#ifndef NDEBUG
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
|
||||
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -209,9 +209,6 @@ extern "C" {
|
|||
void * context;
|
||||
};
|
||||
|
||||
// Internal backend registry API
|
||||
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
|
||||
// Add backend dynamic loading support to the backend
|
||||
|
||||
// Initialize the backend
|
||||
|
|
|
|||
|
|
@ -2187,6 +2187,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
|||
case GGML_UNARY_OP_GELU_ERF:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
|
|
|
|||
|
|
@ -8637,7 +8637,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
|||
// n_head
|
||||
for (int h = ih0; h < ih1; ++h) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
const float dt_soft_plus = ggml_softplus(dt[h]);
|
||||
const float dA = expf(dt_soft_plus * A[h]);
|
||||
const int g = h / (nh / ng); // repeat_interleave
|
||||
|
||||
|
|
@ -8734,7 +8734,7 @@ static void ggml_compute_forward_ssm_scan_f32(
|
|||
// n_head
|
||||
for (int h = ih0; h < ih1; ++h) {
|
||||
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
|
||||
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
|
||||
const float dt_soft_plus = ggml_softplus(dt[h]);
|
||||
const int g = h / (nh / ng); // repeat_interleave
|
||||
|
||||
// dim
|
||||
|
|
@ -8997,6 +8997,10 @@ void ggml_compute_forward_unary(
|
|||
{
|
||||
ggml_compute_forward_exp(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
{
|
||||
ggml_compute_forward_xielu(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
|
|
|
|||
|
|
@ -52,6 +52,15 @@ static inline float op_sqrt(float x) {
|
|||
return sqrtf(x);
|
||||
}
|
||||
|
||||
static inline float op_xielu(float x, float alpha_n, float alpha_p, float beta, float eps) {
|
||||
if (x > 0.0f) {
|
||||
return alpha_p * x * x + beta * x;
|
||||
} else {
|
||||
const float min_x_eps = fminf(x, eps);
|
||||
return (expm1f(min_x_eps) - x) * alpha_n + beta * x;
|
||||
}
|
||||
}
|
||||
|
||||
static inline float op_sin(float x) {
|
||||
return sinf(x);
|
||||
}
|
||||
|
|
@ -121,6 +130,86 @@ static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
|||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float, ggml_tensor *)>
|
||||
static void unary_op_params(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_unary_op<op, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
// Extend vec_unary_op to support functors
|
||||
template <typename Op, typename src0_t, typename dst_t>
|
||||
static inline void vec_unary_op_functor(int64_t n, dst_t * y, const src0_t * x, Op op) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
// Extend apply_unary_op to support functors
|
||||
template <typename Op, typename src0_t, typename dst_t>
|
||||
static void apply_unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT( nb0 == sizeof(dst_t));
|
||||
GGML_ASSERT(nb00 == sizeof(src0_t));
|
||||
|
||||
const auto [ir0, ir1] = get_thread_range(params, src0);
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
vec_unary_op_functor(ne0, dst_ptr, src0_ptr, op);
|
||||
}
|
||||
}
|
||||
|
||||
// Generic dispatcher for functors
|
||||
template <typename Op>
|
||||
static void unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_unary_op_functor<Op, float, float>(params, dst, op);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_unary_op_functor<Op, ggml_fp16_t, ggml_fp16_t>(params, dst, op);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_unary_op_functor<Op, ggml_bf16_t, ggml_bf16_t>(params, dst, op);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op_functor<Op, ggml_bf16_t, float>(params, dst, op);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op_functor<Op, ggml_fp16_t, float>(params, dst, op);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_abs>(params, dst);
|
||||
}
|
||||
|
|
@ -184,3 +273,17 @@ void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor *
|
|||
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_log>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const float alpha_n = ggml_get_op_params_f32(dst, 1);
|
||||
const float alpha_p = ggml_get_op_params_f32(dst, 2);
|
||||
const float beta = ggml_get_op_params_f32(dst, 3);
|
||||
const float eps = ggml_get_op_params_f32(dst, 4);
|
||||
|
||||
const auto xielu_op_params = [alpha_n, alpha_p, beta, eps](float f) {
|
||||
return op_xielu(f, alpha_n, alpha_p, beta, eps);
|
||||
};
|
||||
|
||||
unary_op_functor(params, dst, xielu_op_params);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -22,6 +22,7 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
|
|||
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
|||
|
|
@ -220,14 +220,6 @@ static const char * cu_get_error_str(CUresult err) {
|
|||
#define FAST_FP16_AVAILABLE
|
||||
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
|
||||
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
#define FP16_MMA_AVAILABLE
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
|
||||
|
||||
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
#define AMD_MFMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
|
|
@ -262,27 +254,6 @@ static bool fast_fp16_hardware_available(const int cc) {
|
|||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
|
||||
}
|
||||
|
||||
// Any FP16 tensor core instructions are available for ggml code.
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
return false;
|
||||
#else
|
||||
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
|
||||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) ||
|
||||
GGML_CUDA_CC_IS_MTHREADS(cc)) {
|
||||
return true;
|
||||
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fp16_mma_hardware_available(const int cc) {
|
||||
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
|
||||
// kq_stride == number of KQ rows to process per iteration
|
||||
// kq_nbatch == number of K columns to load in parallel for KQ calculation
|
||||
|
|
@ -190,10 +191,10 @@ static __global__ void flash_attn_tile(
|
|||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#ifdef GGML_USE_WMMA_FATTN
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
#endif // GGML_USE_WMMA_FATTN
|
||||
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
|
|
|
|||
|
|
@ -535,8 +535,6 @@ void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_ten
|
|||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
|
|
|
|||
|
|
@ -6,19 +6,19 @@
|
|||
#include "fattn-common.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
#ifdef GGML_USE_WMMA_FATTN
|
||||
#if !defined(GGML_USE_HIP)
|
||||
#include <mma.h>
|
||||
#ifdef GGML_USE_MUSA
|
||||
#if defined(GGML_USE_MUSA)
|
||||
namespace wmma = mtmusa::wmma;
|
||||
#else // GGML_USE_MUSA
|
||||
namespace wmma = nvcuda::wmma;
|
||||
#endif // GGML_USE_MUSA
|
||||
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
|
||||
#elif defined(GGML_USE_HIP)
|
||||
#include <rocwmma/rocwmma.hpp>
|
||||
namespace wmma = rocwmma;
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
#endif // GGML_USE_WMMA_FATTN
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, typename KQ_acc_t, bool use_logit_softcap>
|
||||
|
|
@ -45,7 +45,7 @@ static __global__ void flash_attn_ext_f16(
|
|||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
|
||||
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
|
|
@ -481,7 +481,7 @@ static __global__ void flash_attn_ext_f16(
|
|||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
|
||||
}
|
||||
|
||||
constexpr int get_max_power_of_2(int x) {
|
||||
|
|
|
|||
|
|
@ -1,3 +1,49 @@
|
|||
#include "common.cuh"
|
||||
|
||||
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
|
||||
#define GGML_USE_WMMA_FATTN
|
||||
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
#if defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
|
||||
#define GGML_USE_WMMA_FATTN
|
||||
#elif defined(CDNA)
|
||||
#warning "rocwmma fattn on CDNA is broken on rocwmma v2.0.0, expect degraded performance"
|
||||
#endif // defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
|
||||
#if defined(RDNA3)
|
||||
#define GGML_USE_WMMA_FATTN
|
||||
#endif // defined(RDNA3)
|
||||
#if defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
|
||||
#define GGML_USE_WMMA_FATTN
|
||||
#elif defined(RDNA4)
|
||||
#warning "rocwmma fattn is not suported on RDNA4 on rocwmma < v2.0.0, expect degraded performance"
|
||||
#endif // defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
|
||||
// WMMA flash attention requires FP16 matrix instructions to be available for ggml code.
