Save tensor statistics to imatrix file
This commit is contained in:
parent
509b1caf40
commit
f3323b6503
|
|
@ -753,11 +753,26 @@ void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
|||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.activations.size(), GGML_MEM_ALIGN);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.values.size(), GGML_MEM_ALIGN);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * kv.second.counts.size(), GGML_MEM_ALIGN);
|
||||
data_size += GGML_PAD(ggml_tensor_overhead() + sizeof(float) * 10, GGML_MEM_ALIGN);
|
||||
}
|
||||
|
||||
// deterministic tensor name order
|
||||
std::sort(to_store.begin(), to_store.end());
|
||||
|
||||
// Compute per-tensor statistics
|
||||
std::vector<tensor_statistics> tstats;
|
||||
tstats.reserve(m_stats.size());
|
||||
bool legacy;
|
||||
for (const auto & kv : m_stats) {
|
||||
compute_vector_statistics(tstats, kv.first, kv.second, legacy);
|
||||
}
|
||||
if (!tstats.empty()) { compute_tensor_statistics(tstats); }
|
||||
|
||||
// index by tensor name
|
||||
std::unordered_map<std::string, const tensor_statistics *> tstat_index;
|
||||
tstat_index.reserve(tstats.size());
|
||||
for (const auto & ts : tstats) { tstat_index[ts.tensor] = &ts; }
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ data_size,
|
||||
/* .mem_buffer = */ NULL,
|
||||
|
|
@ -814,6 +829,48 @@ void IMatrixCollector::save_imatrix(int32_t n_chunk) const {
|
|||
gguf_add_tensor(ctx_gguf, in_sum);
|
||||
}
|
||||
}
|
||||
|
||||
// Store per-tensor statistics as a small 1D tensor
|
||||
{
|
||||
float nan = std::numeric_limits<float>::quiet_NaN();
|
||||
float min = 0.0f;
|
||||
float max = 0.0f;
|
||||
float mean = 0.0f;
|
||||
float stddev = 0.0f;
|
||||
float h_norm = 0.0f;
|
||||
float zd_score = 0.0f;
|
||||
float sum_sq = 0.0f;
|
||||
float l2_dist = 0.0f;
|
||||
float cossim = 0.0f;
|
||||
float pcc = 0.0f;
|
||||
auto it_ts = tstat_index.find(name);
|
||||
if (it_ts != tstat_index.end() && it_ts->second != nullptr) {
|
||||
sum_sq = it_ts->second->sum_values;
|
||||
h_norm = it_ts->second->elements > 0 ? 100.0f * (it_ts->second->entropy / std::log2f((float)it_ts->second->elements)) : nan;
|
||||
zd_score = it_ts->second->zd_score;
|
||||
l2_dist = it_ts->second->l2_dist;
|
||||
cossim = it_ts->second->cossim;
|
||||
pcc = it_ts->second->pearson;
|
||||
min = it_ts->second->min_values;
|
||||
max = it_ts->second->max_values;
|
||||
mean = it_ts->second->mean_values;
|
||||
stddev = it_ts->second->std_deviation;
|
||||
}
|
||||
|
||||
struct ggml_tensor * stats_t = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 10);
|
||||
ggml_format_name(stats_t, "%s.stats", name.c_str());
|
||||
((float *)stats_t->data)[0] = sum_sq;
|
||||
((float *)stats_t->data)[1] = h_norm;
|
||||
((float *)stats_t->data)[2] = zd_score;
|
||||
((float *)stats_t->data)[3] = l2_dist;
|
||||
((float *)stats_t->data)[4] = cossim;
|
||||
((float *)stats_t->data)[5] = pcc;
|
||||
((float *)stats_t->data)[6] = min;
|
||||
((float *)stats_t->data)[7] = max;
|
||||
((float *)stats_t->data)[8] = mean;
|
||||
((float *)stats_t->data)[9] = stddev;
|
||||
gguf_add_tensor(ctx_gguf, stats_t);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_write_to_file(ctx_gguf, fname.c_str(), false);
|
||||
|
|
@ -1404,7 +1461,7 @@ static bool show_statistics(const common_params & params) {
|
|||
std::string name;
|
||||
|
||||
process_tensor_name(tstat.tensor, layer, name);
|
||||
const float h_norm = tstat.elements > 1 ? 100.0f * (tstat.entropy / std::log2((float) tstat.elements)) : 0.0f;
|
||||
const float h_norm = tstat.elements > 1 ? 100.0f * (tstat.entropy / std::log2f((float)tstat.elements)) : std::numeric_limits<float>::quiet_NaN();
|
||||
|
||||
int blk;
|
||||
try { blk = std::stoi(layer); } catch (...) { blk = -1; }
|
||||
|
|
|
|||
Loading…
Reference in New Issue