|
||||
static bool ggml_cuda_should_use_wmma_fattn(const int cc) {
|
||||
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
return false;
|
||||
#else
|
||||
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA) ||
|
||||
GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_MTHREADS(cc)) {
|
||||
return true;
|
||||
} else if (GGML_CUDA_CC_IS_CDNA(cc)){
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
|
||||
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
|||
|
|
@ -222,7 +222,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
|||
if (V->ne[0] != K->ne[0]) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
if (!fp16_mma_available(cc) && !turing_mma_available(cc)) {
|
||||
if (!ggml_cuda_should_use_wmma_fattn(cc) && !turing_mma_available(cc)) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
break;
|
||||
|
|
@ -300,7 +300,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
|||
}
|
||||
|
||||
// For large batch sizes, use the WMMA kernel if possible:
|
||||
if (fp16_mma_available(cc)) {
|
||||
if (ggml_cuda_should_use_wmma_fattn(cc)) {
|
||||
return BEST_FATTN_KERNEL_WMMA_F16;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -2334,6 +2334,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
case GGML_UNARY_OP_ELU:
|
||||
ggml_cuda_op_elu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
ggml_cuda_op_xielu(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
|
||||
*/
|
||||
template <size_t n_experts, bool with_norm>
|
||||
template <int n_experts, bool with_norm>
|
||||
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
|
||||
float * weights,
|
||||
int32_t * ids,
|
||||
|
|
@ -204,8 +204,6 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
|||
|
||||
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int n_expert_used = weights->ne[1];
|
||||
|
||||
if (with_norm) {
|
||||
|
|
|
|||
|
|
@ -1,4 +1,5 @@
|
|||
#include "unary.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
static __device__ __forceinline__ float op_abs(float x) {
|
||||
return fabsf(x);
|
||||
|
|
@ -375,6 +376,59 @@ void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||
swiglu_oai_cuda(src0_p, src1_p, (float *)dst_d, ggml_nelements(dst), nc, src0_o / sizeof(float), src1_o / sizeof(float), alpha, limit, stream);
|
||||
}
|
||||
|
||||
/* CUDA kernel + launcher for xIELU */
|
||||
|
||||
template <typename T>
|
||||
static __global__ void xielu_kernel(const T * x, T * dst, const int k, float alpha_n, float alpha_p, float beta, float eps) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float xi = ggml_cuda_cast<float>(x[i]);
|
||||
|
||||
const float gate_pos = (xi > 0.0f);
|
||||
const float y_pos = alpha_p * xi * xi + beta * xi;
|
||||
const float min_v_eps = fminf(xi, eps);
|
||||
const float y_neg = (expm1f(min_v_eps) - xi) * alpha_n + beta * xi;
|
||||
const float out = gate_pos * y_pos + (1.0f - gate_pos) * y_neg;
|
||||
|
||||
dst[i] = ggml_cuda_cast<T>(out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void xielu_cuda(const T * x, T * dst, const int k, float alpha_n, float alpha_p, float beta, float eps, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_XIELU_BLOCK_SIZE) / CUDA_XIELU_BLOCK_SIZE;
|
||||
xielu_kernel<<<num_blocks, CUDA_XIELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, alpha_n, alpha_p, beta, eps);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const void * src0_d = src0->data;
|
||||
void * dst_d = dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
const float alpha_n = ggml_get_op_params_f32(dst, 1);
|
||||
const float alpha_p = ggml_get_op_params_f32(dst, 2);
|
||||
const float beta = ggml_get_op_params_f32(dst, 3);
|
||||
const float eps = ggml_get_op_params_f32(dst, 4);
|
||||
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
xielu_cuda((const half *)src0_d, (half *)dst_d, ggml_nelements(src0), alpha_n, alpha_p, beta, eps, stream);
|
||||
} else {
|
||||
xielu_cuda((const float *)src0_d, (float *)dst_d, ggml_nelements(src0), alpha_n, alpha_p, beta, eps, stream);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* silu_back */
|
||||
|
||||
static __device__ __forceinline__ float op_silu_back(float grad, float x) {
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@
|
|||
#define CUDA_SIN_BLOCK_SIZE 256
|
||||
#define CUDA_COS_BLOCK_SIZE 256
|
||||
#define CUDA_GLU_BLOCK_SIZE 256
|
||||
#define CUDA_XIELU_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_abs(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
|
|
@ -72,3 +73,5 @@ void ggml_cuda_op_swiglu_oai(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
|||
void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
|
|
|||
|
|
@ -6,6 +6,10 @@
|
|||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
#include <rocwmma/rocwmma-version.hpp>
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
|
||||
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
|
||||
#define CUBLAS_OP_N HIPBLAS_OP_N
|
||||
|
|
|
|||
|
|
@ -39,12 +39,6 @@ endif()
|
|||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
if (GGML_HIP_ROCWMMA_FATTN)
|
||||
CHECK_INCLUDE_FILE_CXX("rocwmma/rocwmma.hpp" FOUND_ROCWMMA)
|
||||
if (NOT ${FOUND_ROCWMMA})
|
||||
message(FATAL_ERROR "rocwmma has not been found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (${hip_VERSION} VERSION_LESS 6.1)
|
||||
message(FATAL_ERROR "At least ROCM/HIP V6.1 is required")
|
||||
|
|
@ -117,10 +111,6 @@ if (NOT GGML_HIP_MMQ_MFMA)
|
|||
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 OR ${hip_VERSION} VERSION_GREATER_EQUAL 7.0)
|
||||
add_compile_definitions(GGML_HIP_ROCWMMA_FATTN_GFX12)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP_EXPORT_METRICS)
|
||||
set(CMAKE_HIP_FLAGS "${CMAKE_HIP_FLAGS} -Rpass-analysis=kernel-resource-usage --save-temps")
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -102,6 +102,9 @@ static bool ggml_op_is_empty(enum ggml_op op) {
|
|||
}
|
||||
}
|
||||
|
||||
static inline float ggml_softplus(float input) {
|
||||
return (input > 20.0f) ? input : logf(1 + expf(input));
|
||||
}
|
||||
//
|
||||
// logging
|
||||
//
|
||||
|
|
|
|||
|
|
@ -112,7 +112,7 @@ static bool ggml_mem_ranges_add_dst(ggml_mem_ranges_t mrs, const ggml_tensor * t
|
|||
}
|
||||
|
||||
bool ggml_mem_ranges_add(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (tensor->src[i]) {
|
||||
ggml_mem_ranges_add_src(mrs, tensor->src[i]);
|
||||
}
|
||||
|
|
@ -173,7 +173,7 @@ static bool ggml_mem_ranges_check_dst(ggml_mem_ranges_t mrs, const ggml_tensor *
|
|||
}
|
||||
|
||||
bool ggml_mem_ranges_check(ggml_mem_ranges_t mrs, const ggml_tensor * tensor) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (tensor->src[i]) {
|
||||
if (!ggml_mem_ranges_check_src(mrs, tensor->src[i])) {
|
||||
return false;
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ if (MUSAToolkit_FOUND)
|
|||
|
||||
set_source_files_properties(${GGML_SOURCES_MUSA} PROPERTIES LANGUAGE CXX)
|
||||
foreach(SOURCE ${GGML_SOURCES_MUSA})
|
||||
set(COMPILE_FLAGS "-fsigned-char -x musa -mtgpu")
|
||||
set(COMPILE_FLAGS "-Od3 -fno-strict-aliasing -ffast-math -fsigned-char -x musa -mtgpu -fmusa-flush-denormals-to-zero")
|
||||
foreach(ARCH ${MUSA_ARCHITECTURES})
|
||||
set(COMPILE_FLAGS "${COMPILE_FLAGS} --cuda-gpu-arch=mp_${ARCH}")
|
||||
endforeach()
|
||||
|
|
|
|||
|
|
@ -105,9 +105,12 @@ enum rpc_cmd {
|
|||
RPC_CMD_INIT_TENSOR,
|
||||
RPC_CMD_GET_ALLOC_SIZE,
|
||||
RPC_CMD_HELLO,
|
||||
RPC_CMD_DEVICE_COUNT,
|
||||
RPC_CMD_COUNT,
|
||||
};
|
||||
|
||||
static_assert(RPC_CMD_HELLO == 14, "RPC_CMD_HELLO must be always 14");
|
||||
|
||||
// Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
|
||||
const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
|
||||
|
||||
|
|
@ -117,7 +120,12 @@ struct rpc_msg_hello_rsp {
|
|||
uint8_t patch;
|
||||
};
|
||||
|
||||
struct rpc_msg_device_count_rsp {
|
||||
uint32_t device_count;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_alloc_size_req {
|
||||
uint32_t device;
|
||||
rpc_tensor tensor;
|
||||
};
|
||||
|
||||
|
|
@ -130,6 +138,7 @@ struct rpc_msg_init_tensor_req {
|
|||
};
|
||||
|
||||
struct rpc_msg_alloc_buffer_req {
|
||||
uint32_t device;
|
||||
uint64_t size;
|
||||
};
|
||||
|
||||
|
|
@ -138,10 +147,18 @@ struct rpc_msg_alloc_buffer_rsp {
|
|||
uint64_t remote_size;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_alignment_req {
|
||||
uint32_t device;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_alignment_rsp {
|
||||
uint64_t alignment;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_max_size_req {
|
||||
uint32_t device;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_max_size_rsp {
|
||||
uint64_t max_size;
|
||||
};
|
||||
|
|
@ -192,6 +209,10 @@ struct rpc_msg_graph_compute_rsp {
|
|||
uint8_t result;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_device_memory_req {
|
||||
uint32_t device;
|
||||
};
|
||||
|
||||
struct rpc_msg_get_device_memory_rsp {
|
||||
uint64_t free_mem;
|
||||
uint64_t total_mem;
|
||||
|
|
@ -207,6 +228,7 @@ static ggml_guid_t ggml_backend_rpc_guid() {
|
|||
|
||||
struct ggml_backend_rpc_buffer_type_context {
|
||||
std::string endpoint;
|
||||
uint32_t device;
|
||||
std::string name;
|
||||
size_t alignment;
|
||||
size_t max_size;
|
||||
|
|
@ -214,6 +236,7 @@ struct ggml_backend_rpc_buffer_type_context {
|
|||
|
||||
struct ggml_backend_rpc_context {
|
||||
std::string endpoint;
|
||||
uint32_t device;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
|
|
@ -608,7 +631,12 @@ static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, con
|
|||
RPC_STATUS_ASSERT(status);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buffer_is_rpc(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.free_buffer == ggml_backend_rpc_buffer_free_buffer;
|
||||
}
|
||||
|
||||
static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_rpc(src->buffer)) {
|
||||
// check if src and dst are on the same server
|
||||
ggml_backend_buffer_t src_buffer = src->buffer;
|
||||
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
|
||||
|
|
@ -626,6 +654,8 @@ static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
|
|||
RPC_STATUS_ASSERT(status);
|
||||
return response.result;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
|
|
@ -653,7 +683,7 @@ static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t
|
|||
|
||||
static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
rpc_msg_alloc_buffer_req request = {size};
|
||||
rpc_msg_alloc_buffer_req request = {buft_ctx->device, size};
|
||||
rpc_msg_alloc_buffer_rsp response;
|
||||
auto sock = get_socket(buft_ctx->endpoint);
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
|
||||
|
|
@ -669,9 +699,10 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
|
|||
}
|
||||
}
|
||||
|
||||
static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
|
||||
static size_t get_alignment(const std::shared_ptr<socket_t> & sock, uint32_t device) {
|
||||
rpc_msg_get_alignment_req request = {device};
|
||||
rpc_msg_get_alignment_rsp response;
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, &request, sizeof(request), &response, sizeof(response));
|
||||
RPC_STATUS_ASSERT(status);
|
||||
return response.alignment;
|
||||
}
|
||||
|
|
@ -681,9 +712,10 @@ static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_typ
|
|||
return buft_ctx->alignment;
|
||||
}
|
||||
|
||||
static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
|
||||
static size_t get_max_size(const std::shared_ptr<socket_t> & sock, uint32_t device) {
|
||||
rpc_msg_get_max_size_req request = {device};
|
||||
rpc_msg_get_max_size_rsp response;
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, &request, sizeof(request), &response, sizeof(response));
|
||||
RPC_STATUS_ASSERT(status);
|
||||
return response.max_size;
|
||||
}
|
||||
|
|
@ -700,7 +732,7 @@ static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_ty
|
|||
auto sock = get_socket(buft_ctx->endpoint);
|
||||
|
||||
rpc_msg_get_alloc_size_req request;
|
||||
|
||||
request.device = buft_ctx->device;
|
||||
request.tensor = serialize_tensor(tensor);
|
||||
|
||||
rpc_msg_get_alloc_size_rsp response;
|
||||
|
|
@ -754,7 +786,7 @@ static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors,
|
|||
tensors.push_back(serialize_tensor(tensor));
|
||||
}
|
||||
|
||||
static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
|
||||
static void serialize_graph(uint32_t device, const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
|
||||
uint32_t n_nodes = cgraph->n_nodes;
|
||||
std::vector<rpc_tensor> tensors;
|
||||
std::unordered_set<ggml_tensor*> visited;
|
||||
|
|
@ -762,24 +794,29 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
|
|||
add_tensor(cgraph->nodes[i], tensors, visited);
|
||||
}
|
||||
// serialization format:
|
||||
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
|
||||
// | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
|
||||
uint32_t n_tensors = tensors.size();
|
||||
int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
||||
int output_size = 2*sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
|
||||
output.resize(output_size, 0);
|
||||
memcpy(output.data(), &n_nodes, sizeof(n_nodes));
|
||||
uint8_t * dest = output.data();
|
||||
memcpy(dest, &device, sizeof(device));
|
||||
dest += sizeof(device);
|
||||
memcpy(dest, &n_nodes, sizeof(n_nodes));
|
||||
dest += sizeof(n_nodes);
|
||||
for (uint32_t i = 0; i < n_nodes; i++) {
|
||||
memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
|
||||
memcpy(dest + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
|
||||
}
|
||||
uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
|
||||
*out_ntensors = n_tensors;
|
||||
rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
|
||||
dest += n_nodes * sizeof(uint64_t);
|
||||
memcpy(dest, &n_tensors, sizeof(n_tensors));
|
||||
dest += sizeof(n_tensors);
|
||||
rpc_tensor * out_tensors = (rpc_tensor *)dest;
|
||||
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
std::vector<uint8_t> input;
|
||||
serialize_graph(cgraph, input);
|
||||
serialize_graph(rpc_ctx->device, cgraph, input);
|
||||
rpc_msg_graph_compute_rsp response;
|
||||
auto sock = get_socket(rpc_ctx->endpoint);
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
|
||||
|
|
@ -804,12 +841,13 @@ static ggml_backend_i ggml_backend_rpc_interface = {
|
|||
/* .graph_optimize = */ NULL,
|
||||
};
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
|
||||
ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
std::string buft_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
|
||||
// NOTE: buffer types are allocated and never freed; this is by design
|
||||
static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
|
||||
auto it = buft_map.find(endpoint);
|
||||
auto it = buft_map.find(buft_name);
|
||||
if (it != buft_map.end()) {
|
||||
return it->second;
|
||||
}
|
||||
|
|
@ -818,34 +856,37 @@ ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
|
|||
GGML_LOG_ERROR("Failed to connect to %s\n", endpoint);
|
||||
return nullptr;
|
||||
}
|
||||
size_t alignment = get_alignment(sock);
|
||||
size_t max_size = get_max_size(sock);
|
||||
size_t alignment = get_alignment(sock, device);
|
||||
size_t max_size = get_max_size(sock, device);
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
|
||||
/* .endpoint = */ endpoint,
|
||||
/* .name = */ "RPC[" + std::string(endpoint) + "]",
|
||||
/* .device = */ device,
|
||||
/* .name = */ buft_name,
|
||||
/* .alignment = */ alignment,
|
||||
/* .max_size = */ max_size
|
||||
};
|
||||
|
||||
auto reg = ggml_backend_rpc_add_server(endpoint);
|
||||
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
|
||||
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
|
||||
/* .device = */ ggml_backend_rpc_add_device(endpoint),
|
||||
/* .device = */ ggml_backend_reg_dev_get(reg, device),
|
||||
/* .context = */ buft_ctx
|
||||
};
|
||||
buft_map[endpoint] = buft;
|
||||
buft_map[buft_name] = buft;
|
||||
return buft;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
|
||||
ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device) {
|
||||
std::string dev_name = "RPC" + std::to_string(device) + "[" + std::string(endpoint) + "]";
|
||||
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
|
||||
/* .endpoint = */ endpoint,
|
||||
/* .name = */ "RPC[" + std::string(endpoint) + "]",
|
||||
/* .device = */ device,
|
||||
/* .name = */ dev_name
|
||||
};
|
||||
|
||||
auto reg = ggml_backend_rpc_add_server(endpoint);
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_rpc_guid(),
|
||||
/* .iface = */ ggml_backend_rpc_interface,
|
||||
/* .device = */ ggml_backend_rpc_add_device(endpoint),
|
||||
/* .device = */ ggml_backend_reg_dev_get(reg, device),
|
||||
/* .context = */ ctx
|
||||
};
|
||||
return backend;
|
||||
|
|
@ -855,37 +896,39 @@ bool ggml_backend_is_rpc(ggml_backend_t backend) {
|
|||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
|
||||
}
|
||||
|
||||
static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
|
||||
static void get_device_memory(const std::shared_ptr<socket_t> & sock, uint32_t device, size_t * free, size_t * total) {
|
||||
rpc_msg_get_device_memory_req request;
|
||||
request.device = device;
|
||||
rpc_msg_get_device_memory_rsp response;
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, &request, sizeof(request), &response, sizeof(response));
|
||||
RPC_STATUS_ASSERT(status);
|
||||
*free = response.free_mem;
|
||||
*total = response.total_mem;
|
||||
}
|
||||
|
||||
void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
|
||||
void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total) {
|
||||
auto sock = get_socket(endpoint);
|
||||
if (sock == nullptr) {
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
return;
|
||||
}
|
||||
get_device_memory(sock, free, total);
|
||||
get_device_memory(sock, device, free, total);
|
||||
}
|
||||
|
||||
// RPC server-side implementation
|
||||
|
||||
class rpc_server {
|
||||
public:
|
||||
rpc_server(ggml_backend_t backend, const char * cache_dir)
|
||||
: backend(backend), cache_dir(cache_dir) {
|
||||
rpc_server(std::vector<ggml_backend_t> backends, const char * cache_dir)
|
||||
: backends(std::move(backends)), cache_dir(cache_dir) {
|
||||
}
|
||||
~rpc_server();
|
||||
|
||||
void hello(rpc_msg_hello_rsp & response);
|
||||
void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
|
||||
void get_alignment(rpc_msg_get_alignment_rsp & response);
|
||||
void get_max_size(rpc_msg_get_max_size_rsp & response);
|
||||
bool alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
|
||||
bool get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response);
|
||||
bool get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response);
|
||||
bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
|
||||
bool free_buffer(const rpc_msg_free_buffer_req & request);
|
||||
bool buffer_clear(const rpc_msg_buffer_clear_req & request);
|
||||
|
|
@ -906,7 +949,7 @@ private:
|
|||
std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
|
||||
|
||||
|
||||
ggml_backend_t backend;
|
||||
std::vector<ggml_backend_t> backends;
|
||||
const char * cache_dir;
|
||||
std::unordered_set<ggml_backend_buffer_t> buffers;
|
||||
};
|
||||
|
|
@ -919,6 +962,10 @@ void rpc_server::hello(rpc_msg_hello_rsp & response) {
|
|||
}
|
||||
|
||||
bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
|
||||
uint32_t dev_id = request.device;
|
||||
if (dev_id >= backends.size()) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_type_t buft;
|
||||
struct ggml_init_params params {
|
||||
/*.mem_size =*/ ggml_tensor_overhead(),
|
||||
|
|
@ -935,10 +982,10 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
|
|||
GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
|
||||
return false;
|
||||
}
|
||||
LOG_DBG("[%s] buffer: %p, data: %p\n", __func__, (void*)tensor->buffer, tensor->data);
|
||||
LOG_DBG("[%s] device: %d, buffer: %p, data: %p\n", __func__, dev_id, (void*)tensor->buffer, tensor->data);
|
||||
if (tensor->buffer == nullptr) {
|
||||
//No buffer allocated.
|
||||
buft = ggml_backend_get_default_buffer_type(backend);
|
||||
buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
|
||||
} else {
|
||||
buft = tensor->buffer->buft;
|
||||
}
|
||||
|
|
@ -948,33 +995,49 @@ bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_
|
|||
return true;
|
||||
}
|
||||
|
||||
void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
bool rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
|
||||
uint32_t dev_id = request.device;
|
||||
if (dev_id >= backends.size()) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
|
||||
response.remote_ptr = 0;
|
||||
response.remote_size = 0;
|
||||
if (buffer != nullptr) {
|
||||
response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
|
||||
response.remote_size = buffer->size;
|
||||
LOG_DBG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
|
||||
LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n",
|
||||
__func__, dev_id, request.size, response.remote_ptr, response.remote_size);
|
||||
buffers.insert(buffer);
|
||||
} else {
|
||||
LOG_DBG("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
|
||||
LOG_DBG("[%s] device: %d, size: %" PRIu64 " -> failed\n", __func__, dev_id, request.size);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
bool rpc_server::get_alignment(const rpc_msg_get_alignment_req & request, rpc_msg_get_alignment_rsp & response) {
|
||||
uint32_t dev_id = request.device;
|
||||
if (dev_id >= backends.size()) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
|
||||
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
||||
LOG_DBG("[%s] alignment: %lu\n", __func__, alignment);
|
||||
LOG_DBG("[%s] device: %d, alignment: %lu\n", __func__, dev_id, alignment);
|
||||
response.alignment = alignment;
|
||||
return true;
|
||||
}
|
||||
|
||||
void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
|
||||
bool rpc_server::get_max_size(const rpc_msg_get_max_size_req & request, rpc_msg_get_max_size_rsp & response) {
|
||||
uint32_t dev_id = request.device;
|
||||
if (dev_id >= backends.size()) {
|
||||
return false;
|
||||
}
|
||||
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backends[dev_id]);
|
||||
size_t max_size = ggml_backend_buft_get_max_size(buft);
|
||||
LOG_DBG("[%s] max_size: %lu\n", __func__, max_size);
|
||||
LOG_DBG("[%s] device: %d, max_size: %lu\n", __func__, dev_id, max_size);
|
||||
response.max_size = max_size;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
|
||||
|
|
@ -1332,23 +1395,33 @@ ggml_tensor * rpc_server::create_node(uint64_t id,
|
|||
|
||||
bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
|
||||
// serialization format:
|
||||
// | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
|
||||
if (input.size() < sizeof(uint32_t)) {
|
||||
// | device (4 bytes) | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
|
||||
if (input.size() < 2*sizeof(uint32_t)) {
|
||||
return false;
|
||||
}
|
||||
const uint8_t * src = input.data();
|
||||
uint32_t device;
|
||||
memcpy(&device, src, sizeof(device));
|
||||
src += sizeof(device);
|
||||
if (device >= backends.size()) {
|
||||
return false;
|
||||
}
|
||||
uint32_t n_nodes;
|
||||
memcpy(&n_nodes, input.data(), sizeof(n_nodes));
|
||||
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
|
||||
memcpy(&n_nodes, src, sizeof(n_nodes));
|
||||
src += sizeof(n_nodes);
|
||||
if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
|
||||
return false;
|
||||
}
|
||||
const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
|
||||
const uint64_t * nodes = (const uint64_t *)src;
|
||||
src += n_nodes*sizeof(uint64_t);
|
||||
uint32_t n_tensors;
|
||||
memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
|
||||
if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
|
||||
memcpy(&n_tensors, src, sizeof(n_tensors));
|
||||
src += sizeof(n_tensors);
|
||||
if (input.size() < 2*sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
|
||||
return false;
|
||||
}
|
||||
const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
|
||||
LOG_DBG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
|
||||
const rpc_tensor * tensors = (const rpc_tensor *)src;
|
||||
LOG_DBG("[%s] device: %u, n_nodes: %u, n_tensors: %u\n", __func__, device, n_nodes, n_tensors);
|
||||
|
||||
size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
|
||||
|
||||
|
|
@ -1380,7 +1453,7 @@ bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph
|
|||
return false;
|
||||
}
|
||||
}
|
||||
ggml_status status = ggml_backend_graph_compute(backend, graph);
|
||||
ggml_status status = ggml_backend_graph_compute(backends[device], graph);
|
||||
response.result = status;
|
||||
return true;
|
||||
}
|
||||
|
|
@ -1391,9 +1464,9 @@ rpc_server::~rpc_server() {
|
|||
}
|
||||
}
|
||||
|
||||
static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
||||
sockfd_t sockfd, size_t free_mem, size_t total_mem) {
|
||||
rpc_server server(backend, cache_dir);
|
||||
static void rpc_serve_client(const std::vector<ggml_backend_t> & backends, const char * cache_dir,
|
||||
sockfd_t sockfd, const std::vector<size_t> & free_mem, const std::vector<size_t> & total_mem) {
|
||||
rpc_server server(backends, cache_dir);
|
||||
uint8_t cmd;
|
||||
if (!recv_data(sockfd, &cmd, 1)) {
|
||||
return;
|
||||
|
|
@ -1425,13 +1498,26 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
// HELLO command is handled above
|
||||
return;
|
||||
}
|
||||
case RPC_CMD_DEVICE_COUNT: {
|
||||
if (!recv_msg(sockfd, nullptr, 0)) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_device_count_rsp response;
|
||||
response.device_count = backends.size();
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RPC_CMD_ALLOC_BUFFER: {
|
||||
rpc_msg_alloc_buffer_req request;
|
||||
if (!recv_msg(sockfd, &request, sizeof(request))) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_alloc_buffer_rsp response;
|
||||
server.alloc_buffer(request, response);
|
||||
if (!server.alloc_buffer(request, response)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -1452,22 +1538,28 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
break;
|
||||
}
|
||||
case RPC_CMD_GET_ALIGNMENT: {
|
||||
if (!recv_msg(sockfd, nullptr, 0)) {
|
||||
rpc_msg_get_alignment_req request;
|
||||
if (!recv_msg(sockfd, &request, sizeof(request))) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_get_alignment_rsp response;
|
||||
server.get_alignment(response);
|
||||
if (!server.get_alignment(request, response)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case RPC_CMD_GET_MAX_SIZE: {
|
||||
if (!recv_msg(sockfd, nullptr, 0)) {
|
||||
rpc_msg_get_max_size_req request;
|
||||
if (!recv_msg(sockfd, &request, sizeof(request))) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_get_max_size_rsp response;
|
||||
server.get_max_size(response);
|
||||
if (!server.get_max_size(request, response)) {
|
||||
return;
|
||||
}
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -1593,12 +1685,19 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
break;
|
||||
}
|
||||
case RPC_CMD_GET_DEVICE_MEMORY: {
|
||||
if (!recv_msg(sockfd, nullptr, 0)) {
|
||||
rpc_msg_get_device_memory_req request;
|
||||
if (!recv_msg(sockfd, &request, sizeof(request))) {
|
||||
return;
|
||||
}
|
||||
auto dev_id = request.device;
|
||||
if (dev_id >= backends.size()) {
|
||||
return;
|
||||
}
|
||||
rpc_msg_get_device_memory_rsp response;
|
||||
response.free_mem = free_mem;
|
||||
response.total_mem = total_mem;
|
||||
response.free_mem = free_mem[dev_id];
|
||||
response.total_mem = total_mem[dev_id];
|
||||
LOG_DBG("[get_device_mem] device: %u, free_mem: %" PRIu64 ", total_mem: %" PRIu64 "\n", dev_id,
|
||||
response.free_mem, response.total_mem);
|
||||
if (!send_msg(sockfd, &response, sizeof(response))) {
|
||||
return;
|
||||
}
|
||||
|
|
@ -1612,16 +1711,41 @@ static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
|
|||
}
|
||||
}
|
||||
|
||||
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem) {
|
||||
void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
|
||||
size_t n_threads, size_t n_devices,
|
||||
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem) {
|
||||
if (n_devices == 0 || devices == nullptr || free_mem == nullptr || total_mem == nullptr) {
|
||||
fprintf(stderr, "Invalid arguments to ggml_backend_rpc_start_server\n");
|
||||
return;
|
||||
}
|
||||
std::vector<ggml_backend_t> backends;
|
||||
std::vector<size_t> free_mem_vec(free_mem, free_mem + n_devices);
|
||||
std::vector<size_t> total_mem_vec(total_mem, total_mem + n_devices);
|
||||
printf("Starting RPC server v%d.%d.%d\n",
|
||||
RPC_PROTO_MAJOR_VERSION,
|
||||
RPC_PROTO_MINOR_VERSION,
|
||||
RPC_PROTO_PATCH_VERSION);
|
||||
printf(" endpoint : %s\n", endpoint);
|
||||
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
|
||||
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
|
||||
printf("Devices:\n");
|
||||
for (size_t i = 0; i < n_devices; i++) {
|
||||
auto dev = devices[i];
|
||||
printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
|
||||
total_mem[i] / 1024 / 1024, free_mem[i] / 1024 / 1024);
|
||||
auto backend = ggml_backend_dev_init(dev, nullptr);
|
||||
if (!backend) {
|
||||
fprintf(stderr, "Failed to create backend for device %s\n", dev->iface.get_name(dev));
|
||||
return;
|
||||
}
|
||||
backends.push_back(backend);
|
||||
ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
|
||||
if (reg) {
|
||||
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
|
||||
if (ggml_backend_set_n_threads_fn) {
|
||||
ggml_backend_set_n_threads_fn(backend, n_threads);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string host;
|
||||
int port;
|
||||
|
|
@ -1649,22 +1773,27 @@ void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint
|
|||
fprintf(stderr, "Failed to accept client connection\n");
|
||||
return;
|
||||
}
|
||||
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
|
||||
printf("Accepted client connection\n");
|
||||
fflush(stdout);
|
||||
rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
|
||||
rpc_serve_client(backends, cache_dir, client_socket->fd, free_mem_vec, total_mem_vec);
|
||||
printf("Client connection closed\n");
|
||||
fflush(stdout);
|
||||
}
|
||||
#ifdef _WIN32
|
||||
WSACleanup();
|
||||
#endif
|
||||
for (auto backend : backends) {
|
||||
ggml_backend_free(backend);
|
||||
}
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
struct ggml_backend_rpc_device_context {
|
||||
std::string endpoint;
|
||||
uint32_t device;
|
||||
std::string name;
|
||||
std::string description;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
|
||||
|
|
@ -1676,15 +1805,13 @@ static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
|
|||
static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
|
||||
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
|
||||
|
||||
return ctx->name.c_str();
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
|
||||
|
||||
ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), ctx->device, free, total);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
|
||||
|
|
@ -1710,7 +1837,7 @@ static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggm
|
|||
static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
|
||||
|
||||
return ggml_backend_rpc_init(ctx->endpoint.c_str());
|
||||
return ggml_backend_rpc_init(ctx->endpoint.c_str(), ctx->device);
|
||||
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
|
@ -1718,7 +1845,7 @@ static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const
|
|||
static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
|
||||
|
||||
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
|
||||
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str(), ctx->device);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
|
@ -1736,7 +1863,7 @@ static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_b
|
|||
}
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
|
||||
return buft_ctx->endpoint == dev_ctx->endpoint;
|
||||
return buft_ctx->endpoint == dev_ctx->endpoint && buft_ctx->device == dev_ctx->device;
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
|
||||
|
|
@ -1759,28 +1886,34 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
|
|||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "RPC";
|
||||
struct ggml_backend_rpc_reg_context {
|
||||
std::string name;
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
};
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
|
||||
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
|
||||
return ctx ? ctx->name.c_str() : "RPC";
|
||||
}
|
||||
|
||||
static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
|
||||
return ctx ? ctx->devices.size() : 0;
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
ggml_backend_rpc_reg_context * ctx = (ggml_backend_rpc_reg_context *)reg->context;
|
||||
if (ctx == nullptr) {
|
||||
GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_rpc_add_server instead");
|
||||
} else {
|
||||
GGML_ASSERT(index < ctx->devices.size());
|
||||
return ctx->devices[index];
|
||||
}
|
||||
}
|
||||
|
||||
static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
|
||||
return (void *)ggml_backend_rpc_add_device;
|
||||
if (std::strcmp(name, "ggml_backend_rpc_add_server") == 0) {
|
||||
return (void *)ggml_backend_rpc_add_server;
|
||||
}
|
||||
if (std::strcmp(name, "ggml_backend_rpc_start_server") == 0) {
|
||||
return (void *)ggml_backend_rpc_start_server;
|
||||
|
|
@ -1807,30 +1940,61 @@ ggml_backend_reg_t ggml_backend_rpc_reg(void) {
|
|||
return &ggml_backend_rpc_reg;
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
|
||||
static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
|
||||
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
if (dev_map.find(endpoint) != dev_map.end()) {
|
||||
return dev_map[endpoint];
|
||||
static uint32_t ggml_backend_rpc_get_device_count(const char * endpoint) {
|
||||
auto sock = get_socket(endpoint);
|
||||
rpc_msg_device_count_rsp response;
|
||||
bool status = send_rpc_cmd(sock, RPC_CMD_DEVICE_COUNT, nullptr, 0, &response, sizeof(response));
|
||||
RPC_STATUS_ASSERT(status);
|
||||
return response.device_count;
|
||||
}
|
||||
|
||||
ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
|
||||
static const ggml_backend_reg_i ggml_backend_rpc_reg_interface = {
|
||||
/* .get_name = */ ggml_backend_rpc_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_rpc_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint) {
|
||||
static std::unordered_map<std::string, ggml_backend_reg_t> reg_map;
|
||||
static std::mutex mutex;
|
||||
static uint32_t dev_id = 0;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (reg_map.find(endpoint) != reg_map.end()) {
|
||||
return reg_map[endpoint];
|
||||
}
|
||||
uint32_t dev_count = ggml_backend_rpc_get_device_count(endpoint);
|
||||
if (dev_count == 0) {
|
||||
return nullptr;
|
||||
}
|
||||
ggml_backend_rpc_reg_context * ctx = new ggml_backend_rpc_reg_context;
|
||||
ctx->name = "RPC[" + std::string(endpoint) + "]";
|
||||
for (uint32_t ind = 0; ind < dev_count; ind++) {
|
||||
std::string dev_name = "RPC" + std::to_string(dev_id);
|
||||
std::string dev_desc = std::string(endpoint);
|
||||
ggml_backend_rpc_device_context * dev_ctx = new ggml_backend_rpc_device_context {
|
||||
/* .endpoint = */ endpoint,
|
||||
/* .name = */ "RPC[" + std::string(endpoint) + "]",
|
||||
/* .device = */ ind,
|
||||
/* .name = */ dev_name,
|
||||
/* .description = */ dev_desc
|
||||
};
|
||||
|
||||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||||
/* .iface = */ ggml_backend_rpc_device_i,
|
||||
/* .reg = */ ggml_backend_rpc_reg(),
|
||||
/* .context = */ ctx,
|
||||
/* .context = */ dev_ctx,
|
||||
};
|
||||
|
||||
dev_map[endpoint] = dev;
|
||||
|
||||
return dev;
|
||||
ctx->devices.push_back(dev);
|
||||
dev_id++;
|
||||
}
|
||||
ggml_backend_reg_t reg = new ggml_backend_reg {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_rpc_reg_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
reg_map[endpoint] = reg;
|
||||
return reg;
|
||||
}
|
||||
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
cmake_minimum_required(VERSION 3.19)
|
||||
cmake_policy(SET CMP0114 NEW)
|
||||
cmake_policy(SET CMP0116 NEW)
|
||||
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
|
||||
|
|
@ -54,25 +55,25 @@ if (Vulkan_FOUND)
|
|||
# Test all shader extensions
|
||||
test_shader_extension_support(
|
||||
"GL_KHR_cooperative_matrix"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_coopmat_support.comp"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/coopmat.comp"
|
||||
"GGML_VULKAN_COOPMAT_GLSLC_SUPPORT"
|
||||
)
|
||||
|
||||
test_shader_extension_support(
|
||||
"GL_NV_cooperative_matrix2"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_coopmat2_support.comp"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/coopmat2.comp"
|
||||
"GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT"
|
||||
)
|
||||
|
||||
test_shader_extension_support(
|
||||
"GL_EXT_integer_dot_product"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_integer_dot_support.comp"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/integer_dot.comp"
|
||||
"GGML_VULKAN_INTEGER_DOT_GLSLC_SUPPORT"
|
||||
)
|
||||
|
||||
test_shader_extension_support(
|
||||
"GL_EXT_bfloat16"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/test_bfloat16_support.comp"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders/feature-tests/bfloat16.comp"
|
||||
"GGML_VULKAN_BFLOAT16_GLSLC_SUPPORT"
|
||||
)
|
||||
|
||||
|
|
@ -160,7 +161,6 @@ if (Vulkan_FOUND)
|
|||
set (_ggml_vk_genshaders_dir "${CMAKE_BINARY_DIR}/$<CONFIG>")
|
||||
set (_ggml_vk_genshaders_cmd "${_ggml_vk_genshaders_dir}/vulkan-shaders-gen${_ggml_vk_host_suffix}")
|
||||
set (_ggml_vk_header "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.hpp")
|
||||
set (_ggml_vk_source "${CMAKE_CURRENT_BINARY_DIR}/ggml-vulkan-shaders.cpp")
|
||||
set (_ggml_vk_input_dir "${CMAKE_CURRENT_SOURCE_DIR}/vulkan-shaders")
|
||||
set (_ggml_vk_output_dir "${CMAKE_CURRENT_BINARY_DIR}/vulkan-shaders.spv")
|
||||
|
||||
|
|
@ -176,24 +176,35 @@ if (Vulkan_FOUND)
|
|||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_header}
|
||||
${_ggml_vk_source}
|
||||
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
--input-dir ${_ggml_vk_input_dir}
|
||||
--output-dir ${_ggml_vk_output_dir}
|
||||
--target-hpp ${_ggml_vk_header}
|
||||
--target-cpp ${_ggml_vk_source}
|
||||
--no-clean
|
||||
DEPENDS ${_ggml_vk_shaders_gen_sources}
|
||||
vulkan-shaders-gen
|
||||
COMMENT "Generate vulkan shaders header"
|
||||
)
|
||||
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_header})
|
||||
|
||||
DEPENDS ${_ggml_vk_shader_files}
|
||||
foreach (file_full ${_ggml_vk_shader_files})
|
||||
get_filename_component(file ${file_full} NAME)
|
||||
set (_ggml_vk_target_cpp "${CMAKE_CURRENT_BINARY_DIR}/${file}.cpp")
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT ${_ggml_vk_target_cpp}
|
||||
DEPFILE ${_ggml_vk_target_cpp}.d
|
||||
COMMAND ${_ggml_vk_genshaders_cmd}
|
||||
--glslc ${Vulkan_GLSLC_EXECUTABLE}
|
||||
--source ${file_full}
|
||||
--output-dir ${_ggml_vk_output_dir}
|
||||
--target-hpp ${_ggml_vk_header}
|
||||
--target-cpp ${_ggml_vk_target_cpp}
|
||||
DEPENDS ${file_full}
|
||||
${_ggml_vk_shaders_gen_sources}
|
||||
vulkan-shaders-gen
|
||||
|
||||
COMMENT "Generate vulkan shaders"
|
||||
COMMENT "Generate vulkan shaders for ${file}"
|
||||
)
|
||||
|
||||
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_source} ${_ggml_vk_header})
|
||||
target_sources(ggml-vulkan PRIVATE ${_ggml_vk_target_cpp})
|
||||
endforeach()
|
||||
|
||||
else()
|
||||
message(WARNING "Vulkan not found")
|
||||
|
|
|
|||
|
|
@ -393,6 +393,7 @@ struct vk_device_struct {
|
|||
vk::PhysicalDeviceProperties properties;
|
||||
std::string name;
|
||||
uint64_t max_memory_allocation_size;
|
||||
uint64_t max_buffer_size;
|
||||
uint64_t suballocation_block_size;
|
||||
bool fp16;
|
||||
bool bf16;
|
||||
|
|
@ -1563,6 +1564,12 @@ typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
|
||||
static void ggml_backend_vk_free(ggml_backend_t backend);
|
||||
|
||||
static VkDeviceSize ggml_vk_get_max_buffer_range(const ggml_backend_vk_context * ctx, const vk_buffer &buf, const VkDeviceSize offset) {
|
||||
const VkDeviceSize range = std::min(VkDeviceSize{buf->size - offset},
|
||||
VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
|
||||
return range;
|
||||
}
|
||||
|
||||
// Wait for ctx->fence to be signaled.
|
||||
static void ggml_vk_wait_for_fence(ggml_backend_vk_context * ctx) {
|
||||
// Use waitForFences while most of the graph executes. Hopefully the CPU can sleep
|
||||
|
|
@ -2012,8 +2019,8 @@ static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_pr
|
|||
|
||||
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, const std::initializer_list<vk::MemoryPropertyFlags> & req_flags_list) {
|
||||
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags_list.begin()[0]) << ", " << to_string(req_flags_list.begin()[req_flags_list.size()-1]) << ")");
|
||||
if (size > device->max_memory_allocation_size) {
|
||||
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit");
|
||||
if (size > device->max_buffer_size) {
|
||||
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device buffer size limit");
|
||||
}
|
||||
|
||||
vk_buffer buf = std::make_shared<vk_buffer_struct>();
|
||||
|
|
@ -2159,8 +2166,8 @@ static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
|||
buf.reset();
|
||||
}
|
||||
|
||||
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
|
||||
return { buf, 0, VK_WHOLE_SIZE };
|
||||
static vk_subbuffer ggml_vk_subbuffer(const ggml_backend_vk_context* ctx, const vk_buffer& buf, size_t offset = 0) {
|
||||
return { buf, offset, ggml_vk_get_max_buffer_range(ctx, buf, offset) };
|
||||
}
|
||||
|
||||
static void ggml_vk_sync_buffers(ggml_backend_vk_context* ctx, vk_context& subctx) {
|
||||
|
|
@ -2614,8 +2621,6 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
const uint32_t D_lsb = D ^ (D & (D-1));
|
||||
uint32_t D_split = std::min(std::min(device->subgroup_size, 8u), D_lsb / 4);
|
||||
|
||||
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
|
||||
GGML_ASSERT((GGML_KQ_MASK_PAD % rows_cols[0]) == 0);
|
||||
return {wg_size, rows_cols[0], rows_cols[1], hsk, hsv, clamp, D_split};
|
||||
};
|
||||
|
||||
|
|
@ -3855,17 +3860,27 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
|
||||
|
||||
if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
|
||||
device->max_memory_allocation_size = std::stoul(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
|
||||
device->max_memory_allocation_size = std::stoull(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
|
||||
} else if (maintenance4_support) {
|
||||
device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
|
||||
} else {
|
||||
device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
|
||||
}
|
||||
|
||||
const char* GGML_VK_FORCE_MAX_BUFFER_SIZE = getenv("GGML_VK_FORCE_MAX_BUFFER_SIZE");
|
||||
|
||||
if (GGML_VK_FORCE_MAX_BUFFER_SIZE != nullptr) {
|
||||
device->max_buffer_size = std::stoull(GGML_VK_FORCE_MAX_BUFFER_SIZE);
|
||||
} else if (maintenance4_support) {
|
||||
device->max_buffer_size = props4.maxBufferSize;
|
||||
} else {
|
||||
device->max_buffer_size = device->max_memory_allocation_size;
|
||||
}
|
||||
|
||||
const char* GGML_VK_SUBALLOCATION_BLOCK_SIZE = getenv("GGML_VK_SUBALLOCATION_BLOCK_SIZE");
|
||||
|
||||
if (GGML_VK_SUBALLOCATION_BLOCK_SIZE != nullptr) {
|
||||
device->suballocation_block_size = std::stoul(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
|
||||
device->suballocation_block_size = std::stoull(GGML_VK_SUBALLOCATION_BLOCK_SIZE);
|
||||
} else {
|
||||
// Limit batching of allocations to 1GB by default to avoid fragmentation issues
|
||||
device->suballocation_block_size = 1024*1024*1024;
|
||||
|
|
@ -6150,9 +6165,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
}
|
||||
const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0;
|
||||
if (
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) ||
|
||||
(split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) {
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
|
||||
(split_k > 1 && split_k_size > ctx->device->properties.limits.maxStorageBufferRange)) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
||||
|
|
@ -6227,7 +6242,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
}
|
||||
|
||||
if (x_non_contig) {
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
|
||||
} else if (qx_needs_dequant) {
|
||||
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc, { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
||||
|
|
@ -6239,7 +6254,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
|
||||
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -6250,7 +6265,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true);
|
||||
ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne * ne12 * ne13, true);
|
||||
ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -6272,14 +6287,11 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
y_sz_total = CEIL_DIV(y_sz_total, 144) * 144;
|
||||
}
|
||||
|
||||
// No bounds checking is needed for dst. This is basically VK_WHOLE_SIZE but clamped to maxStorageBufferRange.
|
||||
VkDeviceSize d_range = std::min(VkDeviceSize{d_D->size - d_buf_offset}, VkDeviceSize{ctx->device->properties.limits.maxStorageBufferRange});
|
||||
|
||||
// compute
|
||||
ggml_vk_matmul(
|
||||
ctx, subctx, pipeline,
|
||||
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz_total },
|
||||
{ d_D, d_buf_offset, d_range }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
|
||||
ggml_vk_subbuffer(ctx, d_D, d_buf_offset), { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
|
||||
ne01, ne11, ne10,
|
||||
ne10, ne10, stride_d, stride_batch_x, stride_batch_y, stride_batch_d,
|
||||
split_k, ne12*ne13, ne02, ne12, r2, r3, padded_n
|
||||
|
|
@ -6446,8 +6458,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
y_sz_upd = CEIL_DIV(y_sz_upd, 144) * 144;
|
||||
}
|
||||
if (
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
||||
|
|
@ -6512,7 +6524,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
}
|
||||
|
||||
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
|
||||
}
|
||||
if (y_non_contig) {
|
||||
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
|
||||
|
|
@ -6521,7 +6533,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
|
||||
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -6532,7 +6544,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_quantize_q8_1(ctx, subctx, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE }, y_ne * ne12 * ne13, true);
|
||||
ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0), y_ne * ne12 * ne13, true);
|
||||
ctx->prealloc_y_last_pipeline_used = to_q8_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -6931,8 +6943,8 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
||||
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
||||
if (
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
||||
|
|
@ -6999,7 +7011,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
}
|
||||
|
||||
if (x_non_contig) {
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
|
||||
} else if (qx_needs_dequant) {
|
||||
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
|
||||
|
|
@ -7012,7 +7024,7 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
|
||||
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -7145,8 +7157,8 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
||||
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
||||
if (
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
||||
(qx_needs_dequant && x_sz_upd > ctx->device->properties.limits.maxStorageBufferRange) ||
|
||||
(qy_needs_dequant && y_sz_upd > ctx->device->properties.limits.maxStorageBufferRange)) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
||||
|
|
@ -7212,7 +7224,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
|
||||
if (x_non_contig) {
|
||||
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, ggml_vk_subbuffer(ctx, d_Qx, qx_buf_offset), ggml_vk_subbuffer(ctx, d_X, 0));
|
||||
}
|
||||
if (y_non_contig) {
|
||||
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
|
||||
|
|
@ -7221,7 +7233,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
if (ctx->prealloc_y_need_sync) {
|
||||
ggml_vk_sync_buffers(ctx, subctx);
|
||||
}
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
||||
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, ggml_vk_subbuffer(ctx, d_Qy, qy_buf_offset), ggml_vk_subbuffer(ctx, d_Y, 0));
|
||||
ctx->prealloc_y_last_pipeline_used = to_fp16_vk_1.get();
|
||||
ctx->prealloc_y_last_tensor_used = src1;
|
||||
}
|
||||
|
|
@ -7457,8 +7469,6 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
if (((HSK | HSV) % 16) != 0 && path == FA_COOPMAT2) {
|
||||
aligned = false;
|
||||
}
|
||||
// mask dim1 is padded to 64, we rely on this to avoid clamping mask loads
|
||||
GGML_ASSERT((nem1 % GGML_KQ_MASK_PAD) == 0);
|
||||
|
||||
bool f32acc = path == FA_SCALAR || dst->op_params[3] == GGML_PREC_F32;
|
||||
|
||||
|
|
@ -7498,7 +7508,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
// Reserve space for split_k temporaries. For each split x batch, we need to store the O matrix (D x ne1)
|
||||
// and the per-row m and L values (ne1 rows). We store all the matrices first, followed by the rows.
|
||||
const uint64_t split_k_size = split_k > 1 ? (HSV * ne1 * sizeof(float) + ne1 * sizeof(float) * 2) * split_k * ne3 : 0;
|
||||
if (split_k_size > ctx->device->max_memory_allocation_size) {
|
||||
if (split_k_size > ctx->device->properties.limits.maxStorageBufferRange) {
|
||||
GGML_ABORT("Requested preallocation size is too large");
|
||||
}
|
||||
if (ctx->prealloc_size_split_k < split_k_size) {
|
||||
|
|
@ -7620,12 +7630,12 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
|
||||
{
|
||||
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
|
||||
ggml_vk_subbuffer(ctx, d_Q, q_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_K, k_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_V, v_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_M, m_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0),
|
||||
},
|
||||
// We only use split_k when group query attention is enabled, which means
|
||||
// there's no more than one tile of rows (i.e. workgroups_x would have been
|
||||
|
|
@ -7637,21 +7647,21 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
|||
const std::array<uint32_t, 5> pc2 = { HSV, (uint32_t)ne1, (uint32_t)ne3, split_k, (sinks != nullptr) };
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_flash_attn_split_k_reduce,
|
||||
{
|
||||
vk_subbuffer{ctx->prealloc_split_k, 0, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
|
||||
ggml_vk_subbuffer(ctx, ctx->prealloc_split_k, 0),
|
||||
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_D, d_buf_offset),
|
||||
},
|
||||
pc2, { (uint32_t)ne1, HSV, (uint32_t)ne3 });
|
||||
ctx->prealloc_split_k_need_sync = true;
|
||||
} else {
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
|
||||
{
|
||||
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_S, s_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
|
||||
ggml_vk_subbuffer(ctx, d_Q, q_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_K, k_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_V, v_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_M, m_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_S, s_buf_offset),
|
||||
ggml_vk_subbuffer(ctx, d_D, d_buf_offset),
|
||||
},
|
||||
pc, { workgroups_x, workgroups_y, workgroups_z });
|
||||
}
|
||||
|
|
@ -8360,18 +8370,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
}
|
||||
}
|
||||
|
||||
uint64_t x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0;
|
||||
uint64_t y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 : 0;
|
||||
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
|
||||
uint64_t d_sz = ggml_type_size(dst->type) * ned;
|
||||
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
if(!src0_uma) {
|
||||
|
|
@ -8396,26 +8396,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
z_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
d_buf_offset &= ~(ctx->device->properties.limits.minStorageBufferOffsetAlignment - 1);
|
||||
|
||||
if (op_supports_incontiguous) {
|
||||
x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
|
||||
y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
|
||||
z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
|
||||
d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
|
||||
|
||||
if (x_buf_offset + x_sz >= d_X->size) {
|
||||
x_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
|
||||
z_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
if (d_buf_offset + d_sz >= d_D->size) {
|
||||
d_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
std::array<uint32_t, 3> elements;
|
||||
|
||||
// Single call if dimension 2 is contiguous
|
||||
|
|
@ -8606,19 +8586,31 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
break;
|
||||
}
|
||||
|
||||
if (!op_supports_incontiguous) {
|
||||
if (x_sz != VK_WHOLE_SIZE) {
|
||||
x_sz *= ne02 * ne03;
|
||||
uint64_t x_sz, y_sz, z_sz, d_sz;
|
||||
|
||||
if (op_supports_incontiguous) {
|
||||
x_sz = ggml_nbytes(src0) + get_misalign_bytes(ctx, src0);
|
||||
y_sz = use_src1 ? ggml_nbytes(src1) + get_misalign_bytes(ctx, src1) : 0;
|
||||
z_sz = use_src2 ? ggml_nbytes(src2) + get_misalign_bytes(ctx, src2) : 0;
|
||||
d_sz = ggml_nbytes(dst) + get_misalign_bytes(ctx, dst);
|
||||
|
||||
if (x_buf_offset + x_sz >= d_X->size) {
|
||||
x_sz = ggml_vk_get_max_buffer_range(ctx, d_X, x_buf_offset);
|
||||
}
|
||||
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
|
||||
y_sz *= ne12 * ne13;
|
||||
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
|
||||
y_sz = ggml_vk_get_max_buffer_range(ctx, d_Y, y_buf_offset);
|
||||
}
|
||||
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
|
||||
z_sz *= ne22 * ne23;
|
||||
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
|
||||
z_sz = ggml_vk_get_max_buffer_range(ctx, d_Z, z_buf_offset);
|
||||
}
|
||||
if (d_sz != VK_WHOLE_SIZE) {
|
||||
d_sz *= ned2 * ned3;
|
||||
if (d_buf_offset + d_sz >= d_D->size) {
|
||||
d_sz = ggml_vk_get_max_buffer_range(ctx, d_D, d_buf_offset);
|
||||
}
|
||||
} else {
|
||||
x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0 * ne02 * ne03;
|
||||
y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 * ne12 * ne13 : 0;
|
||||
z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 * ne22 * ne23 : 0;
|
||||
d_sz = ggml_type_size(dst->type) * ned * ned2 * ned3;
|
||||
}
|
||||
|
||||
if (op == GGML_OP_ADD || op == GGML_OP_RMS_NORM) {
|
||||
|
|
@ -8628,7 +8620,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
{ vk_subbuffer{ d_X, x_buf_offset, x_sz },
|
||||
vk_subbuffer{ d_Y, y_buf_offset, y_sz },
|
||||
vk_subbuffer{ d_D, d_buf_offset, d_sz },
|
||||
vk_subbuffer{ d_A, a_buf_offset, VK_WHOLE_SIZE },
|
||||
ggml_vk_subbuffer(ctx, d_A, a_buf_offset),
|
||||
}, pc, elements);
|
||||
} else if (op == GGML_OP_GLU) {
|
||||
// Empty src1 is possible in glu, but the shader needs a buffer
|
||||
|
|
@ -8821,18 +8813,18 @@ static void ggml_vk_multi_add(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
static_assert(MAX_PARAMETER_COUNT == 12);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
|
||||
{
|
||||
vk_subbuffer{ buf[0], offset[0], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[1], offset[1], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[2], offset[2], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[3], offset[3], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[4], offset[4], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[5], offset[5], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[6], offset[6], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[7], offset[7], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[8], offset[8], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[9], offset[9], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[10], offset[10], VK_WHOLE_SIZE },
|
||||
vk_subbuffer{ buf[11], offset[11], VK_WHOLE_SIZE },
|
||||
ggml_vk_subbuffer(ctx, buf[0], offset[0]),
|
||||
ggml_vk_subbuffer(ctx, buf[1], offset[1]),
|
||||
ggml_vk_subbuffer(ctx, buf[2], offset[2]),
|
||||
ggml_vk_subbuffer(ctx, buf[3], offset[3]),
|
||||
ggml_vk_subbuffer(ctx, buf[4], offset[4]),
|
||||
ggml_vk_subbuffer(ctx, buf[5], offset[5]),
|
||||
ggml_vk_subbuffer(ctx, buf[6], offset[6]),
|
||||
ggml_vk_subbuffer(ctx, buf[7], offset[7]),
|
||||
ggml_vk_subbuffer(ctx, buf[8], offset[8]),
|
||||
ggml_vk_subbuffer(ctx, buf[9], offset[9]),
|
||||
ggml_vk_subbuffer(ctx, buf[10], offset[10]),
|
||||
ggml_vk_subbuffer(ctx, buf[11], offset[11]),
|
||||
}, pc, elements);
|
||||
}
|
||||
|
||||
|
|
@ -10006,7 +9998,7 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||
ggml_vk_ctx_begin(ctx->device, subctx);
|
||||
for (size_t i = 0; i < num_it; i++) {
|
||||
ggml_vk_matmul(
|
||||
ctx, subctx, p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k),
|
||||
ctx, subctx, p, ggml_vk_subbuffer(ctx, d_X), ggml_vk_subbuffer(ctx, d_Y), ggml_vk_subbuffer(ctx, d_D), ggml_vk_subbuffer(ctx, ctx->prealloc_split_k),
|
||||
m, n, k,
|
||||
k, k, m, k*m, k*n, m*n,
|
||||
split_k, batch, batch, batch, 1, 1, n
|
||||
|
|
@ -10317,7 +10309,7 @@ static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_
|
|||
//
|
||||
// vk_context subctx = ggml_vk_create_context(ctx, ctx->compute_cmd_pool);
|
||||
// ggml_vk_ctx_begin(ctx->device, subctx);
|
||||
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(x_buf), ggml_vk_subbuffer(qx_buf), ne);
|
||||
// ggml_vk_quantize_q8_1(ctx, subctx, ggml_vk_subbuffer(ctx, x_buf), ggml_vk_subbuffer(ctx, qx_buf), ne);
|
||||
// ggml_vk_ctx_end(subctx);
|
||||
//
|
||||
// auto begin = std::chrono::high_resolution_clock::now();
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_binary_head.glsl"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -6,8 +6,8 @@
|
|||
#extension GL_KHR_shader_subgroup_basic : enable
|
||||
#endif
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_binary_head.glsl"
|
||||
|
||||
const uint num_threads = 256;
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
#extension GL_EXT_control_flow_attributes : require
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "generic_head.comp"
|
||||
#include "types.comp"
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout(constant_id = 0) const int BLOCK_SIZE = 1024;
|
||||
layout(constant_id = 1) const int BLOCK_SIZE_LOG2 = 10;
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_unary_head.glsl"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_binary_head.glsl"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_unary_head.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : require
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout (push_constant) uniform parameter
|
||||
{
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@
|
|||
# extension GL_KHR_shader_subgroup_shuffle : enable
|
||||
#endif
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
// shape notation: [dim(N), ..., dim(0)] -- stride(dim(j)) >= stride(dim(i)) if i > j
|
||||
layout(binding = 0) readonly buffer A {
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; // src0 - kernel: [K, Cout, Cin]
|
||||
layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; // src1 - input: [L, Cin]
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_unary_head.glsl"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
#include "dequant_funcs.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_unary_head.glsl"
|
||||
#include "dequant_funcs.glsl"
|
||||
|
||||
#if defined(DATA_A_IQ4_NL) || defined(DATA_A_MXFP4)
|
||||
// 16 invocations needed for init_iq_shmem
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "rte.comp"
|
||||
#include "types.comp"
|
||||
#include "rte.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#if defined(SET_ROWS) && QUANT_K == 1
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
|
@ -14,7 +14,7 @@ const uint BLOCK_SIZE = 32;
|
|||
layout (binding = 0) readonly buffer S {float data_s[];};
|
||||
|
||||
#if defined(SET_ROWS)
|
||||
#include "generic_binary_head.comp"
|
||||
#include "generic_binary_head.glsl"
|
||||
layout (binding = 1) readonly buffer C {B_TYPE data_i[];};
|
||||
layout (binding = 2) writeonly buffer Q {A_TYPE data_q[];};
|
||||
|
||||
|
|
@ -25,7 +25,7 @@ layout (binding = 2) writeonly buffer Q {A_TYPE data_q[];};
|
|||
#endif
|
||||
|
||||
#else
|
||||
#include "generic_unary_head.comp"
|
||||
#include "generic_unary_head.glsl"
|
||||
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_unary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_unary_head.glsl"
|
||||
|
||||
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -2,8 +2,8 @@
|
|||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_head.glsl"
|
||||
|
||||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
|
||||
#endif
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
#if defined(A_TYPE_PACKED16)
|
||||
layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];};
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout(buffer_reference, std430, buffer_reference_align = 2) buffer decodeBufQ4_0 {
|
||||
block_q4_0_packed16 block;
|
||||
|
|
@ -10,4 +10,4 @@ layout (push_constant) uniform parameter
|
|||
uint nel;
|
||||
} p;
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
|
@ -2,7 +2,7 @@
|
|||
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "dequant_head.comp"
|
||||
#include "dequant_head.glsl"
|
||||
|
||||
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ layout (push_constant) uniform parameter
|
|||
uint n_past;
|
||||
} p;
|
||||
|
||||
#include "types.comp"
|
||||
#include "types.glsl"
|
||||
|
||||
layout(local_size_x = 1, local_size_y = 512, local_size_z = 1) in;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
#include "types.glsl"
|
||||
#include "generic_binary_head.glsl"
|
||||
|
||||
const uint num_threads = 256;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
#version 450
|
||||
|
||||
#include "rte.comp"
|
||||
#include "generic_head.comp"
|
||||
#include "types.comp"
|
||||
#include "rte.glsl"
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
|
|
|
|||
|
|
@ -8,8 +8,8 @@
|
|||
|
||||
#extension GL_KHR_shader_subgroup_shuffle : enable
|
||||
|
||||
#include "types.comp"
|
||||
#include "flash_attn_base.comp"
|
||||
#include "types.glsl"
|
||||
#include "flash_attn_base.glsl"
|
||||
|
||||
const uint32_t HSK_per_thread = HSK / D_split;
|
||||
const uint32_t HSV_per_thread = HSV / D_split;
|
||||
|
|
@ -153,12 +153,13 @@ void main() {
|
|||
}
|
||||
|
||||
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
|
||||
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
|
||||
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t c = (idx + tid) % Bc;
|
||||
uint32_t r = (idx + tid) / Bc;
|
||||
if (idx + tid < Bc * Br) {
|
||||
if (!KV_bounds_check || j * Bc + c < KV) {
|
||||
if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) {
|
||||
masksh[c][r] = float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]);
|
||||
} else {
|
||||
masksh[c][r] = float(0);
|
||||
|
|
|
|||
|
|
@ -10,8 +10,8 @@
|
|||
#extension GL_KHR_memory_scope_semantics : enable
|
||||
#extension GL_KHR_cooperative_matrix : enable
|
||||
|
||||
#include "types.comp"
|
||||
#include "flash_attn_base.comp"
|
||||
#include "types.glsl"
|
||||
#include "flash_attn_base.glsl"
|
||||
|
||||
const uint32_t HSK_per_thread = HSK / D_split;
|
||||
const uint32_t HSV_per_thread = HSV / D_split;
|
||||
|
|
@ -201,11 +201,13 @@ void main() {
|
|||
}
|
||||
|
||||
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
|
||||
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
|
||||
|
||||
[[unroll]] for (uint32_t idx = 0; idx < Bc * Br; idx += gl_WorkGroupSize.x) {
|
||||
uint32_t c = (idx + tid) % Bc;
|
||||
uint32_t r = (idx + tid) / Bc;
|
||||
if (idx + tid < Bc * Br || idx + gl_WorkGroupSize.x <= Bc * Br) {
|
||||
if (!KV_bounds_check || j * Bc + c < KV) {
|
||||
if ((!KV_bounds_check || j * Bc + c < KV) && (!nem1_bounds_check || i * Br + r < p.nem1)) {
|
||||
sfsh[c * sfshstride + r] += ACC_TYPE(slope[r] * float(data_m[m_offset + (i * Br + r) * m_stride + (j * Bc + c)]));
|
||||
}
|
||||
}
|
||||
|
|
@ -356,8 +358,8 @@ void main() {
|
|||
}
|
||||
|
||||
if ((p.mask_n_head_log2 & SINK_ENABLE_BIT) != 0) {
|
||||
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {
|
||||
float sink = perElemOpGetSink(r, 0u, ACC_TYPE(0), iq2);
|
||||
[[unroll]] for (uint32_t r = 0; r < rows_per_thread; ++r) {
|
||||
float sink = perElemOpGetSink(tile_row(r), 0u, ACC_TYPE(0), iq2);
|
||||
|
||||
float ms = 1.0f;
|
||||
float vs = 1.0f;
|
||||
|
|
|
|||
|
|
@ -16,9 +16,9 @@
|
|||
#extension GL_KHR_shader_subgroup_vote : enable
|
||||
#extension GL_EXT_null_initializer : enable
|
||||
|
||||
#include "types.comp"
|
||||
#include "dequant_funcs_cm2.comp"
|
||||
#include "flash_attn_base.comp"
|
||||
#include "types.glsl"
|
||||
#include "dequant_funcs_cm2.glsl"
|
||||
#include "flash_attn_base.glsl"
|
||||
|
||||
layout (binding = 0) readonly buffer Q {uint8_t data_q[];};
|
||||
layout (binding = 1) readonly buffer K {uint8_t data_k[];};
|
||||
|
|
@ -154,7 +154,10 @@ void main() {
|
|||
}
|
||||
|
||||
if ((p.mask_n_head_log2 & MASK_ENABLE_BIT) != 0) {
|
||||
tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
|
||||
bool nem1_bounds_check = !(p.gqa_ratio > 1) && (p.nem1 % Br) != 0;
|
||||
|
||||
if (nem1_bounds_check) {
|
||||
tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV);
|
||||
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV);
|
||||
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
|
||||
|
||||
|
|
@ -163,6 +166,19 @@ void main() {
|
|||
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
|
||||
|
||||
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
|
||||
} else {
|
||||
tensorLayoutNV<2, Clamp> tensorLayoutM = createTensorLayoutNV(2, Clamp);
|
||||
// Don't clamp against nem1 when GQA is enabled
|
||||
uint32_t m_height = p.gqa_ratio > 1 ? ~0 : p.nem1;
|
||||
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, m_height, KV);
|
||||
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, m_stride, 1);
|
||||
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv;
|
||||
|
||||
coopMatLoadTensorNV(mv, data_m, m_offset, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
|
||||
|
||||
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
|
||||
}
|
||||
}
|
||||
|
||||
// Clear padding elements to -inf, so they don't contribute to rowmax
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "glu_head.comp"
|
||||
#include "glu_head.glsl"
|
||||
|
||||
const float GELU_COEF_A = 0.044715f;
|
||||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
|
@ -10,4 +10,4 @@ float op(float a, float b) {
|
|||
return 0.5f*a*(2.0f - 2.0f / (exp(2 * val) + 1)) * b;
|
||||
}
|
||||
|
||||
#include "glu_main.comp"
|
||||
#include "glu_main.glsl"
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "glu_head.comp"
|
||||
#include "glu_head.glsl"
|
||||
|
||||
// based on Abramowitz and Stegun formula 7.1.26 or similar Hastings' approximation
|
||||
// ref: https://www.johndcook.com/blog/python_erf/
|
||||
|
|
@ -24,4 +24,4 @@ float op(float a, float b) {
|
|||
return 0.5f * a * (1.0f + erf_approx) * b;
|
||||
}
|
||||
|
||||
#include "glu_main.comp"
|
||||
#include "glu_main.glsl"
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#version 450
|
||||
|
||||
#include "glu_head.comp"
|
||||
#include "glu_head.glsl"
|
||||
|
||||
const float GELU_QUICK_COEF = -1.702f;
|
||||
|
||||
|
|
@ -8,4 +8,4 @@ float op(float a, float b) {
|
|||
return a * (1.0f / (1.0f + exp(GELU_QUICK_COEF * a))) * b;
|
||||
}
|
||||
|
||||
#include "glu_main.comp"
|
||||
#include "glu_main.glsl"
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "generic_head.comp"
|
||||
#include "types.comp"
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "generic_head.comp"
|
||||
#include "types.comp"
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#version 450
|
||||
|
||||
#include "generic_head.comp"
|
||||
#include "types.comp"
|
||||
#include "generic_head.glsl"
|
||||
#include "types.glsl"
|
||||
|
||||
#extension GL_EXT_control_flow_attributes : enable
|
||||
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue