commit
f0d3ff2388
|
|
@ -1,6 +1,6 @@
|
|||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=12.6.0
|
||||
ARG CUDA_VERSION=12.4.0
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
|
|
|
|||
|
|
@ -17,10 +17,10 @@ Version: %( date "+%%Y%%m%%d" )
|
|||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
|
||||
Requires: cuda-toolkit
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
|
|
|||
|
|
@ -18,10 +18,10 @@ Version: %( date "+%%Y%%m%%d" )
|
|||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git libstdc++-devel
|
||||
Requires: libstdc++
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
URL: https://github.com/ggml-org/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc3.1.0
|
||||
ARG MUSA_VERSION=rc3.1.1
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
|
|
|
|||
|
|
@ -133,12 +133,12 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
|||
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
|
||||
'';
|
||||
|
||||
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
|
||||
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
|
||||
# `default.metallib` may be compiled with Metal compiler from XCode
|
||||
# and we need to escape sandbox on MacOS to access Metal compiler.
|
||||
# `xcrun` is used find the path of the Metal compiler, which is varible
|
||||
# and not on $PATH
|
||||
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
|
||||
# see https://github.com/ggml-org/llama.cpp/pull/6118 for discussion
|
||||
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
|
||||
|
||||
nativeBuildInputs =
|
||||
|
|
@ -220,7 +220,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
|||
broken = (useMetalKit && !effectiveStdenv.isDarwin);
|
||||
|
||||
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
|
||||
homepage = "https://github.com/ggerganov/llama.cpp/";
|
||||
homepage = "https://github.com/ggml-org/llama.cpp/";
|
||||
license = lib.licenses.mit;
|
||||
|
||||
# Accommodates `nix run` and `lib.getExe`
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-co
|
|||
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
|
||||
# gfx906 is deprecated
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ body:
|
|||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
|
||||
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggml-org/llama.cpp/discussions/categories/ideas)
|
||||
|
||||
- type: checkboxes
|
||||
id: prerequisites
|
||||
|
|
@ -16,11 +16,11 @@ body:
|
|||
options:
|
||||
- label: I am running the latest code. Mention the version if possible as well.
|
||||
required: true
|
||||
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
|
||||
- label: I carefully followed the [README.md](https://github.com/ggml-org/llama.cpp/blob/master/README.md).
|
||||
required: true
|
||||
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
|
||||
required: true
|
||||
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
- label: I reviewed the [Discussions](https://github.com/ggml-org/llama.cpp/discussions), and have a new and useful enhancement to share.
|
||||
required: true
|
||||
|
||||
- type: textarea
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ body:
|
|||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
|
||||
|
||||
- type: checkboxes
|
||||
id: research-stage
|
||||
|
|
|
|||
|
|
@ -6,8 +6,8 @@ body:
|
|||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
Don't forget to [check for existing refactor issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
|
||||
Also you may want to check [Pull request refactor label as well](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
|
||||
|
||||
- type: textarea
|
||||
id: background-description
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
blank_issues_enabled: true
|
||||
contact_links:
|
||||
- name: Got an idea?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/ideas
|
||||
about: Pop it there. It may then become an enhancement ticket.
|
||||
- name: Got a question?
|
||||
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
|
||||
url: https://github.com/ggml-org/llama.cpp/discussions/categories/q-a
|
||||
about: Ask a question there!
|
||||
- name: Want to contribute?
|
||||
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
|
||||
url: https://github.com/ggml-org/llama.cpp/wiki/contribute
|
||||
about: Head to the contribution guide page of the wiki for areas you can help with
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
*Make sure to read the [contributing guidelines](https://github.com/ggml-org/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
# TODO: there have been some issues with the workflow, so disabling for now
|
||||
# https://github.com/ggerganov/llama.cpp/issues/7893
|
||||
# https://github.com/ggml-org/llama.cpp/issues/7893
|
||||
#
|
||||
# Benchmark
|
||||
name: Benchmark
|
||||
|
|
@ -57,17 +57,7 @@ jobs:
|
|||
|
||||
if: |
|
||||
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|
||||
|| (
|
||||
github.event_name == 'schedule'
|
||||
&& github.ref_name == 'master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
|| github.event_name == 'pull_request_target'
|
||||
|| (
|
||||
github.event_name == 'push'
|
||||
&& github.event.ref == 'refs/heads/master'
|
||||
&& github.repository_owner == 'ggerganov'
|
||||
)
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
|
|
|
|||
|
|
@ -129,7 +129,7 @@ jobs:
|
|||
run: |
|
||||
sysctl -a
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
|
|
@ -374,6 +374,8 @@ jobs:
|
|||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
|
|
@ -401,7 +403,35 @@ jobs:
|
|||
run: |
|
||||
cd build
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 1800
|
||||
ctest -L main --verbose --timeout 2700
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
|
|
@ -443,7 +473,7 @@ jobs:
|
|||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc3.1.0-devel-ubuntu22.04
|
||||
container: mthreads/musa:rc3.1.1-devel-ubuntu22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
|
@ -1345,8 +1375,10 @@ jobs:
|
|||
|
||||
needs:
|
||||
- ubuntu-cpu-cmake
|
||||
- ubuntu-22-cmake-vulkan
|
||||
- windows-latest-cmake
|
||||
- windows-2019-cmake-cuda
|
||||
- windows-latest-cmake-sycl
|
||||
- windows-latest-cmake-hip-release
|
||||
- macOS-latest-cmake-arm64
|
||||
- macOS-latest-cmake-x64
|
||||
|
|
|
|||
|
|
@ -51,6 +51,8 @@ jobs:
|
|||
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v3
|
||||
with:
|
||||
image: tonistiigi/binfmt:qemu-v7.0.0-28
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ jobs:
|
|||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
repository: "ggerganov/llama.cpp"
|
||||
repository: "ggml-org/llama.cpp"
|
||||
- uses: actions/labeler@v5
|
||||
with:
|
||||
configuration-path: '.github/labeler.yml'
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@
|
|||
|
||||
- Squash-merge PRs
|
||||
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
|
||||
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
|
||||
|
||||
# Coding guidelines
|
||||
|
|
@ -40,14 +40,14 @@
|
|||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
||||

|
||||
|
||||
# Naming guidelines
|
||||
|
||||
- Use `snake_case` for function, variable and type names
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
|
||||
- Naming usually optimizes for longest common prefix (see https://github.com/ggml-org/ggml/pull/302#discussion_r1243240963)
|
||||
|
||||
```cpp
|
||||
// not OK
|
||||
|
|
@ -122,4 +122,4 @@
|
|||
|
||||
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/projects
|
||||
https://github.com/ggml-org/llama.cpp/projects
|
||||
|
|
|
|||
8
Makefile
8
Makefile
|
|
@ -1,5 +1,5 @@
|
|||
ifndef LLAMA_MAKEFILE
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
endif
|
||||
|
||||
# Define the default target now so that it is always the first target
|
||||
|
|
@ -463,7 +463,7 @@ endif
|
|||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
# https://github.com/ggml-org/llama.cpp/issues/2922
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
|
||||
|
|
@ -1078,8 +1078,8 @@ endif
|
|||
ifdef REMOVE_WARNING
|
||||
$(info !!! REMOVAL WARNING !!!)
|
||||
$(info The following LLAMA_ options have been removed and are no longer supported)
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggerganov/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggml-org/llama.cpp/pull/9418))
|
||||
$(info )
|
||||
endif
|
||||
|
||||
|
|
|
|||
75
README.md
75
README.md
|
|
@ -3,26 +3,33 @@
|
|||

|
||||
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
[Roadmap](https://github.com/users/ggml-org/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
|
||||
> [!IMPORTANT]
|
||||
> New `llama.cpp` package location: [ggml-org/llama.cpp](https://github.com/ggml-org/llama.cpp/pkgs/container/llama.cpp)
|
||||
>
|
||||
> Update your container URLs to: `ghcr.io/ggml-org/llama.cpp`
|
||||
>
|
||||
> More info: https://github.com/ggml-org/llama.cpp/discussions/11801
|
||||
|
||||
## Recent API changes
|
||||
|
||||
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
|
||||
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
|
||||
- [Changelog for `llama-server` REST API](https://github.com/ggml-org/llama.cpp/issues/9291)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggerganov/llama.cpp/pull/11427
|
||||
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
|
||||
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
|
||||
- Universal tool call support in `llama-server`: https://github.com/ggerganov/llama.cpp/pull/9639
|
||||
- Universal tool call support in `llama-server`: https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
----
|
||||
|
||||
|
|
@ -39,7 +46,7 @@ range of hardware - locally and in the cloud.
|
|||
- Vulkan and SYCL backend support
|
||||
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
|
||||
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggml-org/ggml) library.
|
||||
|
||||
<details>
|
||||
<summary>Models</summary>
|
||||
|
|
@ -59,23 +66,23 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423)
|
||||
- [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
|
||||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417)
|
||||
- [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553)
|
||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||
- [X] [StableLM models](https://huggingface.co/stabilityai)
|
||||
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
|
||||
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
|
||||
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
|
||||
- [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557)
|
||||
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
|
||||
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
|
||||
- [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003)
|
||||
- [x] [GPT-2](https://huggingface.co/gpt2)
|
||||
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
|
||||
- [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118)
|
||||
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
|
||||
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
|
||||
- [x] [Gemma](https://ai.google.dev/gemma)
|
||||
|
|
@ -146,7 +153,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
|
||||
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
|
||||
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
|
||||
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326)
|
||||
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
|
|
@ -235,6 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
|||
| [HIP](docs/build.md#hip) | AMD GPU |
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
|
||||
## Building the project
|
||||
|
||||
|
|
@ -244,7 +252,7 @@ The project also includes many example programs and tools using the `llama` libr
|
|||
- Clone this repository and build locally, see [how to build](docs/build.md)
|
||||
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
|
||||
- Use a Docker image, see [documentation for Docker](docs/docker.md)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
|
||||
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
|
|
@ -257,14 +265,14 @@ You can either manually download the GGUF file or directly use any `llama.cpp`-c
|
|||
|
||||
After downloading a model, use the CLI tools to run it locally - see below.
|
||||
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggml-org/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
|
||||
|
||||
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
|
||||
|
||||
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
|
||||
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
|
||||
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
|
||||
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
|
||||
|
||||
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
|
||||
|
||||
|
|
@ -487,9 +495,9 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
|
||||
- Collaborators will be invited based on contributions
|
||||
- Any help with managing issues, PRs and projects is very appreciated!
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
|
||||
- Make sure to read this: [Inference at the edge](https://github.com/ggml-org/llama.cpp/discussions/205)
|
||||
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
|
||||
|
||||
## Other documentation
|
||||
|
|
@ -504,7 +512,7 @@ To learn more about model quantization, [read this documentation](examples/quant
|
|||
- [Running on Docker](docs/docker.md)
|
||||
- [Build on Android](docs/android.md)
|
||||
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
- [GGML tips & tricks](https://github.com/ggml-org/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
|
||||
#### Seminal papers and background on the models
|
||||
|
||||
|
|
@ -518,5 +526,18 @@ If your issue is with model generation quality, then please at least scan the fo
|
|||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
#### References
|
||||
## Completions
|
||||
Command-line completion is available for some environments.
|
||||
|
||||
#### Bash Completion
|
||||
```bash
|
||||
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
|
||||
$ source ~/.llama-completion.bash
|
||||
```
|
||||
Optionally this can be added to your `.bashrc` or `.bash_profile` to load it
|
||||
automatically. For example:
|
||||
```console
|
||||
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
|
||||
```
|
||||
|
||||
## References
|
||||
|
|
|
|||
|
|
@ -62,6 +62,6 @@ Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-
|
|||
<!-- normal version -->
|
||||
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
|
||||
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
# CI
|
||||
|
||||
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
|
||||
https://github.com/ggml-org/ci
|
||||
|
||||
It monitors the `master` branch for new commits and runs the
|
||||
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
|
||||
to cover various hardware architectures, including GPU and Apple Silicon instances.
|
||||
|
||||
|
|
|
|||
|
|
@ -96,6 +96,22 @@ if (LLAMA_LLGUIDANCE)
|
|||
include(ExternalProject)
|
||||
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
|
||||
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
|
||||
|
||||
# Set the correct library file extension based on platform
|
||||
if (WIN32)
|
||||
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
|
||||
# Add Windows-specific libraries
|
||||
set(LLGUIDANCE_PLATFORM_LIBS
|
||||
ws2_32 # Windows Sockets API
|
||||
userenv # For GetUserProfileDirectoryW
|
||||
ntdll # For NT functions
|
||||
bcrypt # For BCryptGenRandom
|
||||
)
|
||||
else()
|
||||
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
|
||||
set(LLGUIDANCE_PLATFORM_LIBS "")
|
||||
endif()
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.6.12:
|
||||
|
|
@ -106,17 +122,18 @@ if (LLAMA_LLGUIDANCE)
|
|||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND cargo build --release
|
||||
INSTALL_COMMAND ""
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/libllguidance.a ${LLGUIDANCE_PATH}/llguidance.h
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
|
||||
UPDATE_COMMAND ""
|
||||
)
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
|
||||
|
||||
add_library(llguidance STATIC IMPORTED)
|
||||
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/libllguidance.a)
|
||||
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME})
|
||||
add_dependencies(llguidance llguidance_ext)
|
||||
|
||||
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance)
|
||||
# Add platform libraries to the main target
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
|
||||
endif ()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
|
|
|
|||
141
common/arg.cpp
141
common/arg.cpp
|
|
@ -365,6 +365,112 @@ static void common_params_print_usage(common_params_context & ctx_arg) {
|
|||
print_options(specific_options);
|
||||
}
|
||||
|
||||
static void common_params_print_completion(common_params_context & ctx_arg) {
|
||||
std::vector<common_arg *> common_options;
|
||||
std::vector<common_arg *> sparam_options;
|
||||
std::vector<common_arg *> specific_options;
|
||||
|
||||
for (auto & opt : ctx_arg.options) {
|
||||
if (opt.is_sparam) {
|
||||
sparam_options.push_back(&opt);
|
||||
} else if (opt.in_example(ctx_arg.ex)) {
|
||||
specific_options.push_back(&opt);
|
||||
} else {
|
||||
common_options.push_back(&opt);
|
||||
}
|
||||
}
|
||||
|
||||
printf("_llama_completions() {\n");
|
||||
printf(" local cur prev opts\n");
|
||||
printf(" COMPREPLY=()\n");
|
||||
printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
|
||||
printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
|
||||
|
||||
printf(" opts=\"");
|
||||
auto print_options = [](const std::vector<common_arg *> & options) {
|
||||
for (const common_arg * opt : options) {
|
||||
for (const char * arg : opt->args) {
|
||||
printf("%s ", arg);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
print_options(common_options);
|
||||
print_options(sparam_options);
|
||||
print_options(specific_options);
|
||||
printf("\"\n\n");
|
||||
|
||||
printf(" case \"$prev\" in\n");
|
||||
printf(" --model)\n");
|
||||
printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
|
||||
printf(" return 0\n");
|
||||
printf(" ;;\n");
|
||||
printf(" --grammar-file)\n");
|
||||
printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
|
||||
printf(" return 0\n");
|
||||
printf(" ;;\n");
|
||||
printf(" --chat-template-file)\n");
|
||||
printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
|
||||
printf(" return 0\n");
|
||||
printf(" ;;\n");
|
||||
printf(" *)\n");
|
||||
printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
|
||||
printf(" return 0\n");
|
||||
printf(" ;;\n");
|
||||
printf(" esac\n");
|
||||
printf("}\n\n");
|
||||
|
||||
std::set<std::string> executables = {
|
||||
"llama-batched",
|
||||
"llama-batched-bench",
|
||||
"llama-bench",
|
||||
"llama-cli",
|
||||
"llama-convert-llama2c-to-ggml",
|
||||
"llama-cvector-generator",
|
||||
"llama-embedding",
|
||||
"llama-eval-callback",
|
||||
"llama-export-lora",
|
||||
"llama-gbnf-validator",
|
||||
"llama-gen-docs",
|
||||
"llama-gguf",
|
||||
"llama-gguf-hash",
|
||||
"llama-gguf-split",
|
||||
"llama-gritlm",
|
||||
"llama-imatrix",
|
||||
"llama-infill",
|
||||
"llama-llava-cli",
|
||||
"llama-llava-clip-quantize-cli",
|
||||
"llama-lookahead",
|
||||
"llama-lookup",
|
||||
"llama-lookup-create",
|
||||
"llama-lookup-merge",
|
||||
"llama-lookup-stats",
|
||||
"llama-minicpmv-cli",
|
||||
"llama-parallel",
|
||||
"llama-passkey",
|
||||
"llama-perplexity",
|
||||
"llama-q8dot",
|
||||
"llama-quantize",
|
||||
"llama-quantize-stats",
|
||||
"llama-qwen2vl-cli",
|
||||
"llama-retrieval",
|
||||
"llama-run",
|
||||
"llama-save-load-state",
|
||||
"llama-server",
|
||||
"llama-simple",
|
||||
"llama-simple-chat",
|
||||
"llama-speculative",
|
||||
"llama-speculative-simple",
|
||||
"llama-tokenize",
|
||||
"llama-tts",
|
||||
"llama-vdot"
|
||||
};
|
||||
|
||||
for (const auto& exe : executables) {
|
||||
printf("complete -F _llama_completions %s\n", exe.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
auto dev_names = string_split<std::string>(value, ',');
|
||||
|
|
@ -426,6 +532,10 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
|
|||
}
|
||||
exit(0);
|
||||
}
|
||||
if (ctx_arg.params.completion) {
|
||||
common_params_print_completion(ctx_arg);
|
||||
exit(0);
|
||||
}
|
||||
} catch (const std::invalid_argument & ex) {
|
||||
fprintf(stderr, "%s\n", ex.what());
|
||||
ctx_arg.params = params_org;
|
||||
|
|
@ -494,6 +604,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
exit(0);
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--completion-bash"},
|
||||
"print source-able bash completion script for llama.cpp",
|
||||
[](common_params & params) {
|
||||
params.completion = true;
|
||||
}
|
||||
));
|
||||
add_opt(common_arg(
|
||||
{"--verbose-prompt"},
|
||||
string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
|
||||
|
|
@ -674,7 +791,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
));
|
||||
add_opt(common_arg(
|
||||
{"--no-context-shift"},
|
||||
string_format("disables context shift on inifinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
[](common_params & params) {
|
||||
params.ctx_shift = false;
|
||||
}
|
||||
|
|
@ -946,6 +1063,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.sampling.min_p = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-nsigma"}, "N",
|
||||
string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_n_sigma = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
|
|
@ -1445,7 +1569,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
"- isolate: only spawn threads on CPUs on the node that execution started on\n"
|
||||
"- numactl: use the CPU map provided by numactl\n"
|
||||
"if run without this previously, it is recommended to drop the system page cache before using this\n"
|
||||
"see https://github.com/ggerganov/llama.cpp/issues/1437",
|
||||
"see https://github.com/ggml-org/llama.cpp/issues/1437",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
|
||||
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
|
||||
|
|
@ -1975,6 +2099,17 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
params.use_jinja = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-format"}, "FORMAT",
|
||||
"reasoning format (default: deepseek; allowed values: deepseek, none)\n"
|
||||
"controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
|
||||
"only supported for non-streamed responses",
|
||||
[](common_params & params, const std::string & value) {
|
||||
/**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
|
||||
else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
|
||||
else { std::invalid_argument("invalid value"); }
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template"}, "JINJA_TEMPLATE",
|
||||
string_format(
|
||||
|
|
@ -2112,7 +2247,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
|||
).set_env("LLAMA_LOG_VERBOSITY"));
|
||||
add_opt(common_arg(
|
||||
{"--log-prefix"},
|
||||
"Enable prefx in log messages",
|
||||
"Enable prefix in log messages",
|
||||
[](common_params &) {
|
||||
common_log_set_prefix(common_log_main(), true);
|
||||
}
|
||||
|
|
|
|||
321
common/chat.cpp
321
common/chat.cpp
|
|
@ -12,11 +12,13 @@ std::string common_chat_format_name(common_chat_format format) {
|
|||
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
|
||||
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING: return "DeepSeek R1 (extract reasoning)";
|
||||
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
|
||||
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING: return "Command R7B (extract reasoning)";
|
||||
default:
|
||||
throw std::runtime_error("Unknown chat format");
|
||||
}
|
||||
|
|
@ -105,7 +107,6 @@ static common_chat_msg parse_json_tool_calls(
|
|||
std::sregex_iterator rend;
|
||||
std::sregex_iterator rit(it, end, function_regex);
|
||||
if (rit == rend) {
|
||||
fprintf(stderr, "No more tool calls found\n");
|
||||
result.content += std::string(it, end);
|
||||
break;
|
||||
}
|
||||
|
|
@ -115,14 +116,21 @@ static common_chat_msg parse_json_tool_calls(
|
|||
|
||||
json arguments;
|
||||
if (!parse_json(it, end, arguments)) {
|
||||
throw std::runtime_error("Failed to parse json tool call arguments");
|
||||
throw std::runtime_error("Failed to parse json tool call arguments: " + input);
|
||||
}
|
||||
if (!std::regex_search(it, end, match, close_regex)) {
|
||||
throw std::runtime_error("Malformed input, missing closing pattern");
|
||||
throw std::runtime_error("Malformed input, missing closing pattern: " + input);
|
||||
}
|
||||
it = match.suffix().first;
|
||||
result.tool_calls.push_back({name, arguments.is_string() ? arguments.get<std::string>() : arguments.dump(), /* id= */ ""});
|
||||
}
|
||||
|
||||
if (!result.tool_calls.empty()) {
|
||||
if (!string_strip(result.content).empty()) {
|
||||
LOG_WRN("Content found with tool calls: %s\n", result.content.c_str());
|
||||
}
|
||||
result.content = "";
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
@ -134,11 +142,11 @@ static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& in
|
|||
result.role = "assistant";
|
||||
const auto process_tool_calls = [&](const json & tool_calls) {
|
||||
for (const auto & tool_call : tool_calls) {
|
||||
const auto & arguments = tool_call["arguments"];
|
||||
const auto & arguments = tool_call.at("arguments");
|
||||
result.tool_calls.push_back({
|
||||
tool_call["name"],
|
||||
tool_call.at("name"),
|
||||
arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
|
||||
tool_call.contains("id") ? tool_call["id"] : "",
|
||||
tool_call.contains("id") ? tool_call.at("id") : "",
|
||||
});
|
||||
}
|
||||
};
|
||||
|
|
@ -155,7 +163,7 @@ static common_chat_msg parse_prefixed_json_tool_call_array(const std::string& in
|
|||
|
||||
static void foreach_function(const json & tools, const std::function<void(const json &)> & fn) {
|
||||
for (const auto & tool : tools) {
|
||||
if (!tool.contains("type") || tool["type"] != "function" || !tool.contains("function")) {
|
||||
if (!tool.contains("type") || tool.at("type") != "function" || !tool.contains("function")) {
|
||||
LOG_INF("Skipping tool without function: %s", tool.dump(2).c_str());
|
||||
continue;
|
||||
}
|
||||
|
|
@ -190,27 +198,27 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
|
|||
|
||||
auto tool_call_schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
const auto & function = tool.at("function");
|
||||
auto tool_schema = json {
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
{"name", {
|
||||
{"type", "string"},
|
||||
{"const", function["name"]},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"arguments", function["parameters"]},
|
||||
{"arguments", function.at("parameters")},
|
||||
}},
|
||||
{"required", json::array({"name", "arguments"})},
|
||||
};
|
||||
if (function.contains("description")) {
|
||||
tool_schema["description"] = function["description"];
|
||||
tool_schema["description"] = function.at("description");
|
||||
}
|
||||
if (inputs.parallel_tool_calls) {
|
||||
tool_schema["properties"]["id"] = {
|
||||
tool_schema.at("properties")["id"] = {
|
||||
{"type", "string"},
|
||||
{"minLength", 4},
|
||||
};
|
||||
tool_schema["required"].push_back("id");
|
||||
tool_schema.at("required").push_back("id");
|
||||
}
|
||||
tool_call_schemas.emplace_back(tool_schema);
|
||||
});
|
||||
|
|
@ -275,21 +283,21 @@ static common_chat_msg common_chat_parse_generic(const std::string & input) {
|
|||
common_chat_msg result;
|
||||
result.role = "assistant";
|
||||
if (data.contains("tool_calls")) {
|
||||
for (const auto & tool_call : data["tool_calls"]) {
|
||||
for (const auto & tool_call : data.at("tool_calls")) {
|
||||
result.tool_calls.push_back({
|
||||
tool_call["name"],
|
||||
tool_call["arguments"].dump(),
|
||||
tool_call.contains("id") ? tool_call["id"] : "",
|
||||
tool_call.at("name"),
|
||||
tool_call.at("arguments").dump(),
|
||||
tool_call.contains("id") ? tool_call.at("id") : "",
|
||||
});
|
||||
}
|
||||
} else if (data.contains("tool_call")) {
|
||||
result.tool_calls.push_back({
|
||||
data["tool_call"]["name"],
|
||||
data["tool_call"]["arguments"].dump(),
|
||||
data.at("tool_call").at("name"),
|
||||
data.at("tool_call").at("arguments").dump(),
|
||||
/* id= */ "",
|
||||
});
|
||||
} else if (data.contains("response")) {
|
||||
const auto & response = data["response"];
|
||||
const auto & response = data.at("response");
|
||||
result.content = response.is_string() ? response.get<std::string>() : response.dump(2);
|
||||
}
|
||||
return result;
|
||||
|
|
@ -301,7 +309,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
|||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
|
|
@ -309,9 +317,9 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
|||
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
|
||||
{"name", {
|
||||
{"type", "string"},
|
||||
{"const", function["name"]},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"arguments", function["parameters"]},
|
||||
{"arguments", function.at("parameters")},
|
||||
{"id", {
|
||||
{"type", "string"},
|
||||
// Nemo's template expects a 9-character alphanumeric ID.
|
||||
|
|
@ -346,7 +354,7 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
|||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
|
|
@ -357,9 +365,9 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
|||
}},
|
||||
{"tool_name", {
|
||||
{"type", "string"},
|
||||
{"const", function["name"]},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"parameters", function["parameters"]},
|
||||
{"parameters", function.at("parameters")},
|
||||
}},
|
||||
{"required", json::array({"tool_call_id", "tool_name", "parameters"})},
|
||||
});
|
||||
|
|
@ -382,39 +390,65 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
|||
"<|END_THINKING|>",
|
||||
"<|END_ACTION|>",
|
||||
};
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||||
auto adjusted_messages = json::array();
|
||||
for (const auto & msg : inputs.messages) {
|
||||
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
|
||||
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
|
||||
if (has_reasoning_content && has_tool_calls) {
|
||||
auto adjusted_message = msg;
|
||||
adjusted_message["tool_plan"] = msg.at("reasoning_content");
|
||||
adjusted_message.erase("reasoning_content");
|
||||
adjusted_messages.push_back(adjusted_message);
|
||||
} else {
|
||||
adjusted_messages.push_back(msg);
|
||||
}
|
||||
}
|
||||
data.prompt = apply(tmpl, adjusted_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {});
|
||||
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING : COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_command_r7b(const std::string & input) {
|
||||
static std::regex response_regex("<\\|START_RESPONSE\\|>([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
|
||||
static std::regex thought_action_regex("<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|><\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
|
||||
static common_chat_msg common_chat_parse_command_r7b(const std::string & input, bool extract_reasoning) {
|
||||
static std::regex thought_regex("(<\\|START_THINKING\\|>([\\s\\S\\n\\r]*?)<\\|END_THINKING\\|>)([\\s\\S\\n\\r]*)");
|
||||
static std::regex action_regex("<\\|START_ACTION\\|>([\\s\\S\\n\\r]*?)<\\|END_ACTION\\|>");
|
||||
static std::regex response_regex("(?:<\\|START_RESPONSE\\|>)?([\\s\\S\\n\\r]*?)<\\|END_RESPONSE\\|>");
|
||||
|
||||
std::smatch match;
|
||||
|
||||
common_chat_msg result;
|
||||
result.role = "assistant";
|
||||
if (std::regex_match(input, match, response_regex)) {
|
||||
result.content = match[1].str();
|
||||
} else if (std::regex_match(input, match, thought_action_regex)) {
|
||||
result.tool_plan = match[1].str();
|
||||
auto actions_str = match[2].str();
|
||||
|
||||
std::string rest = input;
|
||||
|
||||
if (std::regex_match(rest, match, thought_regex)) {
|
||||
if (extract_reasoning) {
|
||||
result.reasoning_content = match[2].str();
|
||||
} else if (!match[2].str().empty()) {
|
||||
// Let the unparsed thinking tags through in content only if their insides aren't empty.
|
||||
result.content = match[1].str();
|
||||
}
|
||||
rest = match[3].str();
|
||||
}
|
||||
if (std::regex_match(rest, match, action_regex)) {
|
||||
auto actions_str = match[1].str();
|
||||
auto actions = json::parse(actions_str);
|
||||
for (const auto & action : actions) {
|
||||
result.tool_calls.push_back({
|
||||
/* .name = */ action["tool_name"],
|
||||
/* .arguments = */ action["parameters"].dump(),
|
||||
/* .id = */ action["tool_call_id"],
|
||||
/* .name = */ action.at("tool_name"),
|
||||
/* .arguments = */ action.at("parameters").dump(),
|
||||
/* .id = */ action.at("tool_call_id"),
|
||||
});
|
||||
}
|
||||
} else if (std::regex_match(rest, match, response_regex)) {
|
||||
auto response = match[1].str();
|
||||
result.content += response;
|
||||
} else {
|
||||
LOG_ERR("Failed to parse command_r output");
|
||||
result.content = input;
|
||||
result.content += rest;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
static void expect_tool_parameters(const std::string & name, const json & parameters, const std::vector<std::string> & expected_properties) {
|
||||
if (!parameters.is_object() || !parameters.contains("type") || parameters["type"] != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
|
||||
if (!parameters.is_object() || !parameters.contains("type") || parameters.at("type") != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
|
||||
throw std::runtime_error("Parameters of tool " + name + " must be an object w/ required properties");
|
||||
}
|
||||
const auto & parameters_properties = parameters.at("properties");
|
||||
|
|
@ -468,9 +502,9 @@ static common_chat_params common_chat_params_init_llama_3_1_tool_calls(const com
|
|||
};
|
||||
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
std::string name = function["name"];
|
||||
auto parameters = function["parameters"];
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
|
||||
// https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/tool_runtime
|
||||
|
|
@ -546,34 +580,90 @@ static common_chat_msg common_chat_parse_llama_3_1(const std::string & input, bo
|
|||
|
||||
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
common_chat_params data;
|
||||
data.grammar_lazy = inputs.tool_choice != "required";
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
std::string name = function["name"];
|
||||
auto parameters = function["parameters"];
|
||||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||||
"\"<|tool▁call▁begin|>function<|tool▁sep|>" + name + "\\n```json\\n\" " + args_rule + " \"```<|tool▁call▁end|>\""));
|
||||
});
|
||||
data.grammar_triggers.push_back({"<|tool▁calls▁begin|>", /* .at_start = */ false});
|
||||
data.preserved_tokens = {
|
||||
"<|tool▁sep|>",
|
||||
"<|tool▁call▁end|>",
|
||||
};
|
||||
builder.add_rule("root", "\"<|tool▁calls▁begin|>\" (" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " space");
|
||||
}, grammar_options);
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != "required" && inputs.json_schema.is_null();
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||||
"\"<|tool▁call▁begin|>function<|tool▁sep|>" + name + "\\n"
|
||||
"```json\\n\" " + args_rule + " \"```<|tool▁call▁end|>\""));
|
||||
});
|
||||
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
|
||||
// so we accept common variants (then it's all constrained)
|
||||
builder.add_rule("root",
|
||||
"( \"<|tool▁calls▁begin|>\" | \"<|tool_calls_begin|>\" | \"<|tool calls begin|>\" | \"<|tool\\\\_calls\\\\_begin|>\" ) "
|
||||
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
|
||||
"\"<|tool▁calls▁end|>\""
|
||||
" space");
|
||||
data.grammar_triggers.push_back({"<|tool▁calls▁begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool_calls_begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool calls begin|>", /* .at_start = */ false});
|
||||
data.grammar_triggers.push_back({"<|tool\\_calls\\_begin|>", /* .at_start = */ false});
|
||||
data.preserved_tokens = {
|
||||
"<think>",
|
||||
"</think>",
|
||||
"<|tool▁sep|>",
|
||||
"<|tool▁calls▁end|",
|
||||
"<|tool▁call▁end|>",
|
||||
};
|
||||
}, grammar_options);
|
||||
}
|
||||
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
|
||||
// Hacks to fix the official (broken) prompt.
|
||||
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
|
||||
// until the official template is fixed.
|
||||
if (tmpl.source().find("{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}") != std::string::npos) {
|
||||
// Don't leave the chat dangling after tool results
|
||||
if (string_ends_with(prompt, "<|tool▁outputs▁end|>")) {
|
||||
prompt += "<|end▁of▁sentence|>";
|
||||
if (inputs.add_generation_prompt) {
|
||||
prompt += "<|Assistant|>";
|
||||
}
|
||||
}
|
||||
// Fix up tool call delta example added by Minja
|
||||
prompt = std::regex_replace(
|
||||
prompt,
|
||||
std::regex("(<|tool▁call▁end|>)[\\s\\r\\n]*(<|tool▁outputs▁begin|>|<|User|>)"),
|
||||
"$1<|tool▁calls▁end|><|end▁of▁sentence|>$2");
|
||||
}
|
||||
data.prompt = prompt;
|
||||
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||||
data.format = inputs.extract_reasoning ? COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING : COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||||
return data;
|
||||
}
|
||||
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input) {
|
||||
static std::regex trigger_regex("<|tool▁calls▁begin|>");
|
||||
static common_chat_msg common_chat_parse_deepseek_r1(const std::string & input, bool extract_reasoning) {
|
||||
static std::regex function_regex("<|tool▁call▁begin|>function<|tool▁sep|>([^\n]+)\n```json\n");
|
||||
static std::regex close_regex("```<|tool▁call▁end|>");
|
||||
return parse_json_tool_calls(input, trigger_regex, function_regex, close_regex);
|
||||
static std::regex close_regex("```[\\s\\r\\n]*<|tool▁call▁end|>");
|
||||
static std::regex reasoning_content_regex("((?:<think>)?([\\s\\S\\r\\n]*?)</think>)?([\\s\\S\\r\\n]*)");
|
||||
static std::regex tool_calls_regex("[\\s\\r\\n]*(?:<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>)([\\s\\S\\r\\n]*?)<|tool▁calls▁end|>");
|
||||
common_chat_msg msg;
|
||||
msg.role = "assistant";
|
||||
std::smatch match;
|
||||
if (std::regex_match(input, match, reasoning_content_regex)) {
|
||||
std::string rest;
|
||||
if (extract_reasoning) {
|
||||
msg.reasoning_content = string_strip(match[2].str());
|
||||
} else {
|
||||
msg.content = match[1].str();
|
||||
}
|
||||
rest = match[3].str();
|
||||
|
||||
if (std::regex_search(rest, match, tool_calls_regex)) {
|
||||
auto tool_calls = match[1].str();
|
||||
auto msg2 = parse_json_tool_calls(tool_calls, std::nullopt, function_regex, close_regex);
|
||||
msg.tool_calls = std::move(msg2.tool_calls);
|
||||
} else {
|
||||
msg.content += std::string(rest.begin() + rest.find_first_not_of(" \r\n"), rest.end());
|
||||
}
|
||||
} else {
|
||||
msg.content = input;
|
||||
}
|
||||
return msg;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
|
|
@ -583,20 +673,20 @@ static common_chat_params common_chat_params_init_firefunction_v2(const common_c
|
|||
{"datetime", "Jan 29 2025 13:00:00 GMT"},
|
||||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||||
});
|
||||
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != "required";
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
{"name", {
|
||||
{"type", "string"},
|
||||
{"const", function["name"]},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"arguments", function["parameters"]},
|
||||
{"arguments", function.at("parameters")},
|
||||
}},
|
||||
{"required", json::array({"name", "arguments", "id"})},
|
||||
});
|
||||
|
|
@ -628,15 +718,15 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
|||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
|
||||
if (!inputs.tools.is_null() && !inputs.tools.empty()) {
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != "required";
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> first_tool_rules;
|
||||
std::vector<std::string> subsequent_tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
std::string name = function["name"];
|
||||
auto parameters = function["parameters"];
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||||
first_tool_rules.push_back(builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule));
|
||||
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>" + name + "\\n\" " + args_rule));
|
||||
|
|
@ -716,9 +806,9 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
|||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
const auto & parameters = function["parameters"];
|
||||
std::string name = function["name"];
|
||||
const auto & function = tool.at("function");
|
||||
const auto & parameters = function.at("parameters");
|
||||
std::string name = function.at("name");
|
||||
if (name == "python" || name == "ipython") {
|
||||
if (!parameters.contains("type")) {
|
||||
throw std::runtime_error("Missing type in python tool");
|
||||
|
|
@ -789,9 +879,9 @@ static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat
|
|||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
std::vector<std::string> tool_rules;
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool["function"];
|
||||
std::string name = function["name"];
|
||||
auto parameters = function["parameters"];
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
auto parameters = function.at("parameters");
|
||||
builder.resolve_refs(parameters);
|
||||
tool_rules.push_back(builder.add_schema(name + "-call", {
|
||||
{"type", "object"},
|
||||
|
|
@ -839,9 +929,9 @@ static common_chat_msg common_chat_parse_hermes_2_pro(const std::string & input)
|
|||
if (!parse_json(it, end, call)) {
|
||||
throw std::runtime_error("Failed to parse json tool call");
|
||||
}
|
||||
const auto & arguments = call["arguments"];
|
||||
const auto & arguments = call.at("arguments");
|
||||
result.tool_calls.push_back({
|
||||
call["name"],
|
||||
call.at("name"),
|
||||
arguments.dump(),
|
||||
// arguments.is_string() ? arguments.get<std::string>() : arguments.dump(),
|
||||
/* id= */ "",
|
||||
|
|
@ -878,53 +968,78 @@ static common_chat_params common_chat_params_init_without_tools(const common_cha
|
|||
}
|
||||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||||
} else {
|
||||
data.grammar = inputs.grammar.empty();
|
||||
data.grammar = inputs.grammar;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & inputs) {
|
||||
auto has_tools = !inputs.tools.is_null() && inputs.tool_choice != "none";
|
||||
LOG_DBG("[%s] has_tools=%s\n", __func__, has_tools ? "true" : "false");
|
||||
const auto & src = tmpl.source();
|
||||
const auto & caps = tmpl.original_caps();
|
||||
|
||||
if (has_tools && !inputs.grammar.empty()) {
|
||||
throw std::runtime_error("Cannot specify grammar with tools");
|
||||
if (inputs.tools.is_array()) {
|
||||
if (inputs.tool_choice != "none" && !inputs.grammar.empty()) {
|
||||
throw std::runtime_error("Cannot specify grammar with tools");
|
||||
}
|
||||
if (caps.supports_tool_calls && !caps.supports_tools) {
|
||||
LOG_WRN("Template supports tool calls but does not natively describe tools. The fallback behaviour used may produce bad results, inspect prompt w/ --verbose & consider overriding the template.\n");
|
||||
}
|
||||
}
|
||||
|
||||
const auto & src = tmpl.source();
|
||||
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
|
||||
if (src.find("<|tool▁calls▁begin|>") != std::string::npos && inputs.json_schema.is_null()) {
|
||||
return common_chat_params_init_deepseek_r1(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Command R7B: : use handler in all cases except json schema (thinking / tools).
|
||||
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos && inputs.json_schema.is_null()) {
|
||||
return common_chat_params_init_command_r7b(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((!inputs.tools.is_array() && inputs.json_schema.is_object())) {
|
||||
return common_chat_params_init_generic(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Functionary prepends "all\n" to plain content outputs, so we use its handler in all cases.
|
||||
if (src.find(">>>all") != std::string::npos) {
|
||||
// Functionary prepends "all\n" to plain content outputs, so we use the parser no matter when
|
||||
return common_chat_params_init_functionary_v3_2(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Firefunction v2 requires datetime and functions in the context even w/o tools, so we also use its handler in all cases.
|
||||
if (src.find(" functools[") != std::string::npos) {
|
||||
// Firefunction v2 requires datetime and functions in the context, even w/o tools.
|
||||
return common_chat_params_init_firefunction_v2(tmpl, inputs);
|
||||
}
|
||||
|
||||
if (!has_tools) {
|
||||
// Plain handler (no tools)
|
||||
if (inputs.tools.is_null() || inputs.tool_choice == "none") {
|
||||
return common_chat_params_init_without_tools(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
|
||||
if (src.find("<tool_call>") != std::string::npos) {
|
||||
return common_chat_params_init_hermes_2_pro(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Functionary v3.1 (w/ tools)
|
||||
if (src.find("<|start_header_id|>") != std::string::npos
|
||||
&& src.find("<function=") != std::string::npos) {
|
||||
return common_chat_params_init_functionary_v3_1_llama_3_1(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Llama 3.1, 3.2, 3.3 (w/ tools)
|
||||
if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
|
||||
auto allow_python_tag_builtin_tools = src.find("<|python_tag|>") != std::string::npos;
|
||||
return common_chat_params_init_llama_3_1_tool_calls(tmpl, inputs, allow_python_tag_builtin_tools);
|
||||
}
|
||||
if (src.find("<|tool▁calls▁begin|>") != std::string::npos) {
|
||||
return common_chat_params_init_deepseek_r1(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Mistral Nemo (w/ tools)
|
||||
if (src.find("[TOOL_CALLS]") != std::string::npos) {
|
||||
return common_chat_params_init_mistral_nemo(tmpl, inputs);
|
||||
}
|
||||
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos) {
|
||||
return common_chat_params_init_command_r7b(tmpl, inputs);
|
||||
}
|
||||
|
||||
// Generic fallback
|
||||
return common_chat_params_init_generic(tmpl, inputs);
|
||||
}
|
||||
|
||||
|
|
@ -949,7 +1064,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
|
|||
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS:
|
||||
return common_chat_parse_llama_3_1(input, /* with_builtin_tools= */ true);
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1:
|
||||
return common_chat_parse_deepseek_r1(input);
|
||||
return common_chat_parse_deepseek_r1(input, /* extract_reasoning= */ false);
|
||||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING:
|
||||
return common_chat_parse_deepseek_r1(input, /* extract_reasoning= */ true);
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2:
|
||||
return common_chat_parse_functionary_v3_2(input);
|
||||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1:
|
||||
|
|
@ -959,7 +1076,9 @@ common_chat_msg common_chat_parse(const std::string & input, common_chat_format
|
|||
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2:
|
||||
return common_chat_parse_firefunction_v2(input);
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B:
|
||||
return common_chat_parse_command_r7b(input);
|
||||
return common_chat_parse_command_r7b(input, /* extract_reasoning= */ false);
|
||||
case COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING:
|
||||
return common_chat_parse_command_r7b(input, /* extract_reasoning= */ true);
|
||||
default:
|
||||
throw std::runtime_error("Unsupported format: " + common_chat_format_name(format));
|
||||
}
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ struct common_chat_inputs {
|
|||
bool stream;
|
||||
std::string grammar;
|
||||
bool add_generation_prompt = true;
|
||||
bool extract_reasoning = true;
|
||||
};
|
||||
|
||||
enum common_chat_format {
|
||||
|
|
@ -28,11 +29,13 @@ enum common_chat_format {
|
|||
COMMON_CHAT_FORMAT_LLAMA_3_X,
|
||||
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
|
||||
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
|
||||
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
|
||||
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
|
||||
COMMON_CHAT_FORMAT_HERMES_2_PRO,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B,
|
||||
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
|
|
|||
|
|
@ -140,6 +140,7 @@ struct common_params_sampling {
|
|||
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
|
||||
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float top_n_sigma = -1.00f;// -1.0 = disabled
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
bool ignore_eos = false;
|
||||
|
|
@ -202,6 +203,11 @@ struct common_params_vocoder {
|
|||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
|
||||
};
|
||||
|
||||
struct common_params {
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 4096; // context size
|
||||
|
|
@ -292,6 +298,7 @@ struct common_params {
|
|||
bool kl_divergence = false; // compute KL divergence
|
||||
|
||||
bool usage = false; // print usage
|
||||
bool completion = false; // print source-able completion script
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool special = false; // enable special token output
|
||||
bool interactive = false; // interactive mode
|
||||
|
|
@ -346,6 +353,7 @@ struct common_params {
|
|||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
|
||||
|
||||
std::vector<std::string> api_keys;
|
||||
|
||||
|
|
@ -424,13 +432,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
|
|||
//
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# if defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
# else
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
# endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
#else
|
||||
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
|
||||
|
|
@ -623,7 +631,7 @@ struct common_chat_msg {
|
|||
std::string role;
|
||||
std::string content;
|
||||
std::vector<common_tool_call> tool_calls;
|
||||
std::string tool_plan = "";
|
||||
std::string reasoning_content = "";
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <condition_variable>
|
||||
#include <cstdarg>
|
||||
#include <cstdio>
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@
|
|||
|
||||
#ifndef __GNUC__
|
||||
# define LOG_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
#elif defined(__MINGW32__) && !defined(__clang__)
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
|
|
|
|||
|
|
@ -134,11 +134,11 @@ std::string common_params_sampling::print() const {
|
|||
snprintf(result, sizeof(result),
|
||||
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
|
||||
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
|
||||
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
|
||||
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
|
||||
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
|
||||
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
|
||||
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
|
||||
mirostat, mirostat_eta, mirostat_tau);
|
||||
|
||||
return std::string(result);
|
||||
|
|
@ -151,12 +151,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
|
||||
lparams.no_perf = params.no_perf;
|
||||
|
||||
std::vector<const char *> trigger_words;
|
||||
trigger_words.reserve(params.grammar_trigger_words.size());
|
||||
for (const auto & str : params.grammar_trigger_words) {
|
||||
trigger_words.push_back(str.word.c_str());
|
||||
}
|
||||
|
||||
struct llama_sampler * grmr;
|
||||
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
|
||||
#ifdef LLAMA_USE_LLGUIDANCE
|
||||
|
|
@ -165,6 +159,12 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
|
||||
#endif // LLAMA_USE_LLGUIDANCE
|
||||
} else {
|
||||
std::vector<const char *> trigger_words;
|
||||
trigger_words.reserve(params.grammar_trigger_words.size());
|
||||
for (const auto & str : params.grammar_trigger_words) {
|
||||
trigger_words.push_back(str.word.c_str());
|
||||
}
|
||||
|
||||
grmr = params.grammar_lazy
|
||||
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
|
||||
trigger_words.data(), trigger_words.size(),
|
||||
|
|
@ -188,45 +188,51 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
|
|||
params.logit_bias.data()));
|
||||
|
||||
if (params.mirostat == 0) {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
if (params.top_n_sigma >= 0) {
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
|
||||
} else {
|
||||
for (const auto & cnstr : params.samplers) {
|
||||
switch (cnstr) {
|
||||
case COMMON_SAMPLER_TYPE_DRY:
|
||||
{
|
||||
std::vector<const char *> c_breakers;
|
||||
c_breakers.reserve(params.dry_sequence_breakers.size());
|
||||
for (const auto & str : params.dry_sequence_breakers) {
|
||||
c_breakers.push_back(str.c_str());
|
||||
}
|
||||
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
|
||||
}
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_K:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TOP_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_MIN_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_XTC:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TYPICAL_P:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_TEMPERATURE:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_INFILL:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
|
||||
break;
|
||||
case COMMON_SAMPLER_TYPE_PENALTIES:
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "unknown sampler type");
|
||||
}
|
||||
}
|
||||
}
|
||||
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ struct common_speculative_params {
|
|||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
|
||||
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
|
||||
float p_min = 0.9f; // min probability required to accept a token in the draft
|
||||
};
|
||||
|
||||
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
|
||||
|
|
|
|||
|
|
@ -558,7 +558,7 @@ class Model:
|
|||
|
||||
# NOTE: this function is generated by convert_hf_to_gguf_update.py
|
||||
# do not modify it manually!
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
# Marker: Start get_vocab_base_pre
|
||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||
|
|
@ -708,7 +708,7 @@ class Model:
|
|||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {chkhsh}")
|
||||
logger.warning("**************************************************************************************")
|
||||
|
|
@ -2835,7 +2835,7 @@ class InternLM2Model(Model):
|
|||
if chat_eos_token_id is not None:
|
||||
# For the chat model, we replace the eos with '<|im_end|>'.
|
||||
# TODO: this is a hack, should be fixed
|
||||
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
# https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
|
||||
special_vocab.special_token_ids["eos"] = chat_eos_token_id
|
||||
logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
|
||||
" in chat mode so that the conversation can end normally.")
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@
|
|||
# provide the necessary information to llama.cpp via the GGUF header in order to implement
|
||||
# the same pre-tokenizer.
|
||||
#
|
||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
|
||||
#
|
||||
# Instructions:
|
||||
#
|
||||
|
|
@ -246,7 +246,7 @@ src_func = f"""
|
|||
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
|
||||
logger.warning("** - the pre-tokenization config has changed upstream")
|
||||
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
|
||||
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
|
||||
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
|
||||
logger.warning("**")
|
||||
logger.warning(f"** chkhsh: {{chkhsh}}")
|
||||
logger.warning("**************************************************************************************")
|
||||
|
|
|
|||
|
|
@ -395,7 +395,7 @@ if __name__ == '__main__':
|
|||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
|
||||
logger.error("Please refer to https://github.com/ggml-org/llama.cpp/pull/9948")
|
||||
sys.exit(1)
|
||||
|
||||
if base_name in tensor_map:
|
||||
|
|
@ -419,7 +419,7 @@ if __name__ == '__main__':
|
|||
# some archs may have the same tensor for lm_head and output (tie word embeddings)
|
||||
# in this case, adapters targeting lm_head will fail when using llama-export-lora
|
||||
# therefore, we ignore them for now
|
||||
# see: https://github.com/ggerganov/llama.cpp/issues/9065
|
||||
# see: https://github.com/ggml-org/llama.cpp/issues/9065
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
for dest_name, dest_data in dest:
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ $ apt update && apt upgrade -y
|
|||
$ apt install git cmake
|
||||
```
|
||||
|
||||
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
Then, follow the [build instructions](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md), specifically for CMake.
|
||||
|
||||
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,205 @@
|
|||
# llama.cpp for OpenCL
|
||||
|
||||
- [Background](#background)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Model Preparation](#model-preparation)
|
||||
- [CMake Options](#cmake-options)
|
||||
- [Android](#android)
|
||||
- [Windows 11 Arm64](#windows-11-arm64)
|
||||
- [Known Issue](#known-issues)
|
||||
- [TODO](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform, parallel programming of diverse accelerators found in supercomputers, cloud servers, personal computers, mobile devices and embedded platforms. OpenCL specifies a programming language (based on C99) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. Similar to CUDA, OpenCL has been widely used to program GPUs and is supported by most GPU vendors.
|
||||
|
||||
### Llama.cpp + OpenCL
|
||||
|
||||
The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adreno GPU** firstly via OpenCL. Thanks to the portabilty of OpenCL, the OpenCL backend can also run on certain Intel GPUs although the performance is not optimal.
|
||||
|
||||
## OS
|
||||
|
||||
| OS | Status | Verified |
|
||||
|---------|---------|------------------------------------------------|
|
||||
| Android | Support | Snapdragon 8 Gen 3, Snapdragon 8 Elite |
|
||||
| Windows | Support | Windows 11 Arm64 with Snapdragon X Elite |
|
||||
| Linux | Support | Ubuntu 22.04 WSL2 with Intel 12700H |
|
||||
|
||||
## Hardware
|
||||
|
||||
### Adreno GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Adreno GPU | Status |
|
||||
|:------------------------------------:|:-------:|
|
||||
| Adreno 750 (Snapdragon 8 Gen 3) | Support |
|
||||
| Adreno 830 (Snapdragon 8 Elite) | Support |
|
||||
| Adreno X85 (Snapdragon X Elite) | Support |
|
||||
|
||||
## DataType Supports
|
||||
|
||||
| DataType | Status |
|
||||
|:----------------------:|:--------------------------:|
|
||||
| Q4_0 | Support |
|
||||
| Q6_K | Support, but not optimized |
|
||||
|
||||
## Model Preparation
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
|
||||
|
||||
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
|
||||
|
||||
```sh
|
||||
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
|
||||
```
|
||||
|
||||
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
|
||||
|
||||
## CMake Options
|
||||
|
||||
The OpenCL backend has the following CMake options that control the behavior of the backend.
|
||||
|
||||
| CMake options | Default value | Description |
|
||||
|:---------------------------------:|:--------------:|:------------------------------------------|
|
||||
| `GGML_OPENCL_EMBED_KERNELS` | `ON` | Embed OpenCL kernels into the executable. |
|
||||
| `GGML_OPENCL_USE_ADRENO_KERNELS` | `ON` | Use kernels optimized for Adreno. |
|
||||
|
||||
## Android
|
||||
|
||||
Ubuntu 22.04 is used for targeting Android. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Ninja
|
||||
* Python3
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install NDK**
|
||||
|
||||
```sh
|
||||
cd ~
|
||||
wget https://dl.google.com/android/repository/commandlinetools-linux-8512546_latest.zip && \
|
||||
unzip commandlinetools-linux-8512546_latest.zip && \
|
||||
mkdir -p ~/android-sdk/cmdline-tools && \
|
||||
mv cmdline-tools latest && \
|
||||
mv latest ~/android-sdk/cmdline-tools/ && \
|
||||
rm -rf commandlinetools-linux-8512546_latest.zip
|
||||
|
||||
yes | ~/android-sdk/cmdline-tools/latest/bin/sdkmanager "ndk;26.3.11579264"
|
||||
```
|
||||
|
||||
2. **Install OpenCL Headers and Library**
|
||||
|
||||
```sh
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
|
||||
cd OpenCL-Headers && \
|
||||
cp -r CL ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
|
||||
cd OpenCL-ICD-Loader && \
|
||||
mkdir build_ndk26 && cd build_ndk26 && \
|
||||
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DOPENCL_ICD_LOADER_HEADERS_DIR=$HOME/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=24 \
|
||||
-DANDROID_STL=c++_shared && \
|
||||
ninja && \
|
||||
cp libOpenCL.so ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```sh
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && \
|
||||
cd llama.cpp && \
|
||||
mkdir build-android && cd build-android
|
||||
|
||||
cmake .. -G Ninja \
|
||||
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
|
||||
-DANDROID_ABI=arm64-v8a \
|
||||
-DANDROID_PLATFORM=android-28 \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DGGML_OPENCL=ON
|
||||
|
||||
ninja
|
||||
```
|
||||
|
||||
## Windows 11 Arm64
|
||||
|
||||
A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the following tools are accessible from command line,
|
||||
|
||||
* Git
|
||||
* CMake 3.29
|
||||
* Clang 19
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
|
||||
Powershell is used for the following instructions.
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
1. **Install OpenCL Headers and Library**
|
||||
|
||||
```powershell
|
||||
mkdir -p ~/dev/llm
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DBUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
|
||||
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
|
||||
cd ~/dev/llm
|
||||
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
|
||||
mkdir build && cd build
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
|
||||
cmake --build . --target install
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
```powershell
|
||||
|
||||
mkdir -p ~/dev/llm
|
||||
cd ~/dev/llm
|
||||
|
||||
git clone https://github.com/ggml-org/llama.cpp && cd llama.cpp
|
||||
mkdir build && cd build
|
||||
|
||||
cmake .. -G Ninja `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
|
||||
-DBUILD_SHARED_LIBS=OFF `
|
||||
-DGGML_OPENCL=ON
|
||||
ninja
|
||||
```
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Qwen2.5 0.5B model produces gibberish output with Adreno kernels.
|
||||
|
||||
## TODO
|
||||
|
||||
- Fix Qwen2.5 0.5B
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
|
|
@ -36,8 +36,8 @@ The following release is verified with good quality:
|
|||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
|
@ -58,7 +58,7 @@ The following release is verified with good quality:
|
|||
- 2024.3
|
||||
- Release binary files of Windows.
|
||||
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
|
||||
- New base line is ready: [tag b2437](https://github.com/ggml-org/llama.cpp/tree/b2437).
|
||||
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
|
||||
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
|
||||
- Support detecting all GPUs with level-zero and same top **Max compute units**.
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
**To get the Code:**
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
|
@ -46,7 +46,7 @@ cmake --build build --config Release
|
|||
```
|
||||
|
||||
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
|
||||
- Tab Workload: Desktop-development with C++
|
||||
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
|
||||
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
|
||||
|
|
|
|||
|
|
@ -248,7 +248,7 @@ You have successfully set up CUDA on Fedora within a toolbox environment using t
|
|||
|
||||
- **Building `llama.cpp`:**
|
||||
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
|
||||
- Ensure that any CUDA-specific build flags or paths are correctly set in your build configuration.
|
||||
|
||||
- **Using the Toolbox Environment:**
|
||||
|
|
|
|||
|
|
@ -104,16 +104,16 @@ Note: to debug the inference graph: you can use [llama-eval-callback](/examples/
|
|||
|
||||
## GGUF specification
|
||||
|
||||
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
|
||||
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
|
||||
|
||||
## Resources
|
||||
|
||||
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
|
||||
- YaRN RoPE scaling https://github.com/ggml-org/llama.cpp/pull/2268
|
||||
- support Baichuan serial models https://github.com/ggml-org/llama.cpp/pull/3009
|
||||
- support attention bias https://github.com/ggml-org/llama.cpp/pull/4283
|
||||
- Mixtral support https://github.com/ggml-org/llama.cpp/pull/4406
|
||||
- BERT embeddings https://github.com/ggml-org/llama.cpp/pull/5423
|
||||
- Grok-1 support https://github.com/ggml-org/llama.cpp/pull/6204
|
||||
- Command R Plus support https://github.com/ggml-org/llama.cpp/pull/6491
|
||||
- support arch DBRX https://github.com/ggml-org/llama.cpp/pull/6515
|
||||
- How to convert HuggingFace model to GGUF format https://github.com/ggml-org/llama.cpp/discussions/2948
|
||||
|
|
|
|||
|
|
@ -7,21 +7,21 @@
|
|||
## Images
|
||||
We have three Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
|
|
@ -32,25 +32,25 @@ The easiest way to download the models, convert them to ggml and optimize them i
|
|||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-one "/models/" 7B
|
||||
```
|
||||
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a server image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
|
||||
```
|
||||
|
||||
## Docker With CUDA
|
||||
|
|
@ -69,7 +69,7 @@ You may want to pass in some different `ARGS`, depending on the CUDA environment
|
|||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `12.6.0`
|
||||
- `CUDA_VERSION` set to `12.4.0`
|
||||
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
|
|
@ -104,7 +104,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
|
|||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc3.1.0`
|
||||
- `MUSA_VERSION` set to `rc3.1.1`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
|
|
|
|||
|
|
@ -7,7 +7,7 @@ On Mac and Linux, the homebrew package manager can be used via
|
|||
```sh
|
||||
brew install llama.cpp
|
||||
```
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
|
||||
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
|
||||
|
||||
## Nix
|
||||
|
||||
|
|
|
|||
|
|
@ -13,13 +13,15 @@ cmake -B build -DLLAMA_LLGUIDANCE=ON
|
|||
make -C build -j
|
||||
```
|
||||
|
||||
For Windows use `cmake --build build --config Release` instead of `make`.
|
||||
|
||||
This requires the Rust compiler and the `cargo` tool to be [installed](https://www.rust-lang.org/tools/install).
|
||||
|
||||
## Interface
|
||||
|
||||
There are no new command-line arguments or modifications to `common_params`. When enabled, grammars starting with `%llguidance` are passed to LLGuidance instead of the [current](../grammars/README.md) llama.cpp grammars. Additionally, JSON Schema requests (e.g., using the `-j` argument in `llama-cli`) are also passed to LLGuidance.
|
||||
|
||||
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
|
||||
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/python/llguidance/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
|
||||
|
||||
## Performance
|
||||
|
||||
|
|
|
|||
|
|
@ -3,9 +3,9 @@
|
|||
This example demonstrates how to generate a control vector using gguf models.
|
||||
|
||||
Related PRs:
|
||||
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
|
||||
- [Add support for control vectors](https://github.com/ggml-org/llama.cpp/pull/5970)
|
||||
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggml-org/llama.cpp/issues/6880)
|
||||
- [Add cvector-generator example](https://github.com/ggml-org/llama.cpp/pull/7514)
|
||||
|
||||
## Examples
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
# llama.cpp/examples/imatrix
|
||||
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
|
||||
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enhance the quality of the quantized models.
|
||||
More information is available here: https://github.com/ggml-org/llama.cpp/pull/4861
|
||||
|
||||
## Usage
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
|
|
@ -99,7 +100,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
|
|||
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
|
||||
|
||||
// this has been adapted to the new format of storing merged experts in a single 3d tensor
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
|
||||
if (t->op == GGML_OP_MUL_MAT_ID) {
|
||||
// ids -> [n_experts_used, n_tokens]
|
||||
// src1 -> [cols, n_expert_used, n_tokens]
|
||||
|
|
|
|||
|
|
@ -876,8 +876,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
struct test {
|
||||
static const std::string build_commit;
|
||||
static const int build_number;
|
||||
static const std::string cpu_info;
|
||||
static const std::string gpu_info;
|
||||
const std::string cpu_info;
|
||||
const std::string gpu_info;
|
||||
std::string model_filename;
|
||||
std::string model_type;
|
||||
uint64_t model_size;
|
||||
|
|
@ -903,7 +903,10 @@ struct test {
|
|||
std::string test_time;
|
||||
std::vector<uint64_t> samples_ns;
|
||||
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
|
||||
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
|
||||
cpu_info(get_cpu_info()),
|
||||
gpu_info(get_gpu_info()) {
|
||||
|
||||
model_filename = inst.model;
|
||||
char buf[128];
|
||||
llama_model_desc(lmodel, buf, sizeof(buf));
|
||||
|
|
@ -1058,8 +1061,6 @@ struct test {
|
|||
|
||||
const std::string test::build_commit = LLAMA_COMMIT;
|
||||
const int test::build_number = LLAMA_BUILD_NUMBER;
|
||||
const std::string test::cpu_info = get_cpu_info();
|
||||
const std::string test::gpu_info = get_gpu_info();
|
||||
|
||||
struct printer {
|
||||
virtual ~printer() {}
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ project("llama-android")
|
|||
#include(FetchContent)
|
||||
#FetchContent_Declare(
|
||||
# llama
|
||||
# GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||
# GIT_REPOSITORY https://github.com/ggml-org/llama.cpp
|
||||
# GIT_TAG master
|
||||
#)
|
||||
|
||||
|
|
|
|||
|
|
@ -3,9 +3,9 @@
|
|||
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
|
||||
point for more advanced projects.
|
||||
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
|
||||
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
|
||||
|
||||

|
||||

|
||||
|
||||
Video demonstration:
|
||||
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@
|
|||
"
|
||||
" :call llama#init()
|
||||
"
|
||||
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
|
||||
" more info: https://github.com/ggml-org/llama.cpp/pull/9787
|
||||
"
|
||||
|
||||
" colors (adjust to your liking)
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
|
|||
```
|
||||
|
||||
Build llama.cpp using `CMake`:
|
||||
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
|
||||
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md
|
||||
|
||||
```bash
|
||||
cmake -B build
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
|
|||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
|
|
|||
|
|
@ -4,4 +4,4 @@ Demonstration of lookahead decoding technique:
|
|||
|
||||
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||
|
||||
More info: https://github.com/ggerganov/llama.cpp/pull/4207
|
||||
More info: https://github.com/ggml-org/llama.cpp/pull/4207
|
||||
|
|
|
|||
|
|
@ -8,5 +8,5 @@ The key parameters for lookup decoding are `ngram_min`, `ngram_max` and `n_draft
|
|||
|
||||
More info:
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/pull/4484
|
||||
https://github.com/ggerganov/llama.cpp/issues/4226
|
||||
https://github.com/ggml-org/llama.cpp/pull/4484
|
||||
https://github.com/ggml-org/llama.cpp/issues/4226
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# llama.cpp/examples/main
|
||||
|
||||
This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
|
||||
This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggml-org/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
|
|
@ -121,7 +121,7 @@ When --in-prefix or --in-suffix options are enabled the chat template ( --chat-t
|
|||
|
||||
### Chat templates
|
||||
|
||||
`--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled.
|
||||
`--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled.
|
||||
|
||||
Example usage: `--chat-template gemma`
|
||||
|
||||
|
|
@ -265,6 +265,14 @@ Being experimental and unique, XTC is disabled by default. The recommended combi
|
|||
|
||||
Example usage: `--xtc-probability 0.5 --xtc-threshold 0.1`
|
||||
|
||||
### Top-nσ Sampling
|
||||
|
||||
- `--top-nsigma N`: Limit the next token selection to a subset of tokens with pre-softmax logits that are within n * σ less than the max logit (default: -1, -1 = disabled).
|
||||
|
||||
Top-nσ sampling is a text generation method that selects tokens based on a statistical threshold in pre-softmax logits. It works by only sampling from tokens with logits that are within n * σ of the maximum logit. This method helps maintain a stable sampling space regardless of temperature scaling, allowing it to perform well on reasoning tasks even in high temperatures. Without complex probability manipulation, it efficiently filters tokens directly on the pre-softmax logits. A higher value for top-nsigma (e.g., 5) will take more noisy tokens into consideration, while a lower value (e.g., 1) will focous on the more informative region of the sampling space.
|
||||
|
||||
Example usage: `--top-nsigma 1`
|
||||
|
||||
### Logit Bias
|
||||
|
||||
- `-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS`: Modify the likelihood of a token appearing in the generated text completion.
|
||||
|
|
|
|||
|
|
@ -5,8 +5,8 @@ models ability to recall information from long contexts.
|
|||
|
||||
See the following PRs for more info:
|
||||
|
||||
- https://github.com/ggerganov/llama.cpp/pull/3856
|
||||
- https://github.com/ggerganov/llama.cpp/pull/4810
|
||||
- https://github.com/ggml-org/llama.cpp/pull/3856
|
||||
- https://github.com/ggml-org/llama.cpp/pull/4810
|
||||
|
||||
### Usage
|
||||
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <chrono>
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
|
|
|
|||
|
|
@ -23,7 +23,7 @@ def create_completion(host, prompt, gbnf_grammar):
|
|||
"""Calls the /completion API on llama-server.
|
||||
|
||||
See
|
||||
https://github.com/ggerganov/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
https://github.com/ggml-org/llama.cpp/tree/HEAD/examples/server#api-endpoints
|
||||
"""
|
||||
print(f" Request:\n Grammar:\n{textwrap.indent(gbnf_grammar, ' ')}\n Prompt:\n{textwrap.indent(prompt.rstrip(), ' ')}")
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
|
|
|||
|
|
@ -69,22 +69,22 @@ Several quantization methods are supported. They differ in the resulting model d
|
|||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||||
- [k-quants](https://github.com/ggml-org/llama.cpp/pull/1684)
|
||||
- recent k-quants improvements and new i-quants
|
||||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
|
||||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
|
||||
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
|
||||
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
|
||||
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
|
||||
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
|
||||
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
|
||||
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
|
||||
- [#4996 - k-quants tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
|
||||
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
|
||||
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
|
||||
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
|
||||
- [#2707](https://github.com/ggml-org/llama.cpp/pull/2707)
|
||||
- [#2807](https://github.com/ggml-org/llama.cpp/pull/2807)
|
||||
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggml-org/llama.cpp/pull/4773)
|
||||
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggml-org/llama.cpp/pull/4856)
|
||||
- [#4861 - importance matrix](https://github.com/ggml-org/llama.cpp/pull/4861)
|
||||
- [#4872 - MoE models](https://github.com/ggml-org/llama.cpp/pull/4872)
|
||||
- [#4897 - 2-bit quantization](https://github.com/ggml-org/llama.cpp/pull/4897)
|
||||
- [#4930 - imatrix for all k-quants](https://github.com/ggml-org/llama.cpp/pull/4930)
|
||||
- [#4951 - imatrix on the GPU](https://github.com/ggml-org/llama.cpp/pull/4957)
|
||||
- [#4969 - imatrix for legacy quants](https://github.com/ggml-org/llama.cpp/pull/4969)
|
||||
- [#4996 - k-quants tuning](https://github.com/ggml-org/llama.cpp/pull/4996)
|
||||
- [#5060 - Q3_K_XS](https://github.com/ggml-org/llama.cpp/pull/5060)
|
||||
- [#5196 - 3-bit i-quants](https://github.com/ggml-org/llama.cpp/pull/5196)
|
||||
- [quantization tuning](https://github.com/ggml-org/llama.cpp/pull/5320), [another one](https://github.com/ggml-org/llama.cpp/pull/5334), and [another one](https://github.com/ggml-org/llama.cpp/pull/5361)
|
||||
|
||||
**Llama 2 7B**
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
Demonstration of simple retrieval technique based on cosine similarity
|
||||
|
||||
More info:
|
||||
https://github.com/ggerganov/llama.cpp/pull/6193
|
||||
https://github.com/ggml-org/llama.cpp/pull/6193
|
||||
|
||||
### How to use
|
||||
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
|
|||
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
if (MINGW)
|
||||
# fix: https://github.com/ggerganov/llama.cpp/actions/runs/9651004652/job/26617901362?pr=8006
|
||||
# fix: https://github.com/ggml-org/llama.cpp/actions/runs/9651004652/job/26617901362?pr=8006
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -7,14 +7,14 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
|
|||
**Features:**
|
||||
* LLM inference of F16 and quantized models on GPU and CPU
|
||||
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
|
||||
* Reranking endoint (WIP: https://github.com/ggerganov/llama.cpp/pull/9510)
|
||||
* Reranking endoint (WIP: https://github.com/ggml-org/llama.cpp/pull/9510)
|
||||
* Parallel decoding with multi-user support
|
||||
* Continuous batching
|
||||
* Multimodal (wip)
|
||||
* Monitoring endpoints
|
||||
* Schema-constrained JSON response format
|
||||
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
|
||||
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggml-org/llama.cpp/issues/4216).
|
||||
|
||||
## Usage
|
||||
|
||||
|
|
@ -65,7 +65,7 @@ The project is under active development, and we are [looking for feedback and co
|
|||
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
|
||||
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
|
||||
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
|
||||
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggerganov/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
|
||||
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggml-org/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
|
||||
| `-dev, --device <dev1,dev2,..>` | comma-separated list of devices to use for offloading (none = don't offload)<br/>use --list-devices to see a list of available devices<br/>(env: LLAMA_ARG_DEVICE) |
|
||||
| `--list-devices` | print list of available devices and exit |
|
||||
| `-ngl, --gpu-layers, --n-gpu-layers N` | number of layers to store in VRAM<br/>(env: LLAMA_ARG_N_GPU_LAYERS) |
|
||||
|
|
@ -127,6 +127,7 @@ The project is under active development, and we are [looking for feedback and co
|
|||
| `--grammar-file FNAME` | file to read grammar from |
|
||||
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
|
||||
| `--jinja` | Enable experimental Jinja templating engine (required for tool use) |
|
||||
| `--reasoning-format FORMAT` | Controls extraction of model thinking traces and the format / field in which they are returned (default: `deepseek`; allowed values: `deepseek`, `none`; requires `--jinja`). `none` will leave thinking traces inline in `message.content` in a model-specific format, while `deepseek` will return them separately under `message.reasoning_content` |
|
||||
|
||||
**Example-specific params**
|
||||
|
||||
|
|
@ -177,7 +178,7 @@ Example usage of docker compose with environment variables:
|
|||
```yml
|
||||
services:
|
||||
llamacpp-server:
|
||||
image: ghcr.io/ggerganov/llama.cpp:server
|
||||
image: ghcr.io/ggml-org/llama.cpp:server
|
||||
ports:
|
||||
- 8080:8080
|
||||
volumes:
|
||||
|
|
@ -272,10 +273,10 @@ You can consume the endpoints with Postman or NodeJS with axios library. You can
|
|||
### Docker
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
|
||||
# or, with CUDA:
|
||||
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
|
||||
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggml-org/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
|
||||
```
|
||||
|
||||
## Testing with CURL
|
||||
|
|
@ -1065,7 +1066,7 @@ print(completion.choices[0].text)
|
|||
|
||||
### POST `/v1/chat/completions`: OpenAI-compatible Chat Completions API
|
||||
|
||||
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
|
||||
Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only models with a [supported chat template](https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, the ChatML template will be used.
|
||||
|
||||
*Options:*
|
||||
|
||||
|
|
@ -1119,7 +1120,7 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
|
||||
*Tool call support*
|
||||
|
||||
[Function calling](https://platform.openai.com/docs/guides/function-calling) is supported for all models (see https://github.com/ggerganov/llama.cpp/pull/9639):
|
||||
[Function calling](https://platform.openai.com/docs/guides/function-calling) is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
|
||||
|
||||
- Requires `--jinja` flag
|
||||
- Native tool call formats supported:
|
||||
|
|
@ -1136,61 +1137,252 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
|
||||
| Template | Format |
|
||||
|----------|--------|
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | generic tool calls |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | generic tool calls |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | generic tool calls |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | generic tool calls |
|
||||
| NexaAIDev-Octopus-v2.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | generic tool calls |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | hermes 2 pro tool calls |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | generic tool calls |
|
||||
| Qwen-QwQ-32B-Preview.jinja | hermes 2 pro tool calls |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | generic tool calls |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | generic tool calls |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | hermes 2 pro tool calls |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | hermes 2 pro tool calls |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | generic tool calls |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | generic tool calls |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | generic tool calls |
|
||||
| databricks-dbrx-instruct.jinja | generic tool calls |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | generic tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | deepseek r1 tool calls |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | generic tool calls |
|
||||
| google-gemma-2-2b-it.jinja | generic tool calls |
|
||||
| google-gemma-7b-it.jinja | generic tool calls |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | generic tool calls |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | generic tool calls |
|
||||
| meetkai-functionary-medium-v3.2.jinja | functionary v3.2 tool calls |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | llama 3.x tool calls |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | generic tool calls |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | generic tool calls |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | generic tool calls |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | mistral nemo tool calls |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | generic tool calls |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | mistral nemo tool calls |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | generic tool calls |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | generic tool calls |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | llama 3.x tool calls (w/ builtin tools) |
|
||||
| openchat-openchat-3.5-0106.jinja | generic tool calls |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | generic tool calls |
|
||||
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
|
||||
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| CohereForAI-aya-expanse-8b.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
|
||||
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
|
||||
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
|
||||
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
|
||||
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
|
||||
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
|
||||
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
|
||||
| HelpingAI-HAI-SER.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
|
||||
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
|
||||
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
|
||||
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
|
||||
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
|
||||
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
|
||||
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
|
||||
| LatitudeGames-Wayfarer-12B.jinja | Generic |
|
||||
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
|
||||
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
|
||||
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
|
||||
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| NexaAIDev-Octopus-v2.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
|
||||
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
|
||||
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| OnlyCheeini-greesychat-turbo.jinja | Generic |
|
||||
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
|
||||
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
|
||||
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
|
||||
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
|
||||
| Qwen-QVQ-72B-Preview.jinja | Generic |
|
||||
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
|
||||
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
|
||||
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
|
||||
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
|
||||
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
|
||||
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
|
||||
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
|
||||
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
|
||||
| THUDM-glm-4-9b-chat.jinja | Generic |
|
||||
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
|
||||
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
|
||||
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
|
||||
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
|
||||
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
|
||||
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
|
||||
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
|
||||
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
|
||||
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
|
||||
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
|
||||
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
|
||||
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
|
||||
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
|
||||
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
|
||||
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
|
||||
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
|
||||
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| databricks-dbrx-instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
|
||||
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
|
||||
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
|
||||
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
|
||||
| dicta-il-dictalm2.0-instruct.jinja | Generic |
|
||||
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
|
||||
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
|
||||
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
|
||||
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
|
||||
| google-gemma-2-27b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-it.jinja | Generic |
|
||||
| google-gemma-2-2b-jpn-it.jinja | Generic |
|
||||
| google-gemma-7b-it.jinja | Generic |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
|
||||
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
|
||||
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
|
||||
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
|
||||
| jinaai-ReaderLM-v2.jinja | Generic |
|
||||
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
|
||||
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
|
||||
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
|
||||
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
|
||||
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
|
||||
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
|
||||
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
|
||||
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
|
||||
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
|
||||
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
|
||||
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
|
||||
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
|
||||
| microsoft-phi-4.jinja | Generic |
|
||||
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
|
||||
| ministral-Ministral-3b-instruct.jinja | Generic |
|
||||
| mistralai-Codestral-22B-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
|
||||
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
|
||||
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
|
||||
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
|
||||
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
|
||||
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| mlabonne-AlphaMonarch-7B.jinja | Generic |
|
||||
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
|
||||
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
|
||||
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| netcat420-MFANNv0.20.jinja | Generic |
|
||||
| netcat420-MFANNv0.24.jinja | Generic |
|
||||
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
|
||||
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
|
||||
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
|
||||
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
|
||||
| openchat-openchat-3.5-0106.jinja | Generic |
|
||||
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
|
||||
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
|
||||
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
|
||||
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
|
||||
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
|
||||
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
|
||||
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
|
||||
| prithivMLmods-GWQ2b.jinja | Generic |
|
||||
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
|
||||
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
|
||||
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
|
||||
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
|
||||
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
|
||||
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
|
||||
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
|
||||
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
|
||||
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
|
||||
| sthenno-tempesthenno-icy-0130.jinja | Generic |
|
||||
| sumink-qwft.jinja | Hermes 2 Pro |
|
||||
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
|
||||
| thirdeyeai-elevate360m.jinja | Generic |
|
||||
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
|
||||
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
|
||||
| upstage-solar-pro-preview-instruct.jinja | Generic |
|
||||
| whyhow-ai-PatientSeek.jinja | Generic |
|
||||
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
|
||||
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
|
||||
|
||||
This table can be generated with:
|
||||
|
||||
```bash
|
||||
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
|
|
@ -1202,11 +1394,20 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
|
||||
```shell
|
||||
# Native support:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
|
||||
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
|
||||
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
|
||||
|
||||
# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
|
||||
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
|
||||
|
||||
# Native support requires the right template for these GGUFs:
|
||||
|
||||
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
|
||||
|
|
@ -1236,17 +1437,17 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"get_current_weather",
|
||||
"description":"Get the current weather in a given location",
|
||||
"name":"python",
|
||||
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"location":{
|
||||
"code":{
|
||||
"type":"string",
|
||||
"description":"The city and state, e.g. San Francisco, CA"
|
||||
"description":"The code to run in the ipython interpreter."
|
||||
}
|
||||
},
|
||||
"required":["location"]
|
||||
"required":["code"]
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1254,7 +1455,7 @@ curl http://localhost:8080/v1/chat/completions \
|
|||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the weather like in Istanbul?."
|
||||
"content": "Print a hello world message with python."
|
||||
}
|
||||
]
|
||||
}'
|
||||
|
|
@ -1398,7 +1599,7 @@ Apart from error types supported by OAI, we also have custom types that are spec
|
|||
|
||||
### Legacy completion web UI
|
||||
|
||||
A new chat-based UI has replaced the old completion-based since [this PR](https://github.com/ggerganov/llama.cpp/pull/10175). If you want to use the old completion, start the server with `--path ./examples/server/public_legacy`
|
||||
A new chat-based UI has replaced the old completion-based since [this PR](https://github.com/ggml-org/llama.cpp/pull/10175). If you want to use the old completion, start the server with `--path ./examples/server/public_legacy`
|
||||
|
||||
For example:
|
||||
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
|
@ -42,7 +42,7 @@ enum stop_type {
|
|||
STOP_TYPE_LIMIT,
|
||||
};
|
||||
|
||||
// state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
|
||||
// state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
|
||||
enum slot_state {
|
||||
SLOT_STATE_IDLE,
|
||||
SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
|
||||
|
|
@ -173,6 +173,7 @@ struct slot_params {
|
|||
{"grammar_trigger_words", grammar_trigger_words},
|
||||
{"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
|
||||
{"preserved_tokens", sampling.preserved_tokens},
|
||||
{"chat_format", common_chat_format_name(oaicompat_chat_format)},
|
||||
{"samplers", samplers},
|
||||
{"speculative.n_max", speculative.n_max},
|
||||
{"speculative.n_min", speculative.n_min},
|
||||
|
|
@ -724,9 +725,19 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||
msg.content = content;
|
||||
}
|
||||
|
||||
json tool_calls;
|
||||
json message {
|
||||
{"role", "assistant"},
|
||||
};
|
||||
if (!msg.reasoning_content.empty()) {
|
||||
message["reasoning_content"] = msg.reasoning_content;
|
||||
}
|
||||
if (msg.content.empty() && !msg.tool_calls.empty()) {
|
||||
message["content"] = json();
|
||||
} else {
|
||||
message["content"] = msg.content;
|
||||
}
|
||||
if (!msg.tool_calls.empty()) {
|
||||
tool_calls = json::array();
|
||||
auto tool_calls = json::array();
|
||||
for (const auto & tc : msg.tool_calls) {
|
||||
tool_calls.push_back({
|
||||
{"type", "function"},
|
||||
|
|
@ -737,15 +748,7 @@ struct server_task_result_cmpl_final : server_task_result {
|
|||
{"id", tc.id},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
json message {
|
||||
{"content", msg.content},
|
||||
{"tool_calls", tool_calls},
|
||||
{"role", "assistant"},
|
||||
};
|
||||
if (!msg.tool_plan.empty()) {
|
||||
message["tool_plan"] = msg.tool_plan;
|
||||
message["tool_calls"] = tool_calls;
|
||||
}
|
||||
|
||||
json choice {
|
||||
|
|
@ -1600,6 +1603,10 @@ struct server_queue {
|
|||
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (!running) {
|
||||
QUE_DBG("%s", "terminate\n");
|
||||
return;
|
||||
}
|
||||
if (queue_tasks.empty()) {
|
||||
lock.unlock();
|
||||
break;
|
||||
|
|
@ -1620,11 +1627,11 @@ struct server_queue {
|
|||
QUE_DBG("%s", "waiting for new tasks\n");
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (!running) {
|
||||
QUE_DBG("%s", "terminate\n");
|
||||
return;
|
||||
}
|
||||
if (queue_tasks.empty()) {
|
||||
if (!running) {
|
||||
QUE_DBG("%s", "terminate\n");
|
||||
return;
|
||||
}
|
||||
condition_tasks.wait(lock, [&]{
|
||||
return (!queue_tasks.empty() || !running);
|
||||
});
|
||||
|
|
@ -2069,8 +2076,8 @@ struct server_context {
|
|||
|
||||
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
||||
// Might be better to reject the request with a 400 ?
|
||||
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.params.n_predict, slot.n_predict);
|
||||
slot.params.n_predict = slot.n_predict;
|
||||
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
|
||||
}
|
||||
|
||||
if (slot.params.ignore_eos && has_eos_token) {
|
||||
|
|
@ -2275,7 +2282,7 @@ struct server_context {
|
|||
for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
|
||||
result.probs.push_back({
|
||||
cur_p->data[i].id,
|
||||
common_detokenize(ctx, {cur_p->data[i].id}, special),
|
||||
common_token_to_piece(ctx, cur_p->data[i].id, special),
|
||||
cur_p->data[i].p
|
||||
});
|
||||
}
|
||||
|
|
@ -2297,7 +2304,7 @@ struct server_context {
|
|||
for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
|
||||
result.probs.push_back({
|
||||
cur[i].id,
|
||||
common_detokenize(ctx, {cur[i].id}, special),
|
||||
common_token_to_piece(ctx, cur[i].id, special),
|
||||
cur[i].p
|
||||
});
|
||||
}
|
||||
|
|
@ -3649,7 +3656,7 @@ int main(int argc, char ** argv) {
|
|||
}, {
|
||||
{"name", "n_busy_slots_per_decode"},
|
||||
{"help", "Average number of busy slots per llama_decode() call"},
|
||||
{"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
|
||||
{"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
|
||||
}}},
|
||||
{"gauge", {{
|
||||
{"name", "prompt_tokens_seconds"},
|
||||
|
|
@ -4056,7 +4063,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
auto body = json::parse(req.body);
|
||||
json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
|
||||
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates);
|
||||
|
||||
return handle_completions_impl(
|
||||
SERVER_TASK_TYPE_COMPLETION,
|
||||
|
|
@ -4069,7 +4076,7 @@ int main(int argc, char ** argv) {
|
|||
// same with handle_chat_completions, but without inference part
|
||||
const auto handle_apply_template = [&ctx_server, ¶ms, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
||||
auto body = json::parse(req.body);
|
||||
json data = oaicompat_completion_params_parse(body, params.use_jinja, ctx_server.chat_templates);
|
||||
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates);
|
||||
res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
|
||||
};
|
||||
|
||||
|
|
@ -4430,6 +4437,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// clean up function, to be called before exit
|
||||
auto clean_up = [&svr]() {
|
||||
SRV_INF("%s: cleaning up before exit...\n", __func__);
|
||||
svr->stop();
|
||||
llama_backend_free();
|
||||
};
|
||||
|
|
@ -4446,10 +4454,6 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
if (!was_bound) {
|
||||
//LOG_ERROR("couldn't bind HTTP server socket", {
|
||||
// {"hostname", params.hostname},
|
||||
// {"port", params.port},
|
||||
//});
|
||||
LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
|
||||
clean_up();
|
||||
return 1;
|
||||
|
|
@ -4466,7 +4470,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
if (!ctx_server.load_model(params)) {
|
||||
clean_up();
|
||||
t.join();
|
||||
// t.join(); // FIXME: see below
|
||||
LOG_ERR("%s: exiting due to model loading error\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
|
@ -4490,13 +4494,10 @@ int main(int argc, char ** argv) {
|
|||
});
|
||||
|
||||
shutdown_handler = [&](int) {
|
||||
// this will unblock start_loop()
|
||||
ctx_server.queue_tasks.terminate();
|
||||
};
|
||||
|
||||
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
|
||||
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
struct sigaction sigint_action;
|
||||
sigint_action.sa_handler = signal_handler;
|
||||
|
|
@ -4511,8 +4512,13 @@ int main(int argc, char ** argv) {
|
|||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
#endif
|
||||
|
||||
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
|
||||
|
||||
// this call blocks the main thread until queue_tasks.terminate() is called
|
||||
ctx_server.queue_tasks.start_loop();
|
||||
|
||||
clean_up();
|
||||
t.join();
|
||||
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -92,6 +92,7 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
|
|||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
|
||||
assert expected_function_name == tool_call["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
|
|
@ -155,11 +156,11 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
|
|||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(TEST_TOOL, "success", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
|
|
@ -175,7 +176,7 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
|
|||
|
||||
(TEST_TOOL, "success", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
# (PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
# TODO: fix these
|
||||
# (TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# (PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
|
|
@ -214,6 +215,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
|
|||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
|
||||
assert expected_function_name == tool_call["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
|
|
@ -273,7 +275,6 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
|
|||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("hf_repo,template_override", [
|
||||
("bartowski/c4ai-command-r7b-12-2024-GGUF:Q4_K_M", ("CohereForAI/c4ai-command-r7b-12-2024", "tool_use")),
|
||||
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
|
|
@ -298,13 +299,16 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
|
|||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
("bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L", ("CohereForAI/c4ai-command-r7b-12-2024", "tool_use")),
|
||||
|
||||
("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
|
||||
# ("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
|
||||
# ("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None):
|
||||
def test_weather(hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
n_predict = 512
|
||||
server.n_slots = 1
|
||||
|
|
@ -323,6 +327,7 @@ def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None)
|
|||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
|
||||
{"role": "user", "content": "What is the weather in Istanbul?"},
|
||||
],
|
||||
"tools": [WEATHER_TOOL],
|
||||
|
|
@ -332,6 +337,7 @@ def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None)
|
|||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"]
|
||||
actual_arguments = json.loads(tool_call["function"]["arguments"])
|
||||
assert 'location' in actual_arguments, f"location not found in {json.dumps(actual_arguments)}"
|
||||
|
|
@ -340,22 +346,166 @@ def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None)
|
|||
assert re.match('^Istanbul(, (TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("result_override,n_predict,hf_repo,template_override", [
|
||||
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
|
||||
(None, 128, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
|
||||
(None, 128, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
|
||||
(None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
|
||||
("^> 0.56$", 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
|
||||
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
|
||||
# TODO: fix these (wrong results, either didn't respect decimal instruction or got wrong value)
|
||||
("^The y-coordinate [\\s\\S]*?\\*\\*0.5\\*\\*", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
("[\\s\\S]*?\\*\\*0\\.5\\*\\*", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
])
|
||||
def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
# n_predict = 512
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192 * 2
|
||||
server.n_predict = n_predict
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if isinstance(template_override, tuple):
|
||||
(template_hf_repo, template_variant) = template_override
|
||||
server.chat_template_file = f"../../../models/templates/{template_hf_repo.replace('/', '-') + ('-' + template_variant if template_variant else '')}.jinja"
|
||||
assert os.path.exists(server.chat_template_file), f"Template file {server.chat_template_file} does not exist. Run `python scripts/get_chat_template.py {template_hf_repo} {template_variant} > {server.chat_template_file}` to download the template."
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things, and provide very concise answers. Do not explain your reasoning to the user. Provide any numerical values back to the user with at most two decimals."},
|
||||
{"role": "user", "content": "What's the y coordinate of a point on the unit sphere at angle 30 degrees?"},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [
|
||||
{
|
||||
"id": "call_6789",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "calculate",
|
||||
"arguments": "{\"expression\":\"sin(30 * pi / 180)\"}"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "tool",
|
||||
"name": "calculate",
|
||||
"content": 0.55644242476,
|
||||
"tool_call_id": "call_6789"
|
||||
}
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type":"function",
|
||||
"function":{
|
||||
"name":"calculate",
|
||||
"description":"A calculator function that computes values of arithmetic expressions in the Python syntax",
|
||||
"parameters":{
|
||||
"type":"object",
|
||||
"properties":{
|
||||
"expression":{
|
||||
"type":"string",
|
||||
"description":"An arithmetic expression to compute the value of (Python syntad, assuming all floats)"
|
||||
}
|
||||
},
|
||||
"required":["expression"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls is None, f'Expected no tool call in {choice["message"]}'
|
||||
content = choice["message"].get("content")
|
||||
assert content is not None, f'Expected content in {choice["message"]}'
|
||||
if result_override is not None:
|
||||
assert re.match(result_override, content), f'Expected {result_override}, got {content}'
|
||||
else:
|
||||
assert re.match('^[\\s\\S]*?The (y[ -])?coordinate [\\s\\S]*?is (approximately )?0\\.56\\b|^0\\.56$', content), \
|
||||
f'Expected something like "The y coordinate is 0.56.", got {content}'
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("n_predict,reasoning_format,expect_content,expect_reasoning_content,hf_repo,template_override", [
|
||||
(128, 'deepseek', "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(128, None, "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
|
||||
(1024, 'deepseek', "To find the sum of.*", "I need to calculate the sum of 102 and 7.*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
(1024, 'none', "<think>\n?I need[\\s\\S]*?</think>\n?To find.*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
|
||||
(1024, 'deepseek', "To find the sum of.*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
|
||||
])
|
||||
def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none'] | None, expect_content: str | None, expect_reasoning_content: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
server.n_slots = 1
|
||||
server.reasoning_format = reasoning_format
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192 * 2
|
||||
server.n_predict = n_predict
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if isinstance(template_override, tuple):
|
||||
(template_hf_repo, template_variant) = template_override
|
||||
server.chat_template_file = f"../../../models/templates/{template_hf_repo.replace('/', '-') + ('-' + template_variant if template_variant else '')}.jinja"
|
||||
assert os.path.exists(server.chat_template_file), f"Template file {server.chat_template_file} does not exist. Run `python scripts/get_chat_template.py {template_hf_repo} {template_variant} > {server.chat_template_file}` to download the template."
|
||||
elif isinstance(template_override, str):
|
||||
server.chat_template = template_override
|
||||
server.start(timeout_seconds=TIMEOUT_SERVER_START)
|
||||
res = server.make_request("POST", "/chat/completions", data={
|
||||
"max_tokens": n_predict,
|
||||
"messages": [
|
||||
{"role": "user", "content": "What's the sum of 102 and 7?"},
|
||||
]
|
||||
}, timeout=TIMEOUT_HTTP_REQUEST)
|
||||
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
|
||||
choice = res.body["choices"][0]
|
||||
assert choice["message"].get("tool_calls") is None, f'Expected no tool call in {choice["message"]}'
|
||||
|
||||
content = choice["message"].get("content")
|
||||
if expect_content is None:
|
||||
assert content is None, f'Expected no content in {choice["message"]}'
|
||||
else:
|
||||
assert re.match(expect_content, content), f'Expected {expect_content}, got {content}'
|
||||
|
||||
reasoning_content = choice["message"].get("reasoning_content")
|
||||
if expect_reasoning_content is None:
|
||||
assert reasoning_content is None, f'Expected no reasoning content in {choice["message"]}'
|
||||
else:
|
||||
assert re.match(expect_reasoning_content, reasoning_content), f'Expected {expect_reasoning_content}, got {reasoning_content}'
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("expected_arguments_override,hf_repo,template_override", [
|
||||
(None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
|
||||
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
|
||||
|
||||
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
|
||||
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
(None, "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
|
||||
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
|
||||
|
|
@ -371,15 +521,13 @@ def test_weather(hf_repo: str, template_override: Tuple[str, str | None] | None)
|
|||
|
||||
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
|
||||
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
|
||||
|
||||
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
|
||||
])
|
||||
def test_hello_world_tool_call(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
def test_hello_world(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
|
||||
global server
|
||||
server.n_slots = 1
|
||||
server.jinja = True
|
||||
server.n_ctx = 8192
|
||||
server.n_predict = 128
|
||||
server.n_predict = 512 # High because of DeepSeek R1
|
||||
server.model_hf_repo = hf_repo
|
||||
server.model_hf_file = None
|
||||
if isinstance(template_override, tuple):
|
||||
|
|
@ -406,6 +554,7 @@ def test_hello_world_tool_call(expected_arguments_override: str | None, hf_repo:
|
|||
tool_calls = choice["message"].get("tool_calls")
|
||||
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
|
||||
tool_call = tool_calls[0]
|
||||
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
|
||||
assert tool_call["function"]["name"] == PYTHON_TOOL["function"]["name"]
|
||||
actual_arguments = tool_call["function"]["arguments"]
|
||||
if expected_arguments_override is not None:
|
||||
|
|
|
|||
|
|
@ -78,6 +78,7 @@ class ServerProcess:
|
|||
draft_max: int | None = None
|
||||
no_webui: bool | None = None
|
||||
jinja: bool | None = None
|
||||
reasoning_format: Literal['deepseek', 'none'] | None = None
|
||||
chat_template: str | None = None
|
||||
chat_template_file: str | None = None
|
||||
|
||||
|
|
@ -172,6 +173,8 @@ class ServerProcess:
|
|||
server_args.append("--no-webui")
|
||||
if self.jinja:
|
||||
server_args.append("--jinja")
|
||||
if self.reasoning_format is not None:
|
||||
server_args.extend(("--reasoning-format", self.reasoning_format))
|
||||
if self.chat_template:
|
||||
server_args.extend(["--chat-template", self.chat_template])
|
||||
if self.chat_template_file:
|
||||
|
|
|
|||
|
|
@ -367,10 +367,10 @@ inline std::string format_chat(const common_chat_template & tmpl, const std::vec
|
|||
}
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
||||
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
||||
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
|
||||
}
|
||||
|
||||
chat.push_back({role, content, /* tool_calls= */ {}});
|
||||
|
|
@ -578,6 +578,7 @@ static json oaicompat_completion_params_parse(const json & body) {
|
|||
static json oaicompat_completion_params_parse(
|
||||
const json & body, /* openai api json semantics */
|
||||
bool use_jinja,
|
||||
common_reasoning_format reasoning_format,
|
||||
const common_chat_templates & chat_templates)
|
||||
{
|
||||
json llama_params;
|
||||
|
|
@ -633,9 +634,10 @@ static json oaicompat_completion_params_parse(
|
|||
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
|
||||
}
|
||||
common_chat_inputs inputs;
|
||||
inputs.messages = body.at("messages");
|
||||
inputs.tools = tools;
|
||||
inputs.tool_choice = tool_choice;
|
||||
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
|
||||
inputs.messages = body.at("messages");
|
||||
inputs.tools = tools;
|
||||
inputs.tool_choice = tool_choice;
|
||||
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
|
||||
if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) {
|
||||
LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n");
|
||||
|
|
|
|||
|
|
@ -13,6 +13,7 @@
|
|||
"@vscode/markdown-it-katex": "^1.1.1",
|
||||
"autoprefixer": "^10.4.20",
|
||||
"daisyui": "^4.12.14",
|
||||
"dexie": "^4.0.11",
|
||||
"highlight.js": "^11.10.0",
|
||||
"katex": "^0.16.15",
|
||||
"postcss": "^8.4.49",
|
||||
|
|
@ -2338,6 +2339,12 @@
|
|||
"url": "https://github.com/sponsors/wooorm"
|
||||
}
|
||||
},
|
||||
"node_modules/dexie": {
|
||||
"version": "4.0.11",
|
||||
"resolved": "https://registry.npmjs.org/dexie/-/dexie-4.0.11.tgz",
|
||||
"integrity": "sha512-SOKO002EqlvBYYKQSew3iymBoN2EQ4BDw/3yprjh7kAfFzjBYkaMNa/pZvcA7HSWlcKSQb9XhPe3wKyQ0x4A8A==",
|
||||
"license": "Apache-2.0"
|
||||
},
|
||||
"node_modules/didyoumean": {
|
||||
"version": "1.2.2",
|
||||
"resolved": "https://registry.npmjs.org/didyoumean/-/didyoumean-1.2.2.tgz",
|
||||
|
|
|
|||
|
|
@ -16,6 +16,7 @@
|
|||
"@vscode/markdown-it-katex": "^1.1.1",
|
||||
"autoprefixer": "^10.4.20",
|
||||
"daisyui": "^4.12.14",
|
||||
"dexie": "^4.0.11",
|
||||
"highlight.js": "^11.10.0",
|
||||
"katex": "^0.16.15",
|
||||
"postcss": "^8.4.49",
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@ import { useAppContext } from '../utils/app.context';
|
|||
import { Message, PendingMessage } from '../utils/types';
|
||||
import { classNames } from '../utils/misc';
|
||||
import MarkdownDisplay, { CopyButton } from './MarkdownDisplay';
|
||||
import { ChevronLeftIcon, ChevronRightIcon } from '@heroicons/react/24/outline';
|
||||
|
||||
interface SplitMessage {
|
||||
content: PendingMessage['content'];
|
||||
|
|
@ -12,17 +13,24 @@ interface SplitMessage {
|
|||
|
||||
export default function ChatMessage({
|
||||
msg,
|
||||
siblingLeafNodeIds,
|
||||
siblingCurrIdx,
|
||||
id,
|
||||
scrollToBottom,
|
||||
onRegenerateMessage,
|
||||
onEditMessage,
|
||||
onChangeSibling,
|
||||
isPending,
|
||||
}: {
|
||||
msg: Message | PendingMessage;
|
||||
siblingLeafNodeIds: Message['id'][];
|
||||
siblingCurrIdx: number;
|
||||
id?: string;
|
||||
scrollToBottom: (requiresNearBottom: boolean) => void;
|
||||
onRegenerateMessage(msg: Message): void;
|
||||
onEditMessage(msg: Message, content: string): void;
|
||||
onChangeSibling(sibling: Message['id']): void;
|
||||
isPending?: boolean;
|
||||
}) {
|
||||
const { viewingConversation, replaceMessageAndGenerate, config } =
|
||||
useAppContext();
|
||||
const { viewingChat, config } = useAppContext();
|
||||
const [editingContent, setEditingContent] = useState<string | null>(null);
|
||||
const timings = useMemo(
|
||||
() =>
|
||||
|
|
@ -37,6 +45,8 @@ export default function ChatMessage({
|
|||
: null,
|
||||
[msg.timings]
|
||||
);
|
||||
const nextSibling = siblingLeafNodeIds[siblingCurrIdx + 1];
|
||||
const prevSibling = siblingLeafNodeIds[siblingCurrIdx - 1];
|
||||
|
||||
// for reasoning model, we split the message into content and thought
|
||||
// TODO: implement this as remark/rehype plugin in the future
|
||||
|
|
@ -64,13 +74,7 @@ export default function ChatMessage({
|
|||
return { content: actualContent, thought, isThinking };
|
||||
}, [msg]);
|
||||
|
||||
if (!viewingConversation) return null;
|
||||
|
||||
const regenerate = async () => {
|
||||
replaceMessageAndGenerate(viewingConversation.id, msg.id, undefined, () =>
|
||||
scrollToBottom(true)
|
||||
);
|
||||
};
|
||||
if (!viewingChat) return null;
|
||||
|
||||
return (
|
||||
<div className="group" id={id}>
|
||||
|
|
@ -105,13 +109,12 @@ export default function ChatMessage({
|
|||
</button>
|
||||
<button
|
||||
className="btn mt-2"
|
||||
onClick={() =>
|
||||
replaceMessageAndGenerate(
|
||||
viewingConversation.id,
|
||||
msg.id,
|
||||
editingContent
|
||||
)
|
||||
}
|
||||
onClick={() => {
|
||||
if (msg.content !== null) {
|
||||
setEditingContent(null);
|
||||
onEditMessage(msg as Message, editingContent);
|
||||
}
|
||||
}}
|
||||
>
|
||||
Submit
|
||||
</button>
|
||||
|
|
@ -196,10 +199,35 @@ export default function ChatMessage({
|
|||
{msg.content !== null && (
|
||||
<div
|
||||
className={classNames({
|
||||
'mx-4 mt-2 mb-2': true,
|
||||
'text-right': msg.role === 'user',
|
||||
'flex items-center gap-2 mx-4 mt-2 mb-2': true,
|
||||
'flex-row-reverse': msg.role === 'user',
|
||||
})}
|
||||
>
|
||||
{siblingLeafNodeIds && siblingLeafNodeIds.length > 1 && (
|
||||
<div className="flex gap-1 items-center opacity-60 text-sm">
|
||||
<button
|
||||
className={classNames({
|
||||
'btn btn-sm btn-ghost p-1': true,
|
||||
'opacity-20': !prevSibling,
|
||||
})}
|
||||
onClick={() => prevSibling && onChangeSibling(prevSibling)}
|
||||
>
|
||||
<ChevronLeftIcon className="h-4 w-4" />
|
||||
</button>
|
||||
<span>
|
||||
{siblingCurrIdx + 1} / {siblingLeafNodeIds.length}
|
||||
</span>
|
||||
<button
|
||||
className={classNames({
|
||||
'btn btn-sm btn-ghost p-1': true,
|
||||
'opacity-20': !nextSibling,
|
||||
})}
|
||||
onClick={() => nextSibling && onChangeSibling(nextSibling)}
|
||||
>
|
||||
<ChevronRightIcon className="h-4 w-4" />
|
||||
</button>
|
||||
</div>
|
||||
)}
|
||||
{/* user message */}
|
||||
{msg.role === 'user' && (
|
||||
<button
|
||||
|
|
@ -216,18 +244,22 @@ export default function ChatMessage({
|
|||
{!isPending && (
|
||||
<button
|
||||
className="badge btn-mini show-on-hover mr-2"
|
||||
onClick={regenerate}
|
||||
onClick={() => {
|
||||
if (msg.content !== null) {
|
||||
onRegenerateMessage(msg as Message);
|
||||
}
|
||||
}}
|
||||
disabled={msg.content === null}
|
||||
>
|
||||
🔄 Regenerate
|
||||
</button>
|
||||
)}
|
||||
<CopyButton
|
||||
className="badge btn-mini show-on-hover mr-2"
|
||||
content={msg.content}
|
||||
/>
|
||||
</>
|
||||
)}
|
||||
<CopyButton
|
||||
className="badge btn-mini show-on-hover mr-2"
|
||||
content={msg.content}
|
||||
/>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
|
|
|
|||
|
|
@ -1,28 +1,59 @@
|
|||
import { useEffect, useState } from 'react';
|
||||
import { useAppContext } from '../utils/app.context';
|
||||
import StorageUtils from '../utils/storage';
|
||||
import { useNavigate } from 'react-router';
|
||||
import { useEffect, useMemo, useState } from 'react';
|
||||
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
|
||||
import ChatMessage from './ChatMessage';
|
||||
import { CanvasType, PendingMessage } from '../utils/types';
|
||||
import { classNames } from '../utils/misc';
|
||||
import { CanvasType, Message, PendingMessage } from '../utils/types';
|
||||
import { classNames, throttle } from '../utils/misc';
|
||||
import CanvasPyInterpreter from './CanvasPyInterpreter';
|
||||
import StorageUtils from '../utils/storage';
|
||||
|
||||
export default function ChatScreen() {
|
||||
const {
|
||||
viewingConversation,
|
||||
sendMessage,
|
||||
isGenerating,
|
||||
stopGenerating,
|
||||
pendingMessages,
|
||||
canvasData,
|
||||
} = useAppContext();
|
||||
const [inputMsg, setInputMsg] = useState('');
|
||||
const navigate = useNavigate();
|
||||
/**
|
||||
* A message display is a message node with additional information for rendering.
|
||||
* For example, siblings of the message node are stored as their last node (aka leaf node).
|
||||
*/
|
||||
export interface MessageDisplay {
|
||||
msg: Message | PendingMessage;
|
||||
siblingLeafNodeIds: Message['id'][];
|
||||
siblingCurrIdx: number;
|
||||
isPending?: boolean;
|
||||
}
|
||||
|
||||
const currConvId = viewingConversation?.id ?? '';
|
||||
const pendingMsg: PendingMessage | undefined = pendingMessages[currConvId];
|
||||
function getListMessageDisplay(
|
||||
msgs: Readonly<Message[]>,
|
||||
leafNodeId: Message['id']
|
||||
): MessageDisplay[] {
|
||||
const currNodes = StorageUtils.filterByLeafNodeId(msgs, leafNodeId, true);
|
||||
const res: MessageDisplay[] = [];
|
||||
const nodeMap = new Map<Message['id'], Message>();
|
||||
for (const msg of msgs) {
|
||||
nodeMap.set(msg.id, msg);
|
||||
}
|
||||
// find leaf node from a message node
|
||||
const findLeafNode = (msgId: Message['id']): Message['id'] => {
|
||||
let currNode: Message | undefined = nodeMap.get(msgId);
|
||||
while (currNode) {
|
||||
if (currNode.children.length === 0) break;
|
||||
currNode = nodeMap.get(currNode.children.at(-1) ?? -1);
|
||||
}
|
||||
return currNode?.id ?? -1;
|
||||
};
|
||||
// traverse the current nodes
|
||||
for (const msg of currNodes) {
|
||||
const parentNode = nodeMap.get(msg.parent ?? -1);
|
||||
if (!parentNode) continue;
|
||||
const siblings = parentNode.children;
|
||||
if (msg.type !== 'root') {
|
||||
res.push({
|
||||
msg,
|
||||
siblingLeafNodeIds: siblings.map(findLeafNode),
|
||||
siblingCurrIdx: siblings.indexOf(msg.id),
|
||||
});
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
const scrollToBottom = (requiresNearBottom: boolean) => {
|
||||
const scrollToBottom = throttle(
|
||||
(requiresNearBottom: boolean, delay: number = 80) => {
|
||||
const mainScrollElem = document.getElementById('main-scroll');
|
||||
if (!mainScrollElem) return;
|
||||
const spaceToBottom =
|
||||
|
|
@ -32,36 +63,107 @@ export default function ChatScreen() {
|
|||
if (!requiresNearBottom || spaceToBottom < 50) {
|
||||
setTimeout(
|
||||
() => mainScrollElem.scrollTo({ top: mainScrollElem.scrollHeight }),
|
||||
1
|
||||
delay
|
||||
);
|
||||
}
|
||||
},
|
||||
80
|
||||
);
|
||||
|
||||
export default function ChatScreen() {
|
||||
const {
|
||||
viewingChat,
|
||||
sendMessage,
|
||||
isGenerating,
|
||||
stopGenerating,
|
||||
pendingMessages,
|
||||
canvasData,
|
||||
replaceMessageAndGenerate,
|
||||
} = useAppContext();
|
||||
const [inputMsg, setInputMsg] = useState('');
|
||||
|
||||
// keep track of leaf node for rendering
|
||||
const [currNodeId, setCurrNodeId] = useState<number>(-1);
|
||||
const messages: MessageDisplay[] = useMemo(() => {
|
||||
if (!viewingChat) return [];
|
||||
else return getListMessageDisplay(viewingChat.messages, currNodeId);
|
||||
}, [currNodeId, viewingChat]);
|
||||
|
||||
const currConvId = viewingChat?.conv.id ?? null;
|
||||
const pendingMsg: PendingMessage | undefined =
|
||||
pendingMessages[currConvId ?? ''];
|
||||
|
||||
useEffect(() => {
|
||||
// reset to latest node when conversation changes
|
||||
setCurrNodeId(-1);
|
||||
// scroll to bottom when conversation changes
|
||||
scrollToBottom(false, 1);
|
||||
}, [currConvId]);
|
||||
|
||||
const onChunk: CallbackGeneratedChunk = (currLeafNodeId?: Message['id']) => {
|
||||
if (currLeafNodeId) {
|
||||
setCurrNodeId(currLeafNodeId);
|
||||
}
|
||||
scrollToBottom(true);
|
||||
};
|
||||
|
||||
// scroll to bottom when conversation changes
|
||||
useEffect(() => {
|
||||
scrollToBottom(false);
|
||||
}, [viewingConversation?.id]);
|
||||
|
||||
const sendNewMessage = async () => {
|
||||
if (inputMsg.trim().length === 0 || isGenerating(currConvId)) return;
|
||||
const convId = viewingConversation?.id ?? StorageUtils.getNewConvId();
|
||||
if (inputMsg.trim().length === 0 || isGenerating(currConvId ?? '')) return;
|
||||
const lastInpMsg = inputMsg;
|
||||
setInputMsg('');
|
||||
if (!viewingConversation) {
|
||||
// if user is creating a new conversation, redirect to the new conversation
|
||||
navigate(`/chat/${convId}`);
|
||||
}
|
||||
scrollToBottom(false);
|
||||
// auto scroll as message is being generated
|
||||
const onChunk = () => scrollToBottom(true);
|
||||
if (!(await sendMessage(convId, inputMsg, onChunk))) {
|
||||
setCurrNodeId(-1);
|
||||
// get the last message node
|
||||
const lastMsgNodeId = messages.at(-1)?.msg.id ?? null;
|
||||
if (!(await sendMessage(currConvId, lastMsgNodeId, inputMsg, onChunk))) {
|
||||
// restore the input message if failed
|
||||
setInputMsg(lastInpMsg);
|
||||
}
|
||||
};
|
||||
|
||||
const handleEditMessage = async (msg: Message, content: string) => {
|
||||
if (!viewingChat) return;
|
||||
setCurrNodeId(msg.id);
|
||||
scrollToBottom(false);
|
||||
await replaceMessageAndGenerate(
|
||||
viewingChat.conv.id,
|
||||
msg.parent,
|
||||
content,
|
||||
onChunk
|
||||
);
|
||||
setCurrNodeId(-1);
|
||||
scrollToBottom(false);
|
||||
};
|
||||
|
||||
const handleRegenerateMessage = async (msg: Message) => {
|
||||
if (!viewingChat) return;
|
||||
setCurrNodeId(msg.parent);
|
||||
scrollToBottom(false);
|
||||
await replaceMessageAndGenerate(
|
||||
viewingChat.conv.id,
|
||||
msg.parent,
|
||||
null,
|
||||
onChunk
|
||||
);
|
||||
setCurrNodeId(-1);
|
||||
scrollToBottom(false);
|
||||
};
|
||||
|
||||
const hasCanvas = !!canvasData;
|
||||
|
||||
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
|
||||
const pendingMsgDisplay: MessageDisplay[] =
|
||||
pendingMsg && messages.at(-1)?.msg.id !== pendingMsg.id
|
||||
? [
|
||||
{
|
||||
msg: pendingMsg,
|
||||
siblingLeafNodeIds: [],
|
||||
siblingCurrIdx: 0,
|
||||
isPending: true,
|
||||
},
|
||||
]
|
||||
: [];
|
||||
|
||||
return (
|
||||
<div
|
||||
className={classNames({
|
||||
|
|
@ -81,24 +183,19 @@ export default function ChatScreen() {
|
|||
<div id="messages-list" className="grow">
|
||||
<div className="mt-auto flex justify-center">
|
||||
{/* placeholder to shift the message to the bottom */}
|
||||
{viewingConversation ? '' : 'Send a message to start'}
|
||||
{viewingChat ? '' : 'Send a message to start'}
|
||||
</div>
|
||||
{viewingConversation?.messages.map((msg) => (
|
||||
{[...messages, ...pendingMsgDisplay].map((msg) => (
|
||||
<ChatMessage
|
||||
key={msg.id}
|
||||
msg={msg}
|
||||
scrollToBottom={scrollToBottom}
|
||||
key={msg.msg.id}
|
||||
msg={msg.msg}
|
||||
siblingLeafNodeIds={msg.siblingLeafNodeIds}
|
||||
siblingCurrIdx={msg.siblingCurrIdx}
|
||||
onRegenerateMessage={handleRegenerateMessage}
|
||||
onEditMessage={handleEditMessage}
|
||||
onChangeSibling={setCurrNodeId}
|
||||
/>
|
||||
))}
|
||||
|
||||
{pendingMsg && (
|
||||
<ChatMessage
|
||||
msg={pendingMsg}
|
||||
scrollToBottom={scrollToBottom}
|
||||
isPending
|
||||
id="pending-msg"
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
|
||||
{/* chat input */}
|
||||
|
|
@ -118,10 +215,10 @@ export default function ChatScreen() {
|
|||
id="msg-input"
|
||||
dir="auto"
|
||||
></textarea>
|
||||
{isGenerating(currConvId) ? (
|
||||
{isGenerating(currConvId ?? '') ? (
|
||||
<button
|
||||
className="btn btn-neutral ml-2"
|
||||
onClick={() => stopGenerating(currConvId)}
|
||||
onClick={() => stopGenerating(currConvId ?? '')}
|
||||
>
|
||||
Stop
|
||||
</button>
|
||||
|
|
|
|||
|
|
@ -25,12 +25,12 @@ export default function Header() {
|
|||
);
|
||||
}, [selectedTheme]);
|
||||
|
||||
const { isGenerating, viewingConversation } = useAppContext();
|
||||
const isCurrConvGenerating = isGenerating(viewingConversation?.id ?? '');
|
||||
const { isGenerating, viewingChat } = useAppContext();
|
||||
const isCurrConvGenerating = isGenerating(viewingChat?.conv.id ?? '');
|
||||
|
||||
const removeConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingConversation) return;
|
||||
const convId = viewingConversation.id;
|
||||
if (isCurrConvGenerating || !viewingChat) return;
|
||||
const convId = viewingChat?.conv.id;
|
||||
if (window.confirm('Are you sure to delete this conversation?')) {
|
||||
StorageUtils.remove(convId);
|
||||
navigate('/');
|
||||
|
|
@ -38,9 +38,9 @@ export default function Header() {
|
|||
};
|
||||
|
||||
const downloadConversation = () => {
|
||||
if (isCurrConvGenerating || !viewingConversation) return;
|
||||
const convId = viewingConversation.id;
|
||||
const conversationJson = JSON.stringify(viewingConversation, null, 2);
|
||||
if (isCurrConvGenerating || !viewingChat) return;
|
||||
const convId = viewingChat?.conv.id;
|
||||
const conversationJson = JSON.stringify(viewingChat, null, 2);
|
||||
const blob = new Blob([conversationJson], { type: 'application/json' });
|
||||
const url = URL.createObjectURL(blob);
|
||||
const a = document.createElement('a');
|
||||
|
|
@ -75,38 +75,41 @@ export default function Header() {
|
|||
|
||||
{/* action buttons (top right) */}
|
||||
<div className="flex items-center">
|
||||
<div v-if="messages.length > 0" className="dropdown dropdown-end">
|
||||
{/* "..." button */}
|
||||
<button
|
||||
tabIndex={0}
|
||||
role="button"
|
||||
className="btn m-1"
|
||||
disabled={isCurrConvGenerating}
|
||||
>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-three-dots-vertical"
|
||||
viewBox="0 0 16 16"
|
||||
{viewingChat && (
|
||||
<div className="dropdown dropdown-end">
|
||||
{/* "..." button */}
|
||||
<button
|
||||
tabIndex={0}
|
||||
role="button"
|
||||
className="btn m-1"
|
||||
disabled={isCurrConvGenerating}
|
||||
>
|
||||
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0" />
|
||||
</svg>
|
||||
</button>
|
||||
{/* dropdown menu */}
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow"
|
||||
>
|
||||
<li onClick={downloadConversation}>
|
||||
<a>Download</a>
|
||||
</li>
|
||||
<li className="text-error" onClick={removeConversation}>
|
||||
<a>Delete</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="16"
|
||||
height="16"
|
||||
fill="currentColor"
|
||||
className="bi bi-three-dots-vertical"
|
||||
viewBox="0 0 16 16"
|
||||
>
|
||||
<path d="M9.5 13a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0m0-5a1.5 1.5 0 1 1-3 0 1.5 1.5 0 0 1 3 0" />
|
||||
</svg>
|
||||
</button>
|
||||
{/* dropdown menu */}
|
||||
<ul
|
||||
tabIndex={0}
|
||||
className="dropdown-content menu bg-base-100 rounded-box z-[1] w-52 p-2 shadow"
|
||||
>
|
||||
<li onClick={downloadConversation}>
|
||||
<a>Download</a>
|
||||
</li>
|
||||
<li className="text-error" onClick={removeConversation}>
|
||||
<a>Delete</a>
|
||||
</li>
|
||||
</ul>
|
||||
</div>
|
||||
)}
|
||||
|
||||
<div className="tooltip tooltip-bottom" data-tip="Settings">
|
||||
<button className="btn" onClick={() => setShowSettings(true)}>
|
||||
{/* settings button */}
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
import { useEffect, useMemo, useState } from 'react';
|
||||
import { useEffect, useState } from 'react';
|
||||
import { classNames } from '../utils/misc';
|
||||
import { Conversation } from '../utils/types';
|
||||
import StorageUtils from '../utils/storage';
|
||||
|
|
@ -7,16 +7,17 @@ import { useNavigate, useParams } from 'react-router';
|
|||
export default function Sidebar() {
|
||||
const params = useParams();
|
||||
const navigate = useNavigate();
|
||||
const currConv = useMemo(
|
||||
() => StorageUtils.getOneConversation(params.convId ?? ''),
|
||||
[params.convId]
|
||||
);
|
||||
|
||||
const [conversations, setConversations] = useState<Conversation[]>([]);
|
||||
const [currConv, setCurrConv] = useState<Conversation | null>(null);
|
||||
|
||||
useEffect(() => {
|
||||
const handleConversationChange = () => {
|
||||
setConversations(StorageUtils.getAllConversations());
|
||||
StorageUtils.getOneConversation(params.convId ?? '').then(setCurrConv);
|
||||
}, [params.convId]);
|
||||
|
||||
useEffect(() => {
|
||||
const handleConversationChange = async () => {
|
||||
setConversations(await StorageUtils.getAllConversations());
|
||||
};
|
||||
StorageUtils.onConversationChanged(handleConversationChange);
|
||||
handleConversationChange();
|
||||
|
|
@ -82,11 +83,11 @@ export default function Sidebar() {
|
|||
onClick={() => navigate(`/chat/${conv.id}`)}
|
||||
dir="auto"
|
||||
>
|
||||
<span className="truncate">{conv.messages[0].content}</span>
|
||||
<span className="truncate">{conv.name}</span>
|
||||
</div>
|
||||
))}
|
||||
<div className="text-center text-xs opacity-40 mt-auto mx-4">
|
||||
Conversations are saved to browser's localStorage
|
||||
Conversations are saved to browser's IndexedDB
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@ import {
|
|||
Conversation,
|
||||
Message,
|
||||
PendingMessage,
|
||||
ViewingChat,
|
||||
} from './types';
|
||||
import StorageUtils from './storage';
|
||||
import {
|
||||
|
|
@ -13,24 +14,25 @@ import {
|
|||
getSSEStreamAsync,
|
||||
} from './misc';
|
||||
import { BASE_URL, CONFIG_DEFAULT, isDev } from '../Config';
|
||||
import { matchPath, useLocation } from 'react-router';
|
||||
import { matchPath, useLocation, useNavigate } from 'react-router';
|
||||
|
||||
interface AppContextValue {
|
||||
// conversations and messages
|
||||
viewingConversation: Conversation | null;
|
||||
viewingChat: ViewingChat | null;
|
||||
pendingMessages: Record<Conversation['id'], PendingMessage>;
|
||||
isGenerating: (convId: string) => boolean;
|
||||
sendMessage: (
|
||||
convId: string,
|
||||
convId: string | null,
|
||||
leafNodeId: Message['id'] | null,
|
||||
content: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
onChunk: CallbackGeneratedChunk
|
||||
) => Promise<boolean>;
|
||||
stopGenerating: (convId: string) => void;
|
||||
replaceMessageAndGenerate: (
|
||||
convId: string,
|
||||
origMsgId: Message['id'],
|
||||
content?: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
parentNodeId: Message['id'], // the parent node of the message to be replaced
|
||||
content: string | null,
|
||||
onChunk: CallbackGeneratedChunk
|
||||
) => Promise<void>;
|
||||
|
||||
// canvas
|
||||
|
|
@ -44,23 +46,33 @@ interface AppContextValue {
|
|||
setShowSettings: (show: boolean) => void;
|
||||
}
|
||||
|
||||
// for now, this callback is only used for scrolling to the bottom of the chat
|
||||
type CallbackGeneratedChunk = () => void;
|
||||
// this callback is used for scrolling to the bottom of the chat and switching to the last node
|
||||
export type CallbackGeneratedChunk = (currLeafNodeId?: Message['id']) => void;
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
const AppContext = createContext<AppContextValue>({} as any);
|
||||
|
||||
const getViewingChat = async (convId: string): Promise<ViewingChat | null> => {
|
||||
const conv = await StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return null;
|
||||
return {
|
||||
conv: conv,
|
||||
// all messages from all branches, not filtered by last node
|
||||
messages: await StorageUtils.getMessages(convId),
|
||||
};
|
||||
};
|
||||
|
||||
export const AppContextProvider = ({
|
||||
children,
|
||||
}: {
|
||||
children: React.ReactElement;
|
||||
}) => {
|
||||
const { pathname } = useLocation();
|
||||
const navigate = useNavigate();
|
||||
const params = matchPath('/chat/:convId', pathname);
|
||||
const convId = params?.params?.convId;
|
||||
|
||||
const [viewingConversation, setViewingConversation] =
|
||||
useState<Conversation | null>(null);
|
||||
const [viewingChat, setViewingChat] = useState<ViewingChat | null>(null);
|
||||
const [pendingMessages, setPendingMessages] = useState<
|
||||
Record<Conversation['id'], PendingMessage>
|
||||
>({});
|
||||
|
|
@ -75,12 +87,12 @@ export const AppContextProvider = ({
|
|||
useEffect(() => {
|
||||
// also reset the canvas data
|
||||
setCanvasData(null);
|
||||
const handleConversationChange = (changedConvId: string) => {
|
||||
const handleConversationChange = async (changedConvId: string) => {
|
||||
if (changedConvId !== convId) return;
|
||||
setViewingConversation(StorageUtils.getOneConversation(convId));
|
||||
setViewingChat(await getViewingChat(changedConvId));
|
||||
};
|
||||
StorageUtils.onConversationChanged(handleConversationChange);
|
||||
setViewingConversation(StorageUtils.getOneConversation(convId ?? ''));
|
||||
getViewingChat(convId ?? '').then(setViewingChat);
|
||||
return () => {
|
||||
StorageUtils.offConversationChanged(handleConversationChange);
|
||||
};
|
||||
|
|
@ -118,23 +130,39 @@ export const AppContextProvider = ({
|
|||
|
||||
const generateMessage = async (
|
||||
convId: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
leafNodeId: Message['id'],
|
||||
onChunk: CallbackGeneratedChunk
|
||||
) => {
|
||||
if (isGenerating(convId)) return;
|
||||
|
||||
const config = StorageUtils.getConfig();
|
||||
const currConversation = StorageUtils.getOneConversation(convId);
|
||||
const currConversation = await StorageUtils.getOneConversation(convId);
|
||||
if (!currConversation) {
|
||||
throw new Error('Current conversation is not found');
|
||||
}
|
||||
|
||||
const currMessages = StorageUtils.filterByLeafNodeId(
|
||||
await StorageUtils.getMessages(convId),
|
||||
leafNodeId,
|
||||
false
|
||||
);
|
||||
const abortController = new AbortController();
|
||||
setAbort(convId, abortController);
|
||||
|
||||
if (!currMessages) {
|
||||
throw new Error('Current messages are not found');
|
||||
}
|
||||
|
||||
const pendingId = Date.now() + 1;
|
||||
let pendingMsg: PendingMessage = {
|
||||
id: Date.now() + 1,
|
||||
id: pendingId,
|
||||
convId,
|
||||
type: 'text',
|
||||
timestamp: pendingId,
|
||||
role: 'assistant',
|
||||
content: null,
|
||||
parent: leafNodeId,
|
||||
children: [],
|
||||
};
|
||||
setPending(convId, pendingMsg);
|
||||
|
||||
|
|
@ -144,7 +172,7 @@ export const AppContextProvider = ({
|
|||
...(config.systemMessage.length === 0
|
||||
? []
|
||||
: [{ role: 'system', content: config.systemMessage } as APIMessage]),
|
||||
...normalizeMsgsForAPI(currConversation?.messages ?? []),
|
||||
...normalizeMsgsForAPI(currMessages),
|
||||
];
|
||||
if (config.excludeThoughtOnReq) {
|
||||
messages = filterThoughtFromMsgs(messages);
|
||||
|
|
@ -205,8 +233,7 @@ export const AppContextProvider = ({
|
|||
const lastContent = pendingMsg.content || '';
|
||||
if (addedContent) {
|
||||
pendingMsg = {
|
||||
id: pendingMsg.id,
|
||||
role: 'assistant',
|
||||
...pendingMsg,
|
||||
content: lastContent + addedContent,
|
||||
};
|
||||
}
|
||||
|
|
@ -221,7 +248,7 @@ export const AppContextProvider = ({
|
|||
};
|
||||
}
|
||||
setPending(convId, pendingMsg);
|
||||
onChunk?.();
|
||||
onChunk(); // don't need to switch node for pending message
|
||||
}
|
||||
} catch (err) {
|
||||
setPending(convId, null);
|
||||
|
|
@ -236,37 +263,53 @@ export const AppContextProvider = ({
|
|||
}
|
||||
}
|
||||
|
||||
if (pendingMsg.content) {
|
||||
StorageUtils.appendMsg(currConversation.id, {
|
||||
id: pendingMsg.id,
|
||||
content: pendingMsg.content,
|
||||
role: pendingMsg.role,
|
||||
timings: pendingMsg.timings,
|
||||
});
|
||||
if (pendingMsg.content !== null) {
|
||||
await StorageUtils.appendMsg(pendingMsg as Message, leafNodeId);
|
||||
}
|
||||
setPending(convId, null);
|
||||
onChunk?.(); // trigger scroll to bottom
|
||||
onChunk(pendingId); // trigger scroll to bottom and switch to the last node
|
||||
};
|
||||
|
||||
const sendMessage = async (
|
||||
convId: string,
|
||||
convId: string | null,
|
||||
leafNodeId: Message['id'] | null,
|
||||
content: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
onChunk: CallbackGeneratedChunk
|
||||
): Promise<boolean> => {
|
||||
if (isGenerating(convId) || content.trim().length === 0) return false;
|
||||
if (isGenerating(convId ?? '') || content.trim().length === 0) return false;
|
||||
|
||||
StorageUtils.appendMsg(convId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content,
|
||||
});
|
||||
if (convId === null || convId.length === 0 || leafNodeId === null) {
|
||||
const conv = await StorageUtils.createConversation(
|
||||
content.substring(0, 256)
|
||||
);
|
||||
convId = conv.id;
|
||||
leafNodeId = conv.currNode;
|
||||
// if user is creating a new conversation, redirect to the new conversation
|
||||
navigate(`/chat/${convId}`);
|
||||
}
|
||||
|
||||
const now = Date.now();
|
||||
const currMsgId = now;
|
||||
StorageUtils.appendMsg(
|
||||
{
|
||||
id: currMsgId,
|
||||
timestamp: now,
|
||||
type: 'text',
|
||||
convId,
|
||||
role: 'user',
|
||||
content,
|
||||
parent: leafNodeId,
|
||||
children: [],
|
||||
},
|
||||
leafNodeId
|
||||
);
|
||||
onChunk(currMsgId);
|
||||
|
||||
try {
|
||||
await generateMessage(convId, onChunk);
|
||||
await generateMessage(convId, currMsgId, onChunk);
|
||||
return true;
|
||||
} catch (_) {
|
||||
// rollback
|
||||
StorageUtils.popMsg(convId);
|
||||
// TODO: rollback
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
|
@ -279,22 +322,33 @@ export const AppContextProvider = ({
|
|||
// if content is undefined, we remove last assistant message
|
||||
const replaceMessageAndGenerate = async (
|
||||
convId: string,
|
||||
origMsgId: Message['id'],
|
||||
content?: string,
|
||||
onChunk?: CallbackGeneratedChunk
|
||||
parentNodeId: Message['id'], // the parent node of the message to be replaced
|
||||
content: string | null,
|
||||
onChunk: CallbackGeneratedChunk
|
||||
) => {
|
||||
if (isGenerating(convId)) return;
|
||||
|
||||
StorageUtils.filterAndKeepMsgs(convId, (msg) => msg.id < origMsgId);
|
||||
if (content) {
|
||||
StorageUtils.appendMsg(convId, {
|
||||
id: Date.now(),
|
||||
role: 'user',
|
||||
content,
|
||||
});
|
||||
if (content !== null) {
|
||||
const now = Date.now();
|
||||
const currMsgId = now;
|
||||
StorageUtils.appendMsg(
|
||||
{
|
||||
id: currMsgId,
|
||||
timestamp: now,
|
||||
type: 'text',
|
||||
convId,
|
||||
role: 'user',
|
||||
content,
|
||||
parent: parentNodeId,
|
||||
children: [],
|
||||
},
|
||||
parentNodeId
|
||||
);
|
||||
parentNodeId = currMsgId;
|
||||
}
|
||||
onChunk(parentNodeId);
|
||||
|
||||
await generateMessage(convId, onChunk);
|
||||
await generateMessage(convId, parentNodeId, onChunk);
|
||||
};
|
||||
|
||||
const saveConfig = (config: typeof CONFIG_DEFAULT) => {
|
||||
|
|
@ -306,7 +360,7 @@ export const AppContextProvider = ({
|
|||
<AppContext.Provider
|
||||
value={{
|
||||
isGenerating,
|
||||
viewingConversation,
|
||||
viewingChat,
|
||||
pendingMessages,
|
||||
sendMessage,
|
||||
stopGenerating,
|
||||
|
|
|
|||
|
|
@ -4,7 +4,6 @@ import { APIMessage, Message } from './types';
|
|||
|
||||
// ponyfill for missing ReadableStream asyncIterator on Safari
|
||||
import { asyncIterator } from '@sec-ant/readable-stream/ponyfill/asyncIterator';
|
||||
import { isDev } from '../Config';
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
export const isString = (x: any) => !!x.toLowerCase;
|
||||
|
|
@ -23,7 +22,7 @@ export async function* getSSEStreamAsync(fetchResponse: Response) {
|
|||
.pipeThrough(new TextLineStream());
|
||||
// @ts-expect-error asyncIterator complains about type, but it should work
|
||||
for await (const line of asyncIterator(lines)) {
|
||||
if (isDev) console.log({ line });
|
||||
//if (isDev) console.log({ line });
|
||||
if (line.startsWith('data:') && !line.endsWith('[DONE]')) {
|
||||
const data = JSON.parse(line.slice(5));
|
||||
yield data;
|
||||
|
|
@ -55,7 +54,7 @@ export const copyStr = (textToCopy: string) => {
|
|||
/**
|
||||
* filter out redundant fields upon sending to API
|
||||
*/
|
||||
export function normalizeMsgsForAPI(messages: Message[]) {
|
||||
export function normalizeMsgsForAPI(messages: Readonly<Message[]>) {
|
||||
return messages.map((msg) => {
|
||||
return {
|
||||
role: msg.role,
|
||||
|
|
@ -88,3 +87,23 @@ export function classNames(classes: Record<string, boolean>): string {
|
|||
|
||||
export const delay = (ms: number) =>
|
||||
new Promise((resolve) => setTimeout(resolve, ms));
|
||||
|
||||
export const throttle = <T extends unknown[]>(
|
||||
callback: (...args: T) => void,
|
||||
delay: number
|
||||
) => {
|
||||
let isWaiting = false;
|
||||
|
||||
return (...args: T) => {
|
||||
if (isWaiting) {
|
||||
return;
|
||||
}
|
||||
|
||||
callback(...args);
|
||||
isWaiting = true;
|
||||
|
||||
setTimeout(() => {
|
||||
isWaiting = false;
|
||||
}, delay);
|
||||
};
|
||||
};
|
||||
|
|
|
|||
|
|
@ -2,7 +2,8 @@
|
|||
// format: { [convId]: { id: string, lastModified: number, messages: [...] } }
|
||||
|
||||
import { CONFIG_DEFAULT } from '../Config';
|
||||
import { Conversation, Message } from './types';
|
||||
import { Conversation, Message, TimingReport } from './types';
|
||||
import Dexie, { Table } from 'dexie';
|
||||
|
||||
const event = new EventTarget();
|
||||
|
||||
|
|
@ -17,85 +18,154 @@ const dispatchConversationChange = (convId: string) => {
|
|||
);
|
||||
};
|
||||
|
||||
const db = new Dexie('LlamacppWebui') as Dexie & {
|
||||
conversations: Table<Conversation>;
|
||||
messages: Table<Message>;
|
||||
};
|
||||
|
||||
// https://dexie.org/docs/Version/Version.stores()
|
||||
db.version(1).stores({
|
||||
// Unlike SQL, you don’t need to specify all properties but only the one you wish to index.
|
||||
conversations: '&id, lastModified',
|
||||
messages: '&id, convId, [convId+id], timestamp',
|
||||
});
|
||||
|
||||
// convId is a string prefixed with 'conv-'
|
||||
const StorageUtils = {
|
||||
/**
|
||||
* manage conversations
|
||||
*/
|
||||
getAllConversations(): Conversation[] {
|
||||
const res = [];
|
||||
for (const key in localStorage) {
|
||||
if (key.startsWith('conv-')) {
|
||||
res.push(JSON.parse(localStorage.getItem(key) ?? '{}'));
|
||||
}
|
||||
}
|
||||
res.sort((a, b) => b.lastModified - a.lastModified);
|
||||
return res;
|
||||
async getAllConversations(): Promise<Conversation[]> {
|
||||
await migrationLStoIDB().catch(console.error); // noop if already migrated
|
||||
return (await db.conversations.toArray()).sort(
|
||||
(a, b) => b.lastModified - a.lastModified
|
||||
);
|
||||
},
|
||||
/**
|
||||
* can return null if convId does not exist
|
||||
*/
|
||||
getOneConversation(convId: string): Conversation | null {
|
||||
return JSON.parse(localStorage.getItem(convId) || 'null');
|
||||
async getOneConversation(convId: string): Promise<Conversation | null> {
|
||||
return (await db.conversations.where('id').equals(convId).first()) ?? null;
|
||||
},
|
||||
/**
|
||||
* if convId does not exist, create one
|
||||
* get all message nodes in a conversation
|
||||
*/
|
||||
appendMsg(convId: string, msg: Message): void {
|
||||
if (msg.content === null) return;
|
||||
const conv = StorageUtils.getOneConversation(convId) || {
|
||||
id: convId,
|
||||
lastModified: Date.now(),
|
||||
messages: [],
|
||||
async getMessages(convId: string): Promise<Message[]> {
|
||||
return await db.messages.where({ convId }).toArray();
|
||||
},
|
||||
/**
|
||||
* use in conjunction with getMessages to filter messages by leafNodeId
|
||||
* includeRoot: whether to include the root node in the result
|
||||
* if node with leafNodeId does not exist, return the path with the latest timestamp
|
||||
*/
|
||||
filterByLeafNodeId(
|
||||
msgs: Readonly<Message[]>,
|
||||
leafNodeId: Message['id'],
|
||||
includeRoot: boolean
|
||||
): Readonly<Message[]> {
|
||||
const res: Message[] = [];
|
||||
const nodeMap = new Map<Message['id'], Message>();
|
||||
for (const msg of msgs) {
|
||||
nodeMap.set(msg.id, msg);
|
||||
}
|
||||
let startNode: Message | undefined = nodeMap.get(leafNodeId);
|
||||
if (!startNode) {
|
||||
// if not found, we return the path with the latest timestamp
|
||||
let latestTime = -1;
|
||||
for (const msg of msgs) {
|
||||
if (msg.timestamp > latestTime) {
|
||||
startNode = msg;
|
||||
latestTime = msg.timestamp;
|
||||
}
|
||||
}
|
||||
}
|
||||
// traverse the path from leafNodeId to root
|
||||
// startNode can never be undefined here
|
||||
let currNode: Message | undefined = startNode;
|
||||
while (currNode) {
|
||||
if (currNode.type !== 'root' || (currNode.type === 'root' && includeRoot))
|
||||
res.push(currNode);
|
||||
currNode = nodeMap.get(currNode.parent ?? -1);
|
||||
}
|
||||
res.sort((a, b) => a.timestamp - b.timestamp);
|
||||
return res;
|
||||
},
|
||||
/**
|
||||
* create a new conversation with a default root node
|
||||
*/
|
||||
async createConversation(name: string): Promise<Conversation> {
|
||||
const now = Date.now();
|
||||
const msgId = now;
|
||||
const conv: Conversation = {
|
||||
id: `conv-${now}`,
|
||||
lastModified: now,
|
||||
currNode: msgId,
|
||||
name,
|
||||
};
|
||||
conv.messages.push(msg);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
dispatchConversationChange(convId);
|
||||
await db.conversations.add(conv);
|
||||
// create a root node
|
||||
await db.messages.add({
|
||||
id: msgId,
|
||||
convId: conv.id,
|
||||
type: 'root',
|
||||
timestamp: now,
|
||||
role: 'system',
|
||||
content: '',
|
||||
parent: -1,
|
||||
children: [],
|
||||
});
|
||||
return conv;
|
||||
},
|
||||
/**
|
||||
* Get new conversation id
|
||||
* if convId does not exist, throw an error
|
||||
*/
|
||||
getNewConvId(): string {
|
||||
return `conv-${Date.now()}`;
|
||||
async appendMsg(
|
||||
msg: Exclude<Message, 'parent' | 'children'>,
|
||||
parentNodeId: Message['id']
|
||||
): Promise<void> {
|
||||
if (msg.content === null) return;
|
||||
const { convId } = msg;
|
||||
await db.transaction('rw', db.conversations, db.messages, async () => {
|
||||
const conv = await StorageUtils.getOneConversation(convId);
|
||||
const parentMsg = await db.messages
|
||||
.where({ convId, id: parentNodeId })
|
||||
.first();
|
||||
// update the currNode of conversation
|
||||
if (!conv) {
|
||||
throw new Error(`Conversation ${convId} does not exist`);
|
||||
}
|
||||
if (!parentMsg) {
|
||||
throw new Error(
|
||||
`Parent message ID ${parentNodeId} does not exist in conversation ${convId}`
|
||||
);
|
||||
}
|
||||
await db.conversations.update(convId, {
|
||||
lastModified: Date.now(),
|
||||
currNode: msg.id,
|
||||
});
|
||||
// update parent
|
||||
await db.messages.update(parentNodeId, {
|
||||
children: [...parentMsg.children, msg.id],
|
||||
});
|
||||
// create message
|
||||
await db.messages.add({
|
||||
...msg,
|
||||
parent: parentNodeId,
|
||||
children: [],
|
||||
});
|
||||
});
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* remove conversation by id
|
||||
*/
|
||||
remove(convId: string): void {
|
||||
localStorage.removeItem(convId);
|
||||
async remove(convId: string): Promise<void> {
|
||||
await db.transaction('rw', db.conversations, db.messages, async () => {
|
||||
await db.conversations.delete(convId);
|
||||
await db.messages.where({ convId }).delete();
|
||||
});
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* remove all conversations
|
||||
*/
|
||||
filterAndKeepMsgs(
|
||||
convId: string,
|
||||
predicate: (msg: Message) => boolean
|
||||
): void {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
conv.messages = conv.messages.filter(predicate);
|
||||
conv.lastModified = Date.now();
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
dispatchConversationChange(convId);
|
||||
},
|
||||
/**
|
||||
* remove last message from conversation
|
||||
*/
|
||||
popMsg(convId: string): Message | undefined {
|
||||
const conv = StorageUtils.getOneConversation(convId);
|
||||
if (!conv) return;
|
||||
const msg = conv.messages.pop();
|
||||
conv.lastModified = Date.now();
|
||||
if (conv.messages.length === 0) {
|
||||
StorageUtils.remove(convId);
|
||||
} else {
|
||||
localStorage.setItem(convId, JSON.stringify(conv));
|
||||
}
|
||||
dispatchConversationChange(convId);
|
||||
return msg;
|
||||
},
|
||||
|
||||
// event listeners
|
||||
onConversationChanged(callback: CallbackConversationChanged) {
|
||||
|
|
@ -136,3 +206,79 @@ const StorageUtils = {
|
|||
};
|
||||
|
||||
export default StorageUtils;
|
||||
|
||||
// Migration from localStorage to IndexedDB
|
||||
|
||||
// these are old types, LS prefix stands for LocalStorage
|
||||
interface LSConversation {
|
||||
id: string; // format: `conv-{timestamp}`
|
||||
lastModified: number; // timestamp from Date.now()
|
||||
messages: LSMessage[];
|
||||
}
|
||||
interface LSMessage {
|
||||
id: number;
|
||||
role: 'user' | 'assistant' | 'system';
|
||||
content: string;
|
||||
timings?: TimingReport;
|
||||
}
|
||||
async function migrationLStoIDB() {
|
||||
if (localStorage.getItem('migratedToIDB')) return;
|
||||
const res: LSConversation[] = [];
|
||||
for (const key in localStorage) {
|
||||
if (key.startsWith('conv-')) {
|
||||
res.push(JSON.parse(localStorage.getItem(key) ?? '{}'));
|
||||
}
|
||||
}
|
||||
if (res.length === 0) return;
|
||||
await db.transaction('rw', db.conversations, db.messages, async () => {
|
||||
let migratedCount = 0;
|
||||
for (const conv of res) {
|
||||
const { id: convId, lastModified, messages } = conv;
|
||||
const firstMsg = messages[0];
|
||||
const lastMsg = messages.at(-1);
|
||||
if (messages.length < 2 || !firstMsg || !lastMsg) {
|
||||
console.log(
|
||||
`Skipping conversation ${convId} with ${messages.length} messages`
|
||||
);
|
||||
continue;
|
||||
}
|
||||
const name = firstMsg.content ?? '(no messages)';
|
||||
await db.conversations.add({
|
||||
id: convId,
|
||||
lastModified,
|
||||
currNode: lastMsg.id,
|
||||
name,
|
||||
});
|
||||
const rootId = messages[0].id - 2;
|
||||
await db.messages.add({
|
||||
id: rootId,
|
||||
convId: convId,
|
||||
type: 'root',
|
||||
timestamp: rootId,
|
||||
role: 'system',
|
||||
content: '',
|
||||
parent: -1,
|
||||
children: [firstMsg.id],
|
||||
});
|
||||
for (let i = 0; i < messages.length; i++) {
|
||||
const msg = messages[i];
|
||||
await db.messages.add({
|
||||
...msg,
|
||||
type: 'text',
|
||||
convId: convId,
|
||||
timestamp: msg.id,
|
||||
parent: i === 0 ? rootId : messages[i - 1].id,
|
||||
children: i === messages.length - 1 ? [] : [messages[i + 1].id],
|
||||
});
|
||||
}
|
||||
migratedCount++;
|
||||
console.log(
|
||||
`Migrated conversation ${convId} with ${messages.length} messages`
|
||||
);
|
||||
}
|
||||
console.log(
|
||||
`Migrated ${migratedCount} conversations from localStorage to IndexedDB`
|
||||
);
|
||||
localStorage.setItem('migratedToIDB', '1');
|
||||
});
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,11 +5,46 @@ export interface TimingReport {
|
|||
predicted_ms: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* What is conversation "branching"? It is a feature that allows the user to edit an old message in the history, while still keeping the conversation flow.
|
||||
* Inspired by ChatGPT / Claude / Hugging Chat where you edit a message, a new branch of the conversation is created, and the old message is still visible.
|
||||
*
|
||||
* We use the same node-based structure like other chat UIs, where each message has a parent and children. A "root" message is the first message in a conversation, which will not be displayed in the UI.
|
||||
*
|
||||
* root
|
||||
* ├── message 1
|
||||
* │ └── message 2
|
||||
* │ └── message 3
|
||||
* └── message 4
|
||||
* └── message 5
|
||||
*
|
||||
* In the above example, assuming that user wants to edit message 2, a new branch will be created:
|
||||
*
|
||||
* ├── message 2
|
||||
* │ └── message 3
|
||||
* └── message 6
|
||||
*
|
||||
* Message 2 and 6 are siblings, and message 6 is the new branch.
|
||||
*
|
||||
* We only need to know the last node (aka leaf) to get the current branch. In the above example, message 5 is the leaf of branch containing message 4 and 5.
|
||||
*
|
||||
* For the implementation:
|
||||
* - StorageUtils.getMessages() returns list of all nodes
|
||||
* - StorageUtils.filterByLeafNodeId() filters the list of nodes from a given leaf node
|
||||
*/
|
||||
|
||||
// Note: the term "message" and "node" are used interchangeably in this context
|
||||
export interface Message {
|
||||
id: number;
|
||||
convId: string;
|
||||
type: 'text' | 'root';
|
||||
timestamp: number; // timestamp from Date.now()
|
||||
role: 'user' | 'assistant' | 'system';
|
||||
content: string;
|
||||
timings?: TimingReport;
|
||||
// node based system for branching
|
||||
parent: Message['id'];
|
||||
children: Message['id'][];
|
||||
}
|
||||
|
||||
export type APIMessage = Pick<Message, 'role' | 'content'>;
|
||||
|
|
@ -17,7 +52,13 @@ export type APIMessage = Pick<Message, 'role' | 'content'>;
|
|||
export interface Conversation {
|
||||
id: string; // format: `conv-{timestamp}`
|
||||
lastModified: number; // timestamp from Date.now()
|
||||
messages: Message[];
|
||||
currNode: Message['id']; // the current message node being viewed
|
||||
name: string;
|
||||
}
|
||||
|
||||
export interface ViewingChat {
|
||||
conv: Readonly<Conversation>;
|
||||
messages: Readonly<Message[]>;
|
||||
}
|
||||
|
||||
export type PendingMessage = Omit<Message, 'content'> & {
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# llama.cpp/example/simple-cmake-pkg
|
||||
|
||||
This program builds [simple](../simple) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggerganov/llama.cpp) in projects which live outside of the source tree.
|
||||
This program builds [simple](../simple) using a relocatable CMake package. It serves as an example of using the `find_package()` CMake command to conveniently include [llama.cpp](https://github.com/ggml-org/llama.cpp) in projects which live outside of the source tree.
|
||||
|
||||
## Building
|
||||
|
||||
|
|
@ -13,7 +13,7 @@ When hardware acceleration libraries are used (e.g. CUDA, Metal, Vulkan, etc.),
|
|||
### Build llama.cpp and install to llama.cpp/inst
|
||||
|
||||
```sh
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
|
|
|
|||
|
|
@ -4,6 +4,6 @@ Demonstration of speculative decoding and tree-based speculative decoding techni
|
|||
|
||||
More info:
|
||||
|
||||
- https://github.com/ggerganov/llama.cpp/pull/2926
|
||||
- https://github.com/ggerganov/llama.cpp/pull/3624
|
||||
- https://github.com/ggerganov/llama.cpp/pull/5625
|
||||
- https://github.com/ggml-org/llama.cpp/pull/2926
|
||||
- https://github.com/ggml-org/llama.cpp/pull/3624
|
||||
- https://github.com/ggml-org/llama.cpp/pull/5625
|
||||
|
|
|
|||
|
|
@ -36,7 +36,7 @@
|
|||
# ```
|
||||
# nixConfig = {
|
||||
# extra-substituters = [
|
||||
# # Populated by the CI in ggerganov/llama.cpp
|
||||
# # Populated by the CI in ggml-org/llama.cpp
|
||||
# "https://llama-cpp.cachix.org"
|
||||
#
|
||||
# # A development cache for nixpkgs imported with `config.cudaSupport = true`.
|
||||
|
|
@ -56,11 +56,11 @@
|
|||
# };
|
||||
# ```
|
||||
|
||||
# For inspection, use `nix flake show github:ggerganov/llama.cpp` or the nix repl:
|
||||
# For inspection, use `nix flake show github:ggml-org/llama.cpp` or the nix repl:
|
||||
#
|
||||
# ```bash
|
||||
# ❯ nix repl
|
||||
# nix-repl> :lf github:ggerganov/llama.cpp
|
||||
# nix-repl> :lf github:ggml-org/llama.cpp
|
||||
# Added 13 variables.
|
||||
# nix-repl> outputs.apps.x86_64-linux.quantize
|
||||
# { program = "/nix/store/00000000000000000000000000000000-llama.cpp/bin/llama-quantize"; type = "app"; }
|
||||
|
|
@ -176,7 +176,7 @@
|
|||
#
|
||||
# We could test all outputs e.g. as `checks = confg.packages`.
|
||||
#
|
||||
# TODO: Build more once https://github.com/ggerganov/llama.cpp/issues/6346 has been addressed
|
||||
# TODO: Build more once https://github.com/ggml-org/llama.cpp/issues/6346 has been addressed
|
||||
checks = {
|
||||
inherit (config.packages) default vulkan;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
// since https://github.com/ggml-org/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
|
|
|||
|
|
@ -45,7 +45,7 @@ GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
|||
|
||||
GGML_DEPRECATED(
|
||||
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
"obsoleted by the new device interface - https://github.com/ggerganov/llama.cpp/pull/9713");
|
||||
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
|
|
|
|||
|
|
@ -198,7 +198,7 @@
|
|||
|
||||
#ifndef __GNUC__
|
||||
# define GGML_ATTRIBUTE_FORMAT(...)
|
||||
#elif defined(__MINGW32__)
|
||||
#elif defined(__MINGW32__) && !defined(__clang__)
|
||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
||||
#else
|
||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
|
|
|
|||
|
|
@ -473,7 +473,6 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128)
|
|||
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
|
||||
GGML_TABLE_END()
|
||||
|
||||
//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
|
||||
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
|
||||
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
|
||||
|
|
@ -508,7 +507,6 @@ GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
|
|||
0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
|
||||
0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
|
||||
GGML_TABLE_END()
|
||||
//#endif
|
||||
|
||||
|
||||
GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256)
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -7,10 +7,8 @@
|
|||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-cpu-quants.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "amx/amx.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
|
|
@ -1291,7 +1289,7 @@ struct ggml_threadpool {
|
|||
atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
|
||||
atomic_int GGML_CACHE_ALIGN n_barrier;
|
||||
atomic_int GGML_CACHE_ALIGN n_barrier_passed;
|
||||
atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
|
||||
atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
|
||||
|
||||
// these are atomic as an annotation for thread-sanitizer
|
||||
atomic_bool stop; // Used for stopping the threadpool altogether
|
||||
|
|
@ -1818,7 +1816,7 @@ inline static float ggml_silu_f32(float x) {
|
|||
|
||||
#if __FINITE_MATH_ONLY__
|
||||
#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
|
||||
#error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
|
@ -7490,6 +7488,7 @@ UseGgmlGemm1:;
|
|||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
|
||||
const size_t nbw0 = ggml_type_size(vec_dot_type);
|
||||
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
|
||||
const size_t nbw2 = nbw1*ne11;
|
||||
const size_t nbw3 = nbw2*ne12;
|
||||
|
|
@ -7497,6 +7496,7 @@ UseGgmlGemm1:;
|
|||
assert(params->wsize >= ne13*nbw3);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
#if 0
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
|
||||
|
|
@ -7506,6 +7506,20 @@ UseGgmlGemm1:;
|
|||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
size_t bs = ggml_blck_size(vec_dot_type);
|
||||
int64_t ne10_block_start = (ith * ne10/bs) / nth;
|
||||
int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
|
||||
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
|
||||
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
|
||||
(ne10_block_end - ne10_block_start) * bs);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
|
|
@ -7560,7 +7574,7 @@ UseGgmlGemm2:;
|
|||
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
|
||||
|
||||
// If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
|
||||
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
|
||||
// Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915
|
||||
// In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
|
||||
if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
|
||||
// distribute the thread work across the inner or outer loop based on which one is larger
|
||||
|
|
@ -7593,7 +7607,6 @@ UseGgmlGemm2:;
|
|||
if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
|
||||
num_rows_per_vec_dot = 1;
|
||||
}
|
||||
|
||||
ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
|
||||
|
||||
if (nth >= nchunk0 * nchunk1) {
|
||||
|
|
@ -7606,6 +7619,84 @@ UseGgmlGemm2:;
|
|||
|
||||
// ggml_compute_forward_mul_mat_id
|
||||
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
|
||||
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
int32_t i2;
|
||||
};
|
||||
|
||||
static void ggml_compute_forward_mul_mat_id_one_chunk(
|
||||
struct ggml_tensor * dst,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
const struct ggml_tensor * ids,
|
||||
const int64_t cur_a,
|
||||
const int64_t ir0_start,
|
||||
const int64_t ir0_end,
|
||||
const int64_t ir1_start,
|
||||
const int64_t ir1_end,
|
||||
const char * src0_cur,
|
||||
const struct mmid_row_mapping * matrix_rows,
|
||||
const size_t row_size,
|
||||
const bool src1_cont,
|
||||
const void * wdata) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
|
||||
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||||
|
||||
const int64_t blck_0 = 16;
|
||||
const int64_t blck_1 = 16;
|
||||
|
||||
float tmp[16];
|
||||
|
||||
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
|
||||
const int64_t _i12 = ir1; // logical row index for this expert
|
||||
|
||||
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
|
||||
const int id = row_mapping.i1; // selected expert index
|
||||
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = row_mapping.i2; // row index in src1
|
||||
|
||||
const int64_t i1 = id; // selected expert index
|
||||
const int64_t i2 = i12; // row
|
||||
|
||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||
// the original src1 data pointer, so we should index using the indices directly
|
||||
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||||
const char * src1_col = (const char *) wdata +
|
||||
(src1_cont || src1->type != vec_dot_type
|
||||
? (i11 + i12*ne11)*row_size
|
||||
: (i11*nb11 + i12*nb12));
|
||||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
|
||||
|
||||
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
|
||||
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
|
||||
}
|
||||
|
||||
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
|
||||
|
||||
void * ptr = *p;
|
||||
ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
|
||||
*p = (void *) ((char *) ptr + size);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_mul_mat_id(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
|
@ -7623,7 +7714,6 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
|
||||
const bool src1_cont = ggml_is_contiguous(src1);
|
||||
|
||||
ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
|
||||
enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
|
||||
ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
|
||||
|
||||
|
|
@ -7641,21 +7731,27 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
const int n_ids = ids->ne[0]; // n_expert_used
|
||||
const int n_as = ne02; // n_expert
|
||||
|
||||
char * wdata_src1_end = (src1->type == vec_dot_type) ?
|
||||
(char *) params->wdata :
|
||||
(char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||||
void * wdata_cur = params->wdata;
|
||||
|
||||
struct mmid_row_mapping {
|
||||
int32_t i1;
|
||||
int32_t i2;
|
||||
};
|
||||
if (src1->type != vec_dot_type) {
|
||||
incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
|
||||
}
|
||||
|
||||
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
|
||||
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
|
||||
int64_t * matrix_row_counts = // [n_as]
|
||||
incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
|
||||
|
||||
struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
|
||||
incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
|
||||
|
||||
char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
|
||||
incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
|
||||
|
||||
GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
|
||||
|
||||
if (src1->type != vec_dot_type) {
|
||||
char * wdata = params->wdata;
|
||||
|
||||
const size_t nbw0 = ggml_type_size(vec_dot_type);
|
||||
const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
|
||||
const size_t nbw2 = nbw1*ne11;
|
||||
const size_t nbw3 = nbw2*ne12;
|
||||
|
|
@ -7663,19 +7759,32 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
assert(params->wsize >= ne13*nbw3);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
#if 0
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
|
||||
for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
|
||||
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
|
||||
ne10);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int64_t i13 = 0; i13 < ne13; ++i13) {
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) {
|
||||
for (int64_t i11 = 0; i11 < ne11; ++i11) {
|
||||
size_t bs = ggml_blck_size(vec_dot_type);
|
||||
int64_t ne10_block_start = (ith * ne10/bs) / nth;
|
||||
int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
|
||||
from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
|
||||
(void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
|
||||
(ne10_block_end - ne10_block_start) * bs);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
|
||||
|
||||
if (ith == 0) {
|
||||
// initialize matrix_row_counts
|
||||
memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
|
||||
|
|
@ -7693,9 +7802,14 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
}
|
||||
}
|
||||
|
||||
// reset current_chunk
|
||||
for (int cur_a = ith; cur_a < n_as; cur_a += nth) {
|
||||
atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
|
||||
*current_chunk_ctr = nth;
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// compute each matrix multiplication in sequence
|
||||
for (int cur_a = 0; cur_a < n_as; ++cur_a) {
|
||||
const int64_t cne1 = matrix_row_counts[cur_a];
|
||||
|
||||
|
|
@ -7703,84 +7817,64 @@ static void ggml_compute_forward_mul_mat_id(
|
|||
continue;
|
||||
}
|
||||
|
||||
const char * src0_cur = (const char *) src0->data + cur_a*nb02;
|
||||
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const char * src0_cur = (const char *) src0->data + cur_a * nb02;
|
||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||
const size_t row_size = ggml_row_size(vec_dot_type, ne10);
|
||||
|
||||
const int64_t nr0 = ne01; // src0 rows
|
||||
const int64_t nr1 = cne1; // src1 rows
|
||||
const int64_t nr0 = ne01;
|
||||
const int64_t nr1 = cne1;
|
||||
|
||||
// distribute the thread work across the inner or outer loop based on which one is larger
|
||||
int chunk_size = 16;
|
||||
if (nr0 == 1 || nr1 == 1) {
|
||||
chunk_size = 64;
|
||||
}
|
||||
|
||||
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
|
||||
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
|
||||
#if defined(__aarch64__)
|
||||
// disable for ARM
|
||||
const bool disable_chunking = true;
|
||||
#else
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
#endif // defined(__aarch64__)
|
||||
|
||||
const int64_t ith0 = ith % nth0;
|
||||
const int64_t ith1 = ith / nth0;
|
||||
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
|
||||
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
|
||||
|
||||
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
|
||||
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
|
||||
if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
|
||||
nchunk0 = nr0 > nr1 ? nth : 1;
|
||||
nchunk1 = nr0 > nr1 ? 1 : nth;
|
||||
}
|
||||
|
||||
const int64_t ir010 = dr0*ith0;
|
||||
const int64_t ir011 = MIN(ir010 + dr0, nr0);
|
||||
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||||
const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
|
||||
|
||||
const int64_t ir110 = dr1*ith1;
|
||||
const int64_t ir111 = MIN(ir110 + dr1, nr1);
|
||||
int current_chunk = ith;
|
||||
|
||||
// threads with no work simply yield (not sure if it helps)
|
||||
//if (ir010 >= ir011 || ir110 >= ir111) {
|
||||
// sched_yield();
|
||||
// continue;
|
||||
//}
|
||||
atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
|
||||
|
||||
// block-tiling attempt
|
||||
const int64_t blck_0 = 16;
|
||||
const int64_t blck_1 = 16;
|
||||
while (current_chunk < nchunk0 * nchunk1) {
|
||||
const int64_t ith0 = current_chunk % nchunk0;
|
||||
const int64_t ith1 = current_chunk / nchunk0;
|
||||
|
||||
// attempt to reduce false-sharing (does not seem to make a difference)
|
||||
float tmp[16];
|
||||
const int64_t ir0_start = dr0 * ith0;
|
||||
const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
|
||||
|
||||
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||||
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||||
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||||
const int64_t _i12 = ir1; // logical row index for this expert
|
||||
const int64_t ir1_start = dr1 * ith1;
|
||||
const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
|
||||
|
||||
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
|
||||
const int id = row_mapping.i1; // selected expert index
|
||||
ggml_compute_forward_mul_mat_id_one_chunk(
|
||||
dst, src0, src1, ids, cur_a,
|
||||
ir0_start, ir0_end, ir1_start, ir1_end,
|
||||
src0_cur, matrix_rows, row_size, src1_cont, wdata
|
||||
);
|
||||
|
||||
const int64_t i11 = id % ne11;
|
||||
const int64_t i12 = row_mapping.i2; // row index in src1
|
||||
|
||||
const int64_t i1 = id; // selected expert index
|
||||
const int64_t i2 = i12; // row
|
||||
|
||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||
// the original src1 data pointer, so we should index using the indices directly
|
||||
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||||
const char * src1_col = (const char *) wdata +
|
||||
(src1_cont || src1->type != vec_dot_type
|
||||
? (i11 + i12*ne11)*row_size
|
||||
: (i11*nb11 + i12*nb12));
|
||||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
|
||||
|
||||
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||||
//}
|
||||
|
||||
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||
vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
|
||||
}
|
||||
|
||||
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
|
||||
}
|
||||
if (nth >= nchunk0 * nchunk1) {
|
||||
break;
|
||||
}
|
||||
|
||||
current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
|
||||
}
|
||||
}
|
||||
|
||||
#undef MMID_MATRIX_ROW
|
||||
}
|
||||
|
||||
// ggml_compute_forward_out_prod
|
||||
|
|
@ -9074,10 +9168,6 @@ static void ggml_compute_forward_clamp_f32(
|
|||
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
|
||||
|
|
@ -13717,14 +13807,19 @@ struct ggml_cplan ggml_graph_plan(
|
|||
cur = 0;
|
||||
const struct ggml_tensor * src0 = node->src[0];
|
||||
const struct ggml_tensor * src1 = node->src[1];
|
||||
const struct ggml_tensor * ids = node->src[2];
|
||||
const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
|
||||
if (src1->type != vec_dot_type) {
|
||||
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
|
||||
}
|
||||
const int n_as = src0->ne[2];
|
||||
cur += GGML_PAD(cur, sizeof(int64_t)); // align
|
||||
cur += n_as * sizeof(int64_t); // matrix_row_counts
|
||||
cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
|
||||
// src1
|
||||
if (src1->type != vec_dot_type) {
|
||||
cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t);
|
||||
}
|
||||
// matrix_row_counts
|
||||
cur += n_as * sizeof(int64_t) + sizeof(int64_t);
|
||||
// matrix_rows
|
||||
cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t);
|
||||
// atomic_current_chunk
|
||||
cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE;
|
||||
} break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
|
|
|
|||
|
|
@ -284,14 +284,14 @@ struct ggml_backend_cpu_device_context {
|
|||
&hKey) == ERROR_SUCCESS) {
|
||||
DWORD cpu_brand_size = 0;
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
"ProcessorNameString",
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
description.resize(cpu_brand_size);
|
||||
if (RegQueryValueExA(hKey,
|
||||
TEXT("ProcessorNameString"),
|
||||
"ProcessorNameString",
|
||||
NULL,
|
||||
NULL,
|
||||
(LPBYTE)&description[0], // NOLINT
|
||||
|
|
@ -534,9 +534,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
|||
if (ggml_cpu_has_dotprod()) {
|
||||
features.push_back({ "DOTPROD", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_matmul_int8()) {
|
||||
features.push_back({ "MATMUL_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_get_sve_cnt() > 0) {
|
||||
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
|
||||
features.push_back({ "SVE_CNT", sve_cnt.c_str() });
|
||||
|
|
|
|||
|
|
@ -280,14 +280,6 @@ template <> inline __m256bh load(const float *p) {
|
|||
}
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CONSTANTS
|
||||
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
||||
static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
|
||||
#endif
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// FLOATING POINT MATRIX MULTIPLICATION
|
||||
|
||||
|
|
@ -614,6 +606,14 @@ class tinyBLAS_Q0_AVX {
|
|||
TC *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
const int8_t kvalues_iq4nl[16] = {
|
||||
-127, -104, -83, -65,
|
||||
-49, -35, -22, -10,
|
||||
1, 13, 25, 38,
|
||||
53, 69, 89, 113
|
||||
};
|
||||
|
||||
iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
|
|
@ -1038,6 +1038,7 @@ class tinyBLAS_Q0_AVX {
|
|||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
__m128i iq4nlt;
|
||||
};
|
||||
#endif // __AVX__
|
||||
|
||||
|
|
|
|||
|
|
@ -15,9 +15,9 @@ if (CUDAToolkit_FOUND)
|
|||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70;75;80")
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
|
|
|||
|
|
@ -41,12 +41,13 @@
|
|||
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
||||
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
|
||||
|
||||
#define GGML_CUDA_CC_PASCAL 600
|
||||
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||
#define GGML_CUDA_CC_VOLTA 700
|
||||
#define GGML_CUDA_CC_TURING 750
|
||||
#define GGML_CUDA_CC_AMPERE 800
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
|
||||
#define GGML_CUDA_CC_PASCAL 600
|
||||
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||
#define GGML_CUDA_CC_VOLTA 700
|
||||
#define GGML_CUDA_CC_TURING 750
|
||||
#define GGML_CUDA_CC_AMPERE 800
|
||||
#define GGML_CUDA_CC_ADA_LOVELACE 890
|
||||
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
|
||||
|
||||
// GCN/CNDA, wave size is 64
|
||||
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
||||
|
|
@ -71,6 +72,47 @@
|
|||
#define GGML_CUDA_CC_QY1 210
|
||||
#define GGML_CUDA_CC_QY2 220
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
constexpr bool ggml_cuda_has_arch_impl(int) {
|
||||
return false;
|
||||
}
|
||||
|
||||
template<class ... Archs>
|
||||
constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) {
|
||||
return arch == first || ggml_cuda_has_arch_impl(arch, rest...);
|
||||
}
|
||||
|
||||
constexpr bool ggml_cuda_has_arch(const int arch) {
|
||||
return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
|
||||
}
|
||||
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) {
|
||||
if (cur == 0) {
|
||||
GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch);
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
|
||||
template<class ... Archs>
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) {
|
||||
if (first <= arch && first > cur) {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...);
|
||||
} else {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int ggml_cuda_highest_compiled_arch(const int arch) {
|
||||
return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__);
|
||||
}
|
||||
#else
|
||||
static int ggml_cuda_highest_compiled_arch(const int arch) {
|
||||
return arch;
|
||||
}
|
||||
#endif // __CUDA_ARCH_LIST__
|
||||
|
||||
// ---------------------------------------------------------------------------------------------------------
|
||||
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
|
@ -124,11 +166,11 @@ static const char * cu_get_error_str(CUresult err) {
|
|||
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
||||
#endif
|
||||
|
||||
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
|
||||
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
||||
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
||||
#else
|
||||
#define GGML_CUDA_ASSUME(x)
|
||||
#endif // CUDART_VERSION >= 11100
|
||||
#endif // CUDART_VERSION >= 11010
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
typedef half dfloat; // dequantize float
|
||||
|
|
@ -158,22 +200,44 @@ typedef float2 dfloat2;
|
|||
#define NEW_MMA_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
|
||||
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#define CP_ASYNC_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
|
||||
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
#define FLASH_ATTN_AVAILABLE
|
||||
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
|
||||
|
||||
static constexpr bool fast_fp16_available(const int cc) {
|
||||
static bool fp16_available(const int cc) {
|
||||
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
|
||||
}
|
||||
|
||||
static bool fast_fp16_available(const int cc) {
|
||||
return fp16_available(cc) && cc != 610;
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fast_fp16_hardware_available(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
|
||||
}
|
||||
|
||||
// Any FP16 tensor cores are available.
|
||||
static constexpr bool fp16_mma_available(const int cc) {
|
||||
// Any FP16 tensor core instructions are available for ggml code.
|
||||
static bool fp16_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
static bool fp16_mma_hardware_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static constexpr bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_TURING;
|
||||
static bool new_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
|
||||
static bool cp_async_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
|
|
|
|||
|
|
@ -599,7 +599,7 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
|||
case GGML_TYPE_Q5_1:
|
||||
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
||||
case GGML_TYPE_Q8_0:
|
||||
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= GGML_CUDA_CC_PASCAL) {
|
||||
if (fp16_available(ggml_cuda_info().devices[ggml_cuda_get_device()].cc)) {
|
||||
return dequantize_block_q8_0_f16_cuda;
|
||||
}
|
||||
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,46 @@
|
|||
// Simplified API for asynchronous data loading.
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
// Copies data from global to shared memory, cg == cache global.
|
||||
// Both the src and dst pointers must be aligned to 16 bit.
|
||||
// Shared memory uses 32 bit addressing, the pointer is passed as unsigned int.
|
||||
// Generic pointers can be converted to 32 bit shared memory pointers using __cvta_generic_to_shared.
|
||||
// Only the 16 bit copy is exposed because 4 and 8 bit copies did not yield performance improvements.
|
||||
template <int preload>
|
||||
static __device__ __forceinline__ void cp_async_cg_16(const unsigned int dst, const void * src) {
|
||||
static_assert(preload == 0 || preload == 64 || preload == 128 || preload == 256, "bad preload");
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
#if CUDART_VERSION >= 11040
|
||||
if (preload == 256) {
|
||||
asm volatile("cp.async.cg.shared.global.L2::256B [%0], [%1], 16;"
|
||||
: : "r"(dst), "l"(src));
|
||||
} else if (preload == 128) {
|
||||
asm volatile("cp.async.cg.shared.global.L2::128B [%0], [%1], 16;"
|
||||
: : "r"(dst), "l"(src));
|
||||
} else if (preload == 64) {
|
||||
asm volatile("cp.async.cg.shared.global.L2::64B [%0], [%1], 16;"
|
||||
: : "r"(dst), "l"(src));
|
||||
} else
|
||||
#endif // CUDART_VERSION >= 11040
|
||||
{
|
||||
asm volatile("cp.async.cg.shared.global.L2 [%0], [%1], 16;"
|
||||
: : "r"(dst), "l"(src));
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
}
|
||||
|
||||
// Makes each thread wait until its asynchronous data copies are done.
|
||||
// This does NOT provide any additional synchronization.
|
||||
// In particular, when copying data with multiple warps a call to __syncthreads will be needed.
|
||||
static __device__ __forceinline__ void cp_async_wait_all() {
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
asm volatile("cp.async.wait_all;");
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
}
|
||||
|
|
@ -716,7 +716,9 @@ void launch_fattn(
|
|||
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
cudaStream_t main_stream = ctx.stream();
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
|
||||
ggml_cuda_pool_alloc<half> K_f16(pool);
|
||||
ggml_cuda_pool_alloc<half> V_f16(pool);
|
||||
|
|
@ -768,13 +770,14 @@ void launch_fattn(
|
|||
dim3 blocks_num;
|
||||
if (parallel_blocks == 0) {
|
||||
// For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
|
||||
const int tiles_nwaves = (ntiles_total - nsm - 1) / nsm;
|
||||
const bool tiles_inefficient = 3*nsm < 2*tiles_nwaves*ntiles_total;
|
||||
const bool short_context = K->ne[1] < 4096;
|
||||
const int tiles_nwaves = (ntiles_total + 2*nsm - 1) / (2*nsm);
|
||||
const int tiles_efficiency_percent = 100 * ntiles_total / (2*nsm*tiles_nwaves);
|
||||
|
||||
const int nblocks_stream_k = 2*nsm;
|
||||
|
||||
blocks_num.x = short_context && !tiles_inefficient ? ntiles_total : nblocks_stream_k;
|
||||
const bool use_stream_k = tiles_efficiency_percent < 75 || cc >= GGML_CUDA_CC_ADA_LOVELACE;
|
||||
|
||||
blocks_num.x = use_stream_k ? nblocks_stream_k : ntiles_total;
|
||||
blocks_num.y = 1;
|
||||
blocks_num.z = 1;
|
||||
|
||||
|
|
@ -827,7 +830,7 @@ void launch_fattn(
|
|||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
if constexpr (parallel_blocks == 0) {
|
||||
if (blocks_num.x % ntiles_total != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
|
||||
const dim3 block_dim_combine(D, 1, 1);
|
||||
const dim3 blocks_num_combine = blocks_num;
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,252 @@
|
|||
#include "common.cuh"
|
||||
#include "cp-async.cuh"
|
||||
#include "mma.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
typedef tile<16, 8, half2> tile_A;
|
||||
typedef tile< 8, 8, half2> tile_B;
|
||||
typedef tile<16, 8, float> tile_C_KQ;
|
||||
typedef tile<16, 4, half2> tile_C_VKQ;
|
||||
|
||||
template<int D, int nwarps, int KQ_stride>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_load_tile(
|
||||
const half2 * const __restrict__ KV, half2 * const __restrict__ tile_KV, const int stride_KV) {
|
||||
constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
|
||||
|
||||
// If cp.async is available, load up to the highest power of 2 in D asynchronously:
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
static_assert(D >= 64 && D < 512, "bad D");
|
||||
constexpr int k0_sync_start = D/2 < 64 ? 32 : (D/2 < 128 ? 64 : 128);
|
||||
|
||||
const unsigned int tile_KV_32 = __cvta_generic_to_shared(tile_KV);
|
||||
|
||||
constexpr int preload = 64;
|
||||
constexpr int h2_per_chunk = 16/sizeof(half2);
|
||||
constexpr int chunks_per_row = k0_sync_start / h2_per_chunk;
|
||||
constexpr int stride_i = WARP_SIZE / chunks_per_row;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < KQ_stride; i0 += nwarps*stride_i) {
|
||||
const int i = i0 + threadIdx.y*stride_i + (chunks_per_row == WARP_SIZE ? 0 : threadIdx.x / chunks_per_row);
|
||||
const int k = (chunks_per_row == WARP_SIZE ? threadIdx.x : threadIdx.x % chunks_per_row)*h2_per_chunk;
|
||||
|
||||
cp_async_cg_16<preload>(tile_KV_32 + (i*D2_padded + k)*sizeof(half2), KV + i*stride_KV + k);
|
||||
}
|
||||
#else
|
||||
constexpr int k0_sync_start = 0;
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
static_assert(k0_sync_start % WARP_SIZE == 0, "bad k0_sync_start");
|
||||
|
||||
// If D is not a power of 2, the rest is loaded synchronously.
|
||||
// K/V data is loaded with decreasing granularity for D for better memory bandwidth.
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? k0_sync_start : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_i = WARP_SIZE / stride_k;
|
||||
|
||||
if (k0_start == k0_stop || k0_stop <= k0_sync_start) {
|
||||
continue;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < KQ_stride; i0 += nwarps*stride_i) {
|
||||
const int i = i0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[i*D2_padded + k] = KV[i*stride_KV + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap, bool needs_fixup, bool is_fixup, bool last_iter>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
const half2 * const __restrict__ K_h2,
|
||||
const half2 * const __restrict__ V_h2,
|
||||
const half * const __restrict__ maskh,
|
||||
float2 * const __restrict__ dstk,
|
||||
float2 * const __restrict__ dstk_fixup,
|
||||
const float scale,
|
||||
const float slope,
|
||||
const float logit_softcap,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int stride_Q,
|
||||
const int stride_KV,
|
||||
const int stride_mask,
|
||||
const int jt,
|
||||
half2 * const __restrict__ tile_K,
|
||||
half2 * const __restrict__ tile_V,
|
||||
const tile_B * const __restrict__ Q_B,
|
||||
tile_C_VKQ * const __restrict__ VKQ_C,
|
||||
float2 & KQ_max,
|
||||
float2 & KQ_rowsum,
|
||||
const int kb0) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
constexpr int np = nwarps*tile_B::I / ncols; // Number of parallel CUDA warps per Q column.
|
||||
constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
|
||||
|
||||
const int k_VKQ_0 = kb0*KQ_stride;
|
||||
tile_C_KQ KQ_C[KQ_stride/(np*tile_C_KQ::I)];
|
||||
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
flash_attn_ext_f16_load_tile<D, nwarps, KQ_stride>(V_h2 + k_VKQ_0*stride_KV, tile_V, stride_KV);
|
||||
#else
|
||||
flash_attn_ext_f16_load_tile<D, nwarps, KQ_stride>(K_h2 + k_VKQ_0*stride_KV, tile_K, stride_KV);
|
||||
__syncthreads();
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_00 = 0; i_KQ_00 < KQ_stride; i_KQ_00 += np*tile_A::I) {
|
||||
const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*tile_A::I;
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += tile_A::J) {
|
||||
tile_A K_A;
|
||||
load_ldmatrix(K_A, tile_K + i_KQ_0*D2_padded + k_KQ_0, D2_padded);
|
||||
mma(KQ_C[i_KQ_00/(np*tile_A::I)], K_A, ((tile_B *) Q_B)[k_KQ_0/tile_A::J]);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef CP_ASYNC_AVAILABLE
|
||||
__syncthreads(); // Only needed if tile_K == tile_V.
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
if (use_logit_softcap) {
|
||||
static_assert(KQ_stride % (np*tile_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i = 0; i < KQ_stride/(np*tile_C_KQ::I); ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C_KQ::ne; ++l) {
|
||||
KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maskh) {
|
||||
static_assert(KQ_stride % (np *tile_C_KQ::I) == 0, "bad loop size");
|
||||
static_assert(ncols % (nwarps/np*tile_C_KQ::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < KQ_stride; i00 += np*tile_C_KQ::I) {
|
||||
const int i0 = i00 + (threadIdx.y % np)*tile_C_KQ::I;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C_KQ::ne; ++l) {
|
||||
const int i = i0 + tile_C_KQ::get_i(l);
|
||||
const int j = (threadIdx.y / np)*tile_C_KQ::J + tile_C_KQ::get_j(l);
|
||||
|
||||
KQ_C[i00/(np*tile_C_KQ::I)].x[l] += slope*__half2float(maskh[j*stride_mask + k_VKQ_0 + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
float2 KQ_max_new = KQ_max;
|
||||
static_assert(KQ_stride % (np*tile_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*tile_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < tile_C_KQ::ne; l0 += 2) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, KQ_C[k].x[l0 + 0]);
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, KQ_C[k].x[l0 + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Values per KQ column are spread across 8 threads, does not need full warp reduce:
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.x, offset, WARP_SIZE));
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.y, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
float2 KQ_rowsum_add = make_float2(0.0f, 0.0f);
|
||||
static_assert(KQ_stride % (np*tile_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*tile_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C_KQ::ne; ++l) {
|
||||
const float KQ_max_l = l % 2 == 0 ? KQ_max_new.x : KQ_max_new.y;
|
||||
const float diff = KQ_C[k].x[l] - KQ_max_l;
|
||||
KQ_C[k].x[l] = expf(diff);
|
||||
|
||||
if (l % 2 == 0) {
|
||||
KQ_rowsum_add.x += KQ_C[k].x[l];
|
||||
} else {
|
||||
KQ_rowsum_add.y += KQ_C[k].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const float2 diff = make_float2(KQ_max.x - KQ_max_new.x, KQ_max.y - KQ_max_new.y);
|
||||
const float2 KQ_max_scale = make_float2(expf(diff.x), expf(diff.y));
|
||||
KQ_max = KQ_max_new;
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum.x = KQ_max_scale.x*KQ_rowsum.x + KQ_rowsum_add.x;
|
||||
KQ_rowsum.y = KQ_max_scale.y*KQ_rowsum.y + KQ_rowsum_add.y;
|
||||
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale.x, KQ_max_scale.y);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < D/tile_C_VKQ::I; ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C_VKQ::ne; ++l) {
|
||||
VKQ_C[i].x[l] *= KQ_max_scale_h2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert KQ C tiles into B tiles for VKQ calculation:
|
||||
tile_B B[KQ_stride/(np*2*tile_B::J)];
|
||||
static_assert(KQ_stride % (np*2*tile_B::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*2*tile_B::J); ++k) {
|
||||
B[k] = get_transposed(get_half2(KQ_C[k]));
|
||||
}
|
||||
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
if (!last_iter) {
|
||||
flash_attn_ext_f16_load_tile<D, nwarps, KQ_stride>(K_h2 + (k_VKQ_0 + KQ_stride)*stride_KV, tile_K, stride_KV);
|
||||
}
|
||||
#else
|
||||
flash_attn_ext_f16_load_tile<D, nwarps, KQ_stride>(V_h2 + k_VKQ_0*stride_KV, tile_V, stride_KV);
|
||||
__syncthreads();
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
// Calculate VKQ tile:
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += tile_C_VKQ::I) {
|
||||
static_assert((KQ_stride/2) % (np*tile_A::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k00 = 0; k00 < KQ_stride/2; k00 += np*tile_A::J) {
|
||||
const int k0 = k00 + (threadIdx.y % np)*tile_A::J;
|
||||
|
||||
tile_A A;
|
||||
load_ldmatrix_trans(A, tile_V + 2*k0*D2_padded + i_VKQ_0/2, D2_padded);
|
||||
mma(VKQ_C[i_VKQ_0/tile_C_VKQ::I], A, B[k00/(np*tile_A::J)]);
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef CP_ASYNC_AVAILABLE
|
||||
__syncthreads(); // Only needed if tile_K == tile_V.
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template<int D, int ncols, int nwarps, int KQ_stride, bool use_logit_softcap, bool needs_fixup, bool is_fixup>
|
||||
static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
const float2 * const __restrict__ Q_f2,
|
||||
|
|
@ -13,61 +258,40 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
const float scale,
|
||||
const float slope,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
const int ne03,
|
||||
const int ne10,
|
||||
const int ne11,
|
||||
const int ne12,
|
||||
const int ne13,
|
||||
const int ne31,
|
||||
const int nb31,
|
||||
const int nb01,
|
||||
const int nb02,
|
||||
const int nb03,
|
||||
const int nb11,
|
||||
const int nb12,
|
||||
const int nb13,
|
||||
const int nb21,
|
||||
const int nb22,
|
||||
const int nb23,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3,
|
||||
const int stride_Q,
|
||||
const int stride_KV,
|
||||
const int stride_mask,
|
||||
const int jt,
|
||||
const int kb0_start,
|
||||
const int kb0_stop) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
typedef mma_C_I16J8<float> mma_C_KQ;
|
||||
typedef mma_C_I16J8<half2> mma_C_VKQ;
|
||||
|
||||
static_assert(nwarps*mma_B::J % ncols == 0, "bad nwarps");
|
||||
constexpr int np = nwarps*mma_B::J / ncols; // Number of parallel CUDA warps per Q column.
|
||||
static_assert(nwarps*tile_B::I % ncols == 0, "bad nwarps");
|
||||
constexpr int np = nwarps*tile_B::I / ncols; // Number of parallel CUDA warps per Q column.
|
||||
|
||||
static_assert(D % nwarps == 0, "bad D");
|
||||
static_assert(KQ_stride % nwarps == 0, "bad KQ_stride");
|
||||
|
||||
constexpr int D2_padded = D/2 + 4; // Size of D in half2, padded to avoid shared memory bank conflicts.
|
||||
extern __shared__ half2 tile_KV[]; // Temporary shared buffer for loading K/V data with KQ_stride*D logical elements.
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float2);
|
||||
const int stride_KV = nb11 / sizeof(half2);
|
||||
const int stride_mask = nb31 / sizeof(half);
|
||||
// Temporary shared buffer for loading K/V data with KQ_stride*D logical elements:
|
||||
extern __shared__ half2 tile_K[];
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
half2 * tile_V = tile_K + KQ_stride*D2_padded;
|
||||
#else
|
||||
half2 * tile_V = tile_K;
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
mma_B Q_B[D/(2*mma_B::K)];
|
||||
mma_C_VKQ VKQ_C[D/mma_C_VKQ::I];
|
||||
tile_B Q_B[D/(2*tile_B::J)];
|
||||
tile_C_VKQ VKQ_C[D/tile_C_VKQ::I];
|
||||
|
||||
float2 KQ_rowsum = {0.0f, 0.0f};
|
||||
float2 KQ_max = {-FLT_MAX/2.0f, -FLT_MAX/2.0f};
|
||||
float2 KQ_max_scale = {0.0f, 0.0f};
|
||||
float2 KQ_rowsum = {0.0f, 0.0f};
|
||||
float2 KQ_max = {-FLT_MAX/2.0f, -FLT_MAX/2.0f};
|
||||
|
||||
// Temporarily load Q data into tile_KV, will be loaded into registers afterwards.
|
||||
// Temporarily load Q data into tile_K, will be loaded into registers afterwards.
|
||||
// The loading is done with decreasing granularity for D for better memory bandwidth.
|
||||
const half2 scale_h2 = make_half2(scale, scale);
|
||||
#pragma unroll
|
||||
|
|
@ -76,6 +300,10 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (k0_start == k0_stop) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
|
@ -90,14 +318,14 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
const float2 tmp = Q_f2[(jt*ncols + j)*stride_Q + k];
|
||||
tile_KV[j*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y);
|
||||
tile_K[j*D2_padded + k] = scale_h2 * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[j*D2_padded + k] = make_half2(0.0f, 0.0f);
|
||||
tile_K[j*D2_padded + k] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -106,198 +334,42 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
__syncthreads();
|
||||
|
||||
{
|
||||
const int j0 = (threadIdx.y / np) * mma_B::J;
|
||||
const int j0 = (threadIdx.y / np) * tile_B::I;
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
Q_B[k0/mma_B::K].load_ldmatrix(tile_KV + j0*D2_padded + k0, D2_padded);
|
||||
for (int k0 = 0; k0 < D/2; k0 += tile_B::J) {
|
||||
load_ldmatrix(Q_B[k0/tile_B::J], tile_K + j0*D2_padded + k0, D2_padded);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Preload K data for first iteration when using cp_async:
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
flash_attn_ext_f16_load_tile<D, nwarps, KQ_stride>(K_h2 + kb0_start*KQ_stride*stride_KV, tile_K, stride_KV);
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
// Iterate over ne11 == previous tokens:
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop; ++kb0) {
|
||||
const int k_VKQ_0 = kb0*KQ_stride;
|
||||
mma_C_KQ KQ_C[KQ_stride/(np*mma_C_KQ::I)];
|
||||
|
||||
// Load K data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_k : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int k0_start = stride_k == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_k);
|
||||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_i = WARP_SIZE / stride_k;
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < KQ_stride; i_KQ_0 += nwarps*stride_i) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y*stride_i + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = k0_start; k_KQ_0 < k0_stop; k_KQ_0 += stride_k) {
|
||||
const int k_KQ = k_KQ_0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
||||
tile_KV[i_KQ*D2_padded + k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV + k_KQ];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate tile of KQ:
|
||||
#pragma unroll
|
||||
for (int i_KQ_00 = 0; i_KQ_00 < KQ_stride; i_KQ_00 += np*mma_A::I) {
|
||||
const int i_KQ_0 = i_KQ_00 + (threadIdx.y % np)*mma_A::I;
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += mma_A::K) {
|
||||
mma_A K_A;
|
||||
K_A.load_ldmatrix(tile_KV + i_KQ_0*D2_padded + k_KQ_0, D2_padded);
|
||||
KQ_C[i_KQ_00/(np*mma_A::I)].mma(K_A, Q_B[k_KQ_0/mma_A::K]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (use_logit_softcap) {
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i = 0; i < KQ_stride/(np*mma_C_KQ::I); ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
KQ_C[i].x[l] = logit_softcap*tanhf(KQ_C[i].x[l]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (maskh) {
|
||||
static_assert(KQ_stride % (np *mma_C_KQ::I) == 0, "bad loop size");
|
||||
static_assert(ncols % (nwarps/np*mma_C_KQ::J) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < KQ_stride; i00 += np*mma_C_KQ::I) {
|
||||
const int i0 = i00 + (threadIdx.y % np)*mma_C_KQ::I;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const int i = i0 + mma_C_KQ::get_i(l);
|
||||
const int j = (threadIdx.y / np)*mma_C_KQ::J + mma_C_KQ::get_j(l);
|
||||
|
||||
KQ_C[i00/(np*mma_C_KQ::I)].x[l] += slope*__half2float(maskh[j*stride_mask + k_VKQ_0 + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate softmax for each KQ column using the current max. value.
|
||||
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
||||
float2 KQ_max_new = KQ_max;
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < mma_C_KQ::ne; l0 += 2) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, KQ_C[k].x[l0 + 0]);
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, KQ_C[k].x[l0 + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Values per KQ column are spread across 8 threads, does not need full warp reduce:
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 2; offset >>= 1) {
|
||||
KQ_max_new.x = fmaxf(KQ_max_new.x, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.x, offset, WARP_SIZE));
|
||||
KQ_max_new.y = fmaxf(KQ_max_new.y, __shfl_xor_sync(0xFFFFFFFF, KQ_max_new.y, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
{
|
||||
const float2 diff = make_float2(KQ_max.x - KQ_max_new.x, KQ_max.y - KQ_max_new.y);
|
||||
KQ_max_scale = make_float2(expf(diff.x), expf(diff.y));
|
||||
if (diff.x <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.x = 0.0f;
|
||||
}
|
||||
if (diff.y <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_max_scale.y = 0.0f;
|
||||
}
|
||||
KQ_max = KQ_max_new;
|
||||
}
|
||||
|
||||
float2 KQ_rowsum_add = make_float2(0.0f, 0.0f);
|
||||
static_assert(KQ_stride % (np*mma_C_KQ::I) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*mma_C_KQ::I); ++k) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_KQ::ne; ++l) {
|
||||
const float KQ_max_l = l % 2 == 0 ? KQ_max.x : KQ_max.y;
|
||||
const float diff = KQ_C[k].x[l] - KQ_max_l;
|
||||
KQ_C[k].x[l] = expf(diff);
|
||||
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
||||
KQ_C[k].x[l] = 0.0f;
|
||||
}
|
||||
|
||||
if (l % 2 == 0) {
|
||||
KQ_rowsum_add.x += KQ_C[k].x[l];
|
||||
} else {
|
||||
KQ_rowsum_add.y += KQ_C[k].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
||||
KQ_rowsum.x = KQ_max_scale.x*KQ_rowsum.x + KQ_rowsum_add.x;
|
||||
KQ_rowsum.y = KQ_max_scale.y*KQ_rowsum.y + KQ_rowsum_add.y;
|
||||
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale.x, KQ_max_scale.y);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < D/mma_C_VKQ::I; ++i) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C_VKQ::ne; ++l) {
|
||||
VKQ_C[i].x[l] *= KQ_max_scale_h2;
|
||||
}
|
||||
}
|
||||
|
||||
// Convert KQ C tiles into B tiles for VKQ calculation:
|
||||
mma_B B[KQ_stride/(np*2*mma_B::K)];
|
||||
static_assert(KQ_stride % (np*2*mma_B::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k = 0; k < KQ_stride/(np*2*mma_B::K); ++k) {
|
||||
B[k] = KQ_C[k].to_mma_B();
|
||||
}
|
||||
|
||||
// Load V data into tile with decreasing granularity for D for better memory bandwidth:
|
||||
static_assert(KQ_stride % (4*nwarps) == 0, "out of bounds");
|
||||
#pragma unroll
|
||||
for (int stride_i : {WARP_SIZE, WARP_SIZE/2, WARP_SIZE/4}) {
|
||||
const int i0_start = stride_i == WARP_SIZE ? 0 : D/2 - (D/2) % (2*stride_i);
|
||||
const int i0_stop = D/2 - (D/2) % (1*stride_i);
|
||||
const int stride_k = WARP_SIZE / stride_i;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_V_0 = 0; k_V_0 < KQ_stride; k_V_0 += nwarps*stride_k) {
|
||||
const int k_V = k_V_0 + threadIdx.y*stride_k + (stride_i == WARP_SIZE ? 0 : threadIdx.x / stride_i);
|
||||
|
||||
#pragma unroll
|
||||
for (int i_V_0 = i0_start; i_V_0 < i0_stop; i_V_0 += stride_i) {
|
||||
const int i_V = i_V_0 + (stride_i == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_i);
|
||||
|
||||
tile_KV[k_V*D2_padded + i_V] = V_h2[(k_VKQ_0 + k_V)*stride_KV + i_V];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate VKQ tile:
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += mma_C_VKQ::I) {
|
||||
static_assert((KQ_stride/2) % (np*mma_A::K) == 0, "bad loop size");
|
||||
#pragma unroll
|
||||
for (int k00 = 0; k00 < KQ_stride/2; k00 += np*mma_A::K) {
|
||||
const int k0 = k00 + (threadIdx.y % np)*mma_A::K;
|
||||
|
||||
mma_A A;
|
||||
A.load_ldmatrix_trans(tile_KV + 2*k0*D2_padded + i_VKQ_0/2, D2_padded);
|
||||
VKQ_C[i_VKQ_0/mma_C_VKQ::I].mma(A, B[k00/(np*mma_A::K)]);
|
||||
}
|
||||
}
|
||||
for (int kb0 = kb0_start; kb0 < kb0_stop-1; ++kb0) {
|
||||
constexpr bool last_iter = false;
|
||||
flash_attn_ext_f16_iter<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q, stride_KV, stride_mask, jt, tile_K, tile_V, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
|
||||
}
|
||||
{ // kb0_start is always < kb0_stop so the last iter can be executed unconditionally.
|
||||
constexpr bool last_iter = true;
|
||||
flash_attn_ext_f16_iter<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup, last_iter>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dstk_fixup, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q, stride_KV, stride_mask, jt, tile_K, tile_V, Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0_stop-1);
|
||||
}
|
||||
|
||||
// With cp_async there is no __syncthreads at the end of the iter,
|
||||
// there can be a race condition on shared memory access for combining/writing back results.
|
||||
#ifdef CP_ASYNC_AVAILABLE
|
||||
if (nwarps*tile_B::I > KQ_stride) {
|
||||
__syncthreads();
|
||||
}
|
||||
#endif // CP_ASYNC_AVAILABLE
|
||||
|
||||
// Finally, sum up partial KQ rowsums.
|
||||
// The partial sums are spread across 8 threads each, does not need full reduce.
|
||||
|
|
@ -310,26 +382,26 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
// Write VKQ accumulators to shared memory in column-major format.
|
||||
// It's faster to do small writes to shared memory, then large write to VRAM than to do small writes to VRAM.
|
||||
// Also for np > 1 the combination is done via these values in shared memory.
|
||||
const int j_cwd = threadIdx.y*mma_B::J + mma_B::get_j(-1); // j combine write data
|
||||
const int j_cwd = threadIdx.y*tile_B::I + tile_B::get_i(-1); // j combine write data
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D/2; k0 += mma_B::K) {
|
||||
const mma_B B = VKQ_C[k0/mma_B::K].to_mma_B(); // Conversion of C to B matrix puts it in column-major format.
|
||||
for (int k0 = 0; k0 < D/2; k0 += tile_B::J) {
|
||||
const tile_B B = get_transposed(VKQ_C[k0/tile_B::J]); // Conversion of C to B matrix puts it in column-major format.
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_B::ne; ++l) {
|
||||
const int k = k0 + mma_B::get_k(l);
|
||||
for (int l = 0; l < tile_B::ne; ++l) {
|
||||
const int k = k0 + tile_B::get_j(l);
|
||||
|
||||
tile_KV[j_cwd*D2_padded + k] = B.x[l];
|
||||
tile_K[j_cwd*D2_padded + k] = B.x[l];
|
||||
}
|
||||
}
|
||||
|
||||
const int j_cwmo = (threadIdx.x % (2*mma_C_VKQ::J)) / mma_C_VKQ::J; // j combine write meta offset
|
||||
const int j_cwm = threadIdx.y*(2*mma_C_VKQ::J) + 2*mma_C_VKQ::get_j(-1) + j_cwmo; // j combine write meta
|
||||
const int j_cwmo = (threadIdx.x % (2*tile_C_VKQ::J)) / tile_C_VKQ::J; // j combine write meta offset
|
||||
const int j_cwm = threadIdx.y*(2*tile_C_VKQ::J) + 2*tile_C_VKQ::get_j(-1) + j_cwmo; // j combine write meta
|
||||
const float2 KQ_cmr = make_float2(((const float *) &KQ_max)[j_cwmo], ((const float *) &KQ_rowsum)[j_cwmo]); // KQ combine max rowsum
|
||||
|
||||
if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*mma_C_VKQ::J) {
|
||||
if (((!needs_fixup && !is_fixup) || np > 1) && threadIdx.x < 2*tile_C_VKQ::J) {
|
||||
// Use the 16 bytes of padding in each row to store the meta data: KQ max, KQ rowsum, KQ max scale.
|
||||
((float2 *) tile_KV)[j_cwm*(D2_padded/2) + D/4] = KQ_cmr;
|
||||
((float2 *) tile_K)[j_cwm*(D2_padded/2) + D/4] = KQ_cmr;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
|
@ -337,11 +409,11 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
static_assert(np == 1 || np == 2 || np == 4, "bad np");
|
||||
if (np == 1) {
|
||||
// No combination is needed, the meta data can be directly written from registers to VRAM.
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
if (needs_fixup && threadIdx.x < tile_B::I) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
if (is_fixup && threadIdx.x < tile_B::I) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[j_cwm] = KQ_cmr;
|
||||
}
|
||||
|
|
@ -350,42 +422,40 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
// Warps with threadIdx.y % np != 0 must NOT return early.
|
||||
// All threads must return simultaneously to avoid race conditions with work on the next tile.
|
||||
|
||||
float * meta_j = (float *) tile_KV + (threadIdx.y*mma_B::J + threadIdx.x)*D2_padded + D/2;
|
||||
float * meta_j = (float *) tile_K + (threadIdx.y*tile_B::I + threadIdx.x)*D2_padded + D/2;
|
||||
|
||||
float KQ_cm = -FLT_MAX/2; // KQ combine max per parallel warp.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
if (np*tile_B::I == WARP_SIZE || threadIdx.x < np*tile_B::I) {
|
||||
KQ_cm = meta_j[0];
|
||||
}
|
||||
|
||||
float KQ_cmn = KQ_cm; // KQ combine max new, max between all parallel warps.
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
for (int offset = np*tile_B::I/2; offset >= tile_B::I; offset >>= 1) {
|
||||
KQ_cmn = fmaxf(KQ_cmn, __shfl_xor_sync(0xFFFFFFFF, KQ_cmn, offset, WARP_SIZE));
|
||||
}
|
||||
|
||||
const float KQ_cms = expf(KQ_cm - KQ_cmn); // KQ combine max scale per warp.
|
||||
float KQ_crs = 0.0f; // KQ combine rowsum, scaled sum of all parallel warps.
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
if (np*tile_B::I == WARP_SIZE || threadIdx.x < np*tile_B::I) {
|
||||
KQ_crs = KQ_cms*meta_j[1];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = np*mma_B::J/2; offset >= mma_B::J; offset >>= 1) {
|
||||
for (int offset = np*tile_B::I/2; offset >= tile_B::I; offset >>= 1) {
|
||||
KQ_crs += __shfl_xor_sync(0xFFFFFFFF, KQ_crs, offset, WARP_SIZE);
|
||||
}
|
||||
|
||||
// Write back combined meta data:
|
||||
if (np*mma_B::J == WARP_SIZE || threadIdx.x < np*mma_B::J) {
|
||||
meta_j[0] = KQ_cmn; // Combined max. KQ values.
|
||||
meta_j[1] = KQ_crs; // Combined KQ rowsums.
|
||||
meta_j[2] = KQ_cms; // KQ max scales per parallel warp.
|
||||
if (np*tile_B::I == WARP_SIZE || threadIdx.x < np*tile_B::I) {
|
||||
*((float2 *) meta_j) = make_float2(KQ_cms, KQ_crs); // Combined KQ max scale + rowsum.
|
||||
}
|
||||
if (needs_fixup && threadIdx.x < mma_B::J) {
|
||||
if (needs_fixup && threadIdx.x < tile_B::I) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + blockIdx.x*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
dstk_fixup_meta[(threadIdx.y/np)*tile_B::I + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
if (is_fixup && threadIdx.x < mma_B::J) {
|
||||
if (is_fixup && threadIdx.x < tile_B::I) {
|
||||
float2 * dstk_fixup_meta = dstk_fixup + (gridDim.x + blockIdx.x)*ncols;
|
||||
dstk_fixup_meta[(threadIdx.y/np)*mma_B::J + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
dstk_fixup_meta[(threadIdx.y/np)*tile_B::I + threadIdx.x] = make_float2(KQ_cmn, KQ_crs);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -404,6 +474,10 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
const int k0_stop = D/2 - (D/2) % (1*stride_k);
|
||||
const int stride_j = WARP_SIZE / stride_k;
|
||||
|
||||
if (k0_start == k0_stop) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (nwarps*stride_j > ncols && threadIdx.y*stride_j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
|
@ -411,12 +485,12 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
#pragma unroll
|
||||
for (int j0_dst = 0; j0_dst < ncols; j0_dst += (nwarps/np)*stride_j) {
|
||||
const int j_dst = j0_dst + (threadIdx.y/np)*stride_j + (stride_k == WARP_SIZE ? 0 : threadIdx.x / stride_k);
|
||||
const int j_tile_KV = (j_dst/mma_B::J)*(np*mma_B::J) + j_dst % mma_B::J;
|
||||
const int j_tile_K = (j_dst/tile_B::I)*(np*tile_B::I) + j_dst % tile_B::I;
|
||||
|
||||
if (!is_fixup && jt*ncols + j_dst >= ne01) {
|
||||
continue;
|
||||
}
|
||||
const float * meta_j = (const float *) tile_KV + j_tile_KV*D2_padded + D/2;
|
||||
const float * meta_j = (const float *) tile_K + j_tile_K*D2_padded + D/2;
|
||||
#pragma unroll
|
||||
for (int k0 = k0_start; k0 < k0_stop; k0 += stride_k) {
|
||||
const int k = k0 + (stride_k == WARP_SIZE ? threadIdx.x : threadIdx.x % stride_k);
|
||||
|
|
@ -424,8 +498,8 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
float2 dstk_val = make_float2(0.0f, 0.0f);
|
||||
#pragma unroll
|
||||
for (int ip = 0; ip < np; ++ip) {
|
||||
const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*mma_B::J*D2_padded + 2];
|
||||
const float2 dstk_val_add = __half22float2(tile_KV[(j_tile_KV + ip*mma_B::J)*D2_padded + k]);
|
||||
const float KQ_crs = np == 1 ? 1.0f : meta_j[ip*tile_B::I*D2_padded + 0];
|
||||
const float2 dstk_val_add = __half22float2(tile_K[(j_tile_K + ip*tile_B::I)*D2_padded + k]);
|
||||
dstk_val.x += dstk_val_add.x*KQ_crs;
|
||||
dstk_val.y += dstk_val_add.y*KQ_crs;
|
||||
}
|
||||
|
|
@ -450,7 +524,7 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
|||
__syncthreads();
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
|
|
@ -494,6 +568,11 @@ static __global__ void flash_attn_ext_f16(
|
|||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifndef NEW_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
|
|
@ -504,6 +583,10 @@ static __global__ void flash_attn_ext_f16(
|
|||
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float2);
|
||||
const int stride_KV = nb11 / sizeof(half2);
|
||||
const int stride_mask = nb31 / sizeof(half);
|
||||
|
||||
const int iter_k = ne11 / KQ_stride;
|
||||
const int iter_j = (ne01 + (ncols - 1)) / ncols;
|
||||
|
||||
|
|
@ -535,14 +618,12 @@ static __global__ void flash_attn_ext_f16(
|
|||
constexpr bool needs_fixup = false; // CUDA block is working on an entire tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
ne01, ne02, stride_Q, stride_KV, stride_mask, jt, kb0_start, kb0_stop);
|
||||
} else {
|
||||
constexpr bool needs_fixup = true; // CUDA block is working on the beginning of a tile.
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
ne01, ne02, stride_Q, stride_KV, stride_mask, jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
kbc += iter_k;
|
||||
|
|
@ -571,24 +652,27 @@ static __global__ void flash_attn_ext_f16(
|
|||
constexpr bool needs_fixup = false;
|
||||
flash_attn_ext_f16_process_tile<D, ncols, nwarps, KQ_stride, use_logit_softcap, needs_fixup, is_fixup>
|
||||
(Q_f2, K_h2, V_h2, maskh, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, ne31, nb31, nb01, nb02, nb03, nb11, nb12, nb13, nb21, nb22, nb23, ne0, ne1, ne2, ne3,
|
||||
jt, kb0_start, kb0_stop);
|
||||
ne01, ne02, stride_Q, stride_KV, stride_mask, jt, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block>
|
||||
void ggml_cuda_flash_attn_ext_mma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
typedef mma_A_I16K8<half2> mma_A;
|
||||
typedef mma_B_J8K8<half2> mma_B;
|
||||
typedef tile<16, 8, half2> tile_A;
|
||||
typedef tile< 8, 8, half2> tile_B;
|
||||
|
||||
static_assert(D % mma_B::K == 0, "bad D");
|
||||
static_assert(cols_per_block % mma_B::J == 0, "bad cols_per_block");
|
||||
static_assert(D % tile_B::J == 0, "bad D");
|
||||
static_assert(cols_per_block % tile_B::I == 0, "bad cols_per_block");
|
||||
|
||||
const ggml_tensor * KQV = dst;
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
constexpr int KQ_stride = D <= 128 ? 64 : 32;
|
||||
constexpr int nwarps = (KQ_stride == 32 && cols_per_block <= 16) ?
|
||||
cols_per_block/mma_B::J * KQ_stride/mma_A::I : (cols_per_block <= 8 ? 4 : 8);
|
||||
constexpr size_t nbytes_shared = std::max(KQ_stride, nwarps*mma_B::J) * (D + 8) * sizeof(half);
|
||||
constexpr int KQ_stride = D <= 128 ? 64 : 32;
|
||||
constexpr int nwarps = (KQ_stride == 32 && cols_per_block <= 16) ?
|
||||
cols_per_block/tile_B::J * KQ_stride/tile_A::I : (cols_per_block <= 8 ? 4 : 8);
|
||||
|
||||
const int nrows_KQ = cp_async_available(cc) ? 2*KQ_stride : KQ_stride;
|
||||
const int nrows_combine = nwarps*tile_B::J;
|
||||
const size_t nbytes_shared = std::max(nrows_KQ, nrows_combine) * (D + 8) * sizeof(half);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
|
|
|||
|
|
@ -178,11 +178,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||
int major_version = 0;
|
||||
size_t version_length = 0;
|
||||
if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
|
||||
std::string version(version_length, '\0');
|
||||
std::vector<char> version(version_length+1, '\0');
|
||||
if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
|
||||
version.resize(::strlen(version.c_str()));
|
||||
version.resize(::strlen(version.data()));
|
||||
int parsed_value = 0;
|
||||
if (std::from_chars(version.c_str(), version.c_str() + version.length(), parsed_value).ec == std::errc()) {
|
||||
if (std::from_chars(version.data(), version.data() + version.size(), parsed_value).ec == std::errc()) {
|
||||
major_version = parsed_value;
|
||||
}
|
||||
}
|
||||
|
|
@ -1480,12 +1480,7 @@ static void ggml_cuda_op_mul_mat(
|
|||
const size_t nbytes_data = ggml_nbytes(src0);
|
||||
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
|
||||
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
|
||||
// TODO: remove this for MUSA once the Guilty Lockup issue is resolved
|
||||
#ifndef GGML_USE_MUSA
|
||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
|
||||
#else // GGML_USE_MUSA
|
||||
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
|
||||
#endif // !GGML_USE_MUSA
|
||||
}
|
||||
|
||||
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
|
||||
|
|
@ -1867,14 +1862,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|||
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
|
||||
}
|
||||
} else {
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_hardware_available(cc);
|
||||
}
|
||||
|
||||
// debug helpers
|
||||
|
|
@ -2840,7 +2835,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
|||
return false;
|
||||
}
|
||||
|
||||
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
|
||||
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
|
|
@ -2852,8 +2847,10 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
|||
}
|
||||
return true;
|
||||
#else
|
||||
GGML_UNUSED(buffer);
|
||||
GGML_UNUSED(size);
|
||||
return false;
|
||||
#endif
|
||||
#endif // CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||
|
|
@ -3205,8 +3202,8 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
|||
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
return cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
|
||||
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
}
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
|
|
|
|||
|
|
@ -4,11 +4,12 @@
|
|||
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-multiply-accumulate-operation-using-mma-instruction
|
||||
//
|
||||
// Like with nvcuda::wmma there are three types of matrix tiles: A, B, and C with A @ B = C.
|
||||
// A is a row-major matrix with shape I x K.
|
||||
// B is a column-major matrix with shape K x J.
|
||||
// C is a column-major matrix with shape I x J.
|
||||
// Note that along their lowest dimension I, J, and K are measured in physical 32 bit elements instead of logical elements.
|
||||
// The functions get_i, get_j, and get_k can be used to get the physical 32 bit index of the lth element of a thread within a tile.
|
||||
// A is a row-major matrix with shape M x K.
|
||||
// B is a column-major matrix with shape K x N.
|
||||
// C is a column-major matrix with shape M x N.
|
||||
// A, B, and C are represented using the same fundamental data type: a row-major matrix with I rows and J columns.
|
||||
// Note that J is measured in physical 32 bit elements instead of logical elements.
|
||||
// The methods get_i and get_j can be used to get the physical 32 bit index of the lth element of a thread within a tile.
|
||||
// All matrix tiles have ne physical 32 bit elements per warp.
|
||||
//
|
||||
// As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
|
||||
|
|
@ -23,7 +24,7 @@ static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
|||
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;"
|
||||
: "+r"(ret) : "r"(x));
|
||||
: "=r"(ret) : "r"(x));
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(NEW_MMA_AVAILABLE)
|
||||
|
|
@ -52,407 +53,267 @@ static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
|
|||
|
||||
#endif // CUDART_VERSION >= 11080
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_movmatrix(const half2 x) {
|
||||
half2 ret;
|
||||
*((int *) &ret) = ggml_cuda_movmatrix(*((const int *) &x));
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct mma_A_I16K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
namespace ggml_cuda_mma {
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 2;
|
||||
template <int I_, int J_, typename T>
|
||||
struct tile {
|
||||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
T x[ne] = {0};
|
||||
|
||||
T x[ne];
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && (J == 4 || J == 8)) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 8 + threadIdx.x / 4;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / K;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 8 && J == 8) {
|
||||
return 4 * l + threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return 2 * (threadIdx.x % 4) + l % 2;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static __device__ __forceinline__ int get_k(const int /* l */) {
|
||||
const int ret = threadIdx.x % K;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < K);
|
||||
return ret;
|
||||
}
|
||||
template <int I_, int J_>
|
||||
struct tile<I_, J_, half2> {
|
||||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
half2 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return l * 8 + threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l % 2) * 8 + threadIdx.x / 4;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return l * 4 + threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 4 + threadIdx.x % 4;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int I, int J>
|
||||
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
|
||||
tile<I, J/2, half2> ret;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
for (int l0 = 0; l0 < tile_float.ne; l0 += 2) {
|
||||
ret.x[l0/2] = make_half2(tile_float.x[l0 + 0], tile_float.x[l0 + 1]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ tile<8, 8, half2> get_transposed(const tile<16, 4, half2> & t) {
|
||||
tile<8, 8, half2> ret;
|
||||
ret.x[0] = ggml_cuda_movmatrix(t.x[0]);
|
||||
ret.x[1] = ggml_cuda_movmatrix(t.x[1]);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <int I, int J, typename T>
|
||||
static __device__ __forceinline__ void load_generic(tile<I, J, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < t.ne; ++l) {
|
||||
t.x[l] = xs0[t.get_i(l)*stride + t.get_j(l)];
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix(
|
||||
tile<8, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
int * xi = (int *) t.x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + ((threadIdx.x / t.I) * (t.J / 2)) % t.J;
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "=r"(xi[0]), "=r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix(
|
||||
tile<16, 4, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) t.x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride;
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "=r"(xi[0]), "=r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct mma_A_I16K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int I = 16;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_k(const int l) {
|
||||
const int ret = (l/2) * (K/2) + threadIdx.x % (K/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < K);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_i(l)*stride + get_k(l)];
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix(
|
||||
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
int * xi = (int * ) t.x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + (threadIdx.x / t.I) * (t.J / 2);
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(xi[0]), "=r"(xi[1]), "=r"(xi[2]), "=r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix_trans(
|
||||
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) t.x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x % t.I) * stride + (threadIdx.x / t.I) * (t.J / 2);
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(xi[0]), "=r"(xi[2]), "=r"(xi[1]), "=r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(t);
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix_trans(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int * ) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
|
||||
asm("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "+r"(xi[0]), "+r"(xi[2]), "+r"(xi[1]), "+r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void transpose() {
|
||||
int * xi = (int *) x;
|
||||
xi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
|
||||
const int tmp = ggml_cuda_movmatrix(xi[1]);
|
||||
xi[1] = ggml_cuda_movmatrix(xi[2]);
|
||||
xi[2] = tmp;
|
||||
|
||||
xi[3] = ggml_cuda_movmatrix(xi[3]);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct mma_B_J8K4 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 4;
|
||||
static constexpr int ne = 1;
|
||||
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / K;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_k(const int /* l */) {
|
||||
const int ret = threadIdx.x % K;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < K);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
|
||||
: "+r"(xi[0]) : "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct mma_B_J8K8 {
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
|
||||
static constexpr int J = 8;
|
||||
static constexpr int K = 8;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
T x[ne];
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x / (K/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_k(const int l) {
|
||||
const int ret = l * (K/2) + threadIdx.x % (K/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < K);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_k(l)];
|
||||
}
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * xi = (int *) x;
|
||||
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
|
||||
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct mma_C_I16J8 {};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<int> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
int x[ne] = {0};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K4<int> & mma_A, const mma_B_J8K4<int> & mma_B) {
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<16, 8, int> & D, const tile<16, 4, int> & A, const tile<8, 4, int> & B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0]));
|
||||
: "+r"(D.x[0]), "+r"(D.x[1]), "+r"(D.x[2]), "+r"(D.x[3])
|
||||
: "r"(A.x[0]), "r"(A.x[1]), "r"(B.x[0]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k16 mma instead:
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
|
||||
: "+r"(D.x[0]), "+r"(D.x[1])
|
||||
: "r"(A.x[0]), "r"(B.x[0]));
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[2]), "+r"(x[3])
|
||||
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
|
||||
: "+r"(D.x[2]), "+r"(D.x[3])
|
||||
: "r"(A.x[1]), "r"(B.x[0]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<int> & mma_A, const mma_B_J8K8<int> & mma_B) {
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<16, 8, int> & D, const tile<16, 8, int> & A, const tile<8, 8, int> & B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
|
||||
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
|
||||
: "+r"(D.x[0]), "+r"(D.x[1]), "+r"(D.x[2]), "+r"(D.x[3])
|
||||
: "r"(A.x[0]), "r"(A.x[1]), "r"(A.x[2]), "r"(A.x[3]), "r"(B.x[0]), "r"(B.x[1]));
|
||||
#else
|
||||
// On Turing m16n8k32 mma is not available, use 4x m8n8k16 mma instead:
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
|
||||
: "+r"(D.x[0]), "+r"(D.x[1])
|
||||
: "r"(A.x[0]), "r"(B.x[0]));
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[2]), "+r"(x[3])
|
||||
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
|
||||
: "+r"(D.x[2]), "+r"(D.x[3])
|
||||
: "r"(A.x[1]), "r"(B.x[0]));
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[0]), "+r"(x[1])
|
||||
: "r"(mma_A.x[2]), "r"(mma_B.x[1]));
|
||||
: "+r"(D.x[0]), "+r"(D.x[1])
|
||||
: "r"(A.x[2]), "r"(B.x[1]));
|
||||
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
|
||||
: "+r"(x[2]), "+r"(x[3])
|
||||
: "r"(mma_A.x[3]), "r"(mma_B.x[1]));
|
||||
: "+r"(D.x[2]), "+r"(D.x[3])
|
||||
: "r"(A.x[3]), "r"(B.x[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<half2> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 4;
|
||||
static constexpr int ne = 2;
|
||||
|
||||
half2 x[ne] = {{0.0f, 0.0f}, {0.0f, 0.0f}};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = l * (I/2) + threadIdx.x / J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int /* l */) {
|
||||
const int ret = threadIdx.x % J;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<16, 4, half2> & D, const tile<16, 8, half2> & A, const tile<8, 8, half2> & B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
const int * Axi = (const int *) A.x;
|
||||
const int * Bxi = (const int *) B.x;
|
||||
int * Dxi = (int *) D.x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
|
||||
: "+r"(xi[0]), "+r"(xi[1])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
|
||||
int * xi = (int *) x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(xi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(xi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct mma_C_I16J8<float> {
|
||||
static constexpr int I = 16;
|
||||
static constexpr int J = 8;
|
||||
static constexpr int ne = 4;
|
||||
|
||||
float x[ne] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < I);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
|
||||
GGML_CUDA_ASSUME(ret >= 0);
|
||||
GGML_CUDA_ASSUME(ret < J);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<16, 8, float> & D, const tile<16, 8, half2> & A, const tile<8, 8, half2> & B) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
int * Axi = (int *) mma_A.x;
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
int * xi = (int *) x;
|
||||
const int * Axi = (const int *) A.x;
|
||||
const int * Bxi = (const int *) B.x;
|
||||
int * Dxi = (int *) D.x;
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
|
||||
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
|
||||
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(mma_A);
|
||||
GGML_UNUSED(mma_B);
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
|
||||
mma_B_J8K8<half2> mma_B;
|
||||
mma_B.x[0] = make_half2(x[0], x[1]);
|
||||
mma_B.x[1] = make_half2(x[2], x[3]);
|
||||
|
||||
int * Bxi = (int *) mma_B.x;
|
||||
Bxi[0] = ggml_cuda_movmatrix(Bxi[0]);
|
||||
Bxi[1] = ggml_cuda_movmatrix(Bxi[1]);
|
||||
|
||||
return mma_B;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ void load_generic(const float * __restrict__ xs0, const int & stride) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
x[l] = xs0[get_j(l)*stride + get_i(l)];
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ void ggml_cuda_op_mul_mat_q(
|
|||
const int64_t stride00 = ne00 / ggml_blck_size(src0->type);
|
||||
|
||||
int id = ggml_cuda_get_device();
|
||||
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
|
|
@ -27,7 +27,8 @@ void ggml_cuda_op_mul_mat_q(
|
|||
// The stream-k decomposition is only faster for recent NVIDIA GPUs.
|
||||
// Also its fixup needs to allocate a temporary buffer in the memory pool.
|
||||
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
|
||||
const bool use_stream_k = compute_capability >= GGML_CUDA_CC_VOLTA && compute_capability < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
|
||||
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA &&
|
||||
cc < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
|
||||
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
|
||||
|
||||
switch (src0->type) {
|
||||
|
|
@ -136,7 +137,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
return true;
|
||||
}
|
||||
|
||||
if (cc < GGML_CUDA_CC_DP4A) {
|
||||
if (ggml_cuda_highest_compiled_arch(cc) < GGML_CUDA_CC_DP4A) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
@ -145,8 +146,8 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
|||
#endif //GGML_CUDA_FORCE_MMQ
|
||||
|
||||
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
|
||||
return cc < GGML_CUDA_CC_VOLTA || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc) && !GGML_CUDA_CC_IS_GCN(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,6 +7,8 @@
|
|||
#include <climits>
|
||||
#include <cstdint>
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
#define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available.
|
||||
#define MMQ_ITER_K 256
|
||||
#define MMQ_NWARPS 8
|
||||
|
|
@ -86,12 +88,13 @@ struct tile_x_sizes {
|
|||
int sc;
|
||||
};
|
||||
|
||||
static constexpr int get_mmq_x_max_host(const int cc) {
|
||||
static int get_mmq_x_max_host(const int cc) {
|
||||
return new_mma_available(cc) ? 128 :
|
||||
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ?
|
||||
#ifdef GGML_CUDA_FORCE_MMQ
|
||||
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? 128 : 64;
|
||||
128 : 64;
|
||||
#else
|
||||
cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
|
||||
MMQ_DP4A_MAX_BATCH_SIZE : 64;
|
||||
#endif // GGML_CUDA_FORCE_MMQ
|
||||
}
|
||||
|
||||
|
|
@ -119,8 +122,9 @@ static constexpr __device__ int get_mmq_x_max_device() {
|
|||
#endif // NEW_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
static constexpr int get_mmq_y_host(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) : (cc >= GGML_CUDA_CC_VOLTA ? 128 : 64);
|
||||
static int get_mmq_y_host(const int cc) {
|
||||
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) :
|
||||
(ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ? 128 : 64);
|
||||
}
|
||||
|
||||
static constexpr __device__ int get_mmq_y_device() {
|
||||
|
|
@ -645,15 +649,15 @@ template <int mmq_x, int mmq_y, int nwarps, mmq_q8_1_ds_layout ds_layout>
|
|||
static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
|
||||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
|
||||
typedef mma_A_I16K8<int> mma_A;
|
||||
typedef mma_B_J8K8<int> mma_B;
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 8, int> tile_A;
|
||||
typedef tile< 8, 8, int> tile_B;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
|
||||
y += (threadIdx.y % ntx) * (tile_B::I*MMQ_TILE_Y_K);
|
||||
|
||||
const int * x_qs = (const int *) x;
|
||||
const float * x_df = (const float *) x_qs + 2*WARP_SIZE;
|
||||
|
|
@ -661,8 +665,8 @@ static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
|
|||
const float * y_df = (const float *) y;
|
||||
const half2 * y_ds = (const half2 *) y;
|
||||
|
||||
mma_A A[ntx][WARP_SIZE/QI8_0];
|
||||
float dA[ntx][mma_C::ne/2][WARP_SIZE/QI8_0];
|
||||
tile_A A[ntx][WARP_SIZE/QI8_0];
|
||||
float dA[ntx][tile_C::ne/2][WARP_SIZE/QI8_0];
|
||||
|
||||
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
|
||||
|
||||
|
|
@ -672,12 +676,12 @@ static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
|
|||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
|
||||
const int k0 = k00 + k01;
|
||||
|
||||
A[n][k01/QI8_0].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
|
||||
load_ldmatrix(A[n][k01/QI8_0], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_A::I + tile_C::get_i(2*l);
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
|
||||
|
|
@ -689,17 +693,17 @@ static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
|
|||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
|
||||
mma_B B;
|
||||
float dB[mma_C::ne/2];
|
||||
tile_B B;
|
||||
float dB[tile_C::ne/2];
|
||||
|
||||
B.load_generic(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
|
||||
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) {
|
||||
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
|
||||
|
|
@ -710,12 +714,12 @@ static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
|
|||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
mma_C C;
|
||||
C.mma(A[n][k01/QI8_0], B);
|
||||
tile_C C;
|
||||
mma(C, A[n][k01/QI8_0], B);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2];
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -756,23 +760,23 @@ template <int mmq_x, int mmq_y, int nwarps>
|
|||
static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
|
||||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
|
||||
typedef mma_A_I16K8<int> mma_A;
|
||||
typedef mma_B_J8K8<int> mma_B;
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 8, int> tile_A;
|
||||
typedef tile< 8, 8, int> tile_B;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
|
||||
y += (threadIdx.y % ntx) * (tile_B::J*MMQ_TILE_Y_K);
|
||||
|
||||
const int * x_qs = (const int *) x;
|
||||
const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE;
|
||||
const int * y_qs = (const int *) y + 4;
|
||||
const half2 * y_dm = (const half2 *) y;
|
||||
|
||||
mma_A A[ntx][WARP_SIZE/QI8_1];
|
||||
float2 dmA[ntx][mma_C::ne/2][WARP_SIZE/QI8_1];
|
||||
tile_A A[ntx][WARP_SIZE/QI8_1];
|
||||
float2 dmA[ntx][tile_C::ne/2][WARP_SIZE/QI8_1];
|
||||
|
||||
const int i0 = (threadIdx.y/ntx)*rows_per_warp;
|
||||
|
||||
|
|
@ -782,12 +786,12 @@ static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
|
|||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
|
||||
const int k0 = k00 + k01;
|
||||
|
||||
A[n][k01/QI8_1].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
|
||||
load_ldmatrix(A[n][k01/QI8_1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_A::I + tile_C::get_i(2*l);
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
|
||||
|
|
@ -799,30 +803,30 @@ static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
|
|||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
|
||||
mma_B B;
|
||||
float2 dsB[mma_C::ne/2];
|
||||
tile_B B;
|
||||
float2 dsB[tile_C::ne/2];
|
||||
|
||||
B.load_generic(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
|
||||
load_generic(B, y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); // faster than load_ldmatrix
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
mma_C C;
|
||||
C.mma(A[n][k01/QI8_1], B);
|
||||
tile_C C;
|
||||
mma(C, A[n][k01/QI8_1], B);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l];
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y;
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l];
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -866,26 +870,26 @@ static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
|
|||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
|
||||
typedef mma_A_I16K4<int> mma_A;
|
||||
typedef mma_A_I16K8<int> mma_A_K8;
|
||||
typedef mma_B_J8K4<int> mma_B;
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 4, int> tile_A;
|
||||
typedef tile<16, 8, int> tile_A_8;
|
||||
typedef tile< 8, 4, int> tile_B;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
|
||||
y += (threadIdx.y % ntx) * (tile_B::I*MMQ_TILE_Y_K);
|
||||
|
||||
const int * x_qs = (const int *) x;
|
||||
const float * x_df = (const float *) x_qs + WARP_SIZE*2;
|
||||
const int * y_qs = (const int *) y + 4;
|
||||
const float * y_df = (const float *) y;
|
||||
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
|
||||
|
||||
mma_A A[ntx][8];
|
||||
float dA[ntx][mma_C::ne/2][8];
|
||||
tile_A A[ntx][8];
|
||||
float dA[ntx][tile_C::ne/2][8];
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
|
|
@ -893,12 +897,12 @@ static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
|
|||
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
|
||||
const int k0 = k00 + k01;
|
||||
|
||||
((mma_A_K8 *) A[n])[k01/8].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
|
||||
load_ldmatrix(((tile_A_8 *) A[n])[k01/8], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += 4) {
|
||||
|
|
@ -910,32 +914,32 @@ static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
|
|||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
|
||||
mma_B B[2];
|
||||
float dB[mma_C::ne/2];
|
||||
tile_B B[2];
|
||||
float dB[tile_C::ne/2];
|
||||
|
||||
// Here load_generic is faster than load_ldmatrix.
|
||||
B[0].load_generic(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
|
||||
B[1].load_generic(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
|
||||
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
|
||||
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + (k01 + tile_B::J), MMQ_TILE_Y_K);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
mma_C C[2];
|
||||
C[0].mma(A[n][k01/4 + 0], B[0]);
|
||||
C[1].mma(A[n][k01/4 + 1], B[1]);
|
||||
tile_C C[2];
|
||||
mma(C[0], A[n][k01/4 + 0], B[0]);
|
||||
mma(C[1], A[n][k01/4 + 1], B[1]);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]);
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1054,27 +1058,27 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
|
|||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
|
||||
typedef mma_A_I16K4<int> mma_A;
|
||||
typedef mma_A_I16K8<int> mma_A_K8;
|
||||
typedef mma_B_J8K4<int> mma_B;
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 4, int> tile_A;
|
||||
typedef tile<16, 8, int> tile_A_8;
|
||||
typedef tile< 8, 4, int> tile_B;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
|
||||
y += (threadIdx.y % ntx) * (tile_B::I*MMQ_TILE_Y_K);
|
||||
|
||||
const int * x_qs = (const int *) x;
|
||||
const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2;
|
||||
const int * y_qs = (const int *) y + 4;
|
||||
const half2 * y_ds = (const half2 *) y;
|
||||
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
|
||||
|
||||
mma_A A[ntx][8];
|
||||
float dA[ntx][mma_C::ne/2][8];
|
||||
float mA[ntx][mma_C::ne/2][8];
|
||||
tile_A A[ntx][8];
|
||||
float dA[ntx][tile_C::ne/2][8];
|
||||
float mA[ntx][tile_C::ne/2][8];
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
|
|
@ -1082,15 +1086,15 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
|
|||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
|
||||
const int k0 = k00 + k01;
|
||||
|
||||
((mma_A_K8 *) A[n])[k01/QI8_1].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
|
||||
load_ldmatrix(((tile_A_8 *) A[n])[k01/QI8_1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1/2) {
|
||||
|
|
@ -1105,58 +1109,58 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
|
|||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
float2 dB[mma_C::ne/2];
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
float2 dB[tile_C::ne/2];
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
|
||||
mma_B B[2];
|
||||
tile_B B[2];
|
||||
|
||||
// Here load_generic is faster than load_ldmatrix.
|
||||
B[0].load_generic(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
|
||||
B[1].load_generic(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
|
||||
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
|
||||
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + (k01 + tile_B::J), MMQ_TILE_Y_K);
|
||||
|
||||
mma_C Cm[2];
|
||||
tile_C Cm[2];
|
||||
if (k01 >= WARP_SIZE * 3/4) {
|
||||
mma_A A1;
|
||||
tile_A A1;
|
||||
A1.x[0] = 0x01010101;
|
||||
A1.x[1] = 0x01010101;
|
||||
Cm[0].mma(A1, B[0]);
|
||||
Cm[1].mma(A1, B[1]);
|
||||
mma(Cm[0], A1, B[0]);
|
||||
mma(Cm[1], A1, B[1]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
mma_C Cd[2];
|
||||
tile_C Cd[2];
|
||||
|
||||
Cd[0].mma(A[n][k01/4 + 0], B[0]);
|
||||
Cd[1].mma(A[n][k01/4 + 1], B[1]);
|
||||
mma(Cd[0], A[n][k01/4 + 0], B[0]);
|
||||
mma(Cd[1], A[n][k01/4 + 1], B[1]);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1];
|
||||
if (k01 >= WARP_SIZE * 3/4) {
|
||||
tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1];
|
||||
}
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y);
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE * 3/4; k01 += QI8_1) {
|
||||
float2 sB[mma_C::ne/2];
|
||||
float2 sB[tile_C::ne/2];
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
|
||||
}
|
||||
|
|
@ -1164,9 +1168,9 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
|
|||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x;
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y;
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x;
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -1706,15 +1710,15 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
|
||||
typedef mma_A_I16K4<int> mma_A;
|
||||
typedef mma_B_J8K4<int> mma_B;
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 4, int> tile_A;
|
||||
typedef tile< 8, 4, int> tile_B;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
|
||||
y += (threadIdx.y % ntx) * (tile_B::I*MMQ_TILE_Y_K);
|
||||
|
||||
const int * x_qs = (const int *) x;
|
||||
const float * x_df = (const float *) x_qs + WARP_SIZE*2;
|
||||
|
|
@ -1722,11 +1726,11 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
const int * y_qs = (const int *) y + 4;
|
||||
const float * y_df = (const float *) y;
|
||||
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*tile_A::I);
|
||||
|
||||
mma_A A[ntx][8];
|
||||
int scA[ntx][mma_C::ne/2][8];
|
||||
float dA[ntx][mma_C::ne/2];
|
||||
tile_A A[ntx][8];
|
||||
int scA[ntx][tile_C::ne/2][8];
|
||||
float dA[ntx][tile_C::ne/2];
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
|
|
@ -1734,8 +1738,8 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
|
||||
const int k0 = k00 + k01;
|
||||
|
||||
A[n][k01/4 + 0].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K);
|
||||
A[n][k01/4 + 1].load_ldmatrix(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K);
|
||||
load_ldmatrix(A[n][k01/4 + 0], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K);
|
||||
load_ldmatrix(A[n][k01/4 + 1], x_qs + (i0 + n*tile_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + tile_A::J), MMQ_MMA_TILE_X_K_Q6_K);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
|
|
@ -1743,8 +1747,8 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
const int k0 = k00 + k01;
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
|
||||
|
||||
const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16];
|
||||
const int8_t * sc = (const int8_t *) &sc_packed;
|
||||
|
|
@ -1757,41 +1761,41 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int i = i0 + n*tile_C::I + tile_C::get_i(2*l);
|
||||
|
||||
dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
float tmp[ntx][mma_C::ne] = {{0.0f}};
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
float tmp[ntx][tile_C::ne] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
|
||||
mma_B B[2];
|
||||
float dB[mma_C::ne/2];
|
||||
tile_B B[2];
|
||||
float dB[tile_C::ne/2];
|
||||
|
||||
// Here load_generic is faster than load_ldmatrix.
|
||||
B[0].load_generic(y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K);
|
||||
B[1].load_generic(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k01, MMQ_TILE_Y_K);
|
||||
load_generic(B[0], y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K);
|
||||
load_generic(B[1], y_qs + j0*MMQ_TILE_Y_K + tile_B::J + k01, MMQ_TILE_Y_K);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne/2; ++l) {
|
||||
const int j = j0 + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne/2; ++l) {
|
||||
const int j = j0 + tile_C::get_j(l);
|
||||
|
||||
dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
mma_C C[2];
|
||||
C[0].mma(A[n][k01/4 + 0], B[0]);
|
||||
C[1].mma(A[n][k01/4 + 1], B[1]);
|
||||
tile_C C[2];
|
||||
mma(C[0], A[n][k01/4 + 0], B[0]);
|
||||
mma(C[1], A[n][k01/4 + 1], B[1]);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2];
|
||||
}
|
||||
}
|
||||
|
|
@ -1800,8 +1804,8 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
|||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2];
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
sum[(j0/tile_C::J + n)*tile_C::ne + l] += tmp[n][l]*dA[n][l/2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2310,36 +2314,36 @@ template<int mmq_x, int mmq_y, int nwarps, bool need_check>
|
|||
static __device__ __forceinline__ void mmq_write_back_mma(
|
||||
const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
|
||||
|
||||
typedef mma_C_I16J8<int> mma_C;
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
|
||||
constexpr int granularity = mmq_get_granularity_device(mmq_x);
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I);
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*tile_C::I);
|
||||
#ifdef NEW_MMA_AVAILABLE
|
||||
static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y");
|
||||
static_assert(nwarps*tile_C::I == mmq_y, "nwarps*tile_C::I != mmq_y");
|
||||
#endif // NEW_MMA_AVAILABLE
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
|
||||
for (int j0 = 0; j0 < mmq_x; j0 += ntx*tile_C::J) {
|
||||
#pragma unroll
|
||||
for (int n = 0; n < ntx; ++n) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < mma_C::ne; ++l) {
|
||||
const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l);
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
const int j = j0 + (threadIdx.y % ntx) * tile_C::J + tile_C::get_j(l);
|
||||
|
||||
if (j > j_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int i = i0 + n*mma_C::I + mma_C::get_i(l);
|
||||
const int i = i0 + n*tile_C::I + tile_C::get_i(l);
|
||||
|
||||
if (need_check && i > i_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l];
|
||||
dst[j*stride + i] = sum[(j0/tile_C::J + n)*tile_C::ne + l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -2828,7 +2832,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
|
|||
const int mmq_x_max = get_mmq_x_max_host(cc);
|
||||
const int mmq_y = get_mmq_y_host(cc);
|
||||
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
|
||||
const bool use_stream_k = cc >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
|
||||
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
|
||||
|
||||
int mmq_x_best = 0;
|
||||
int nparts_best = INT_MAX;
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11700
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
|
||||
#ifdef USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
|
|
|
|||
|
|
@ -24,7 +24,7 @@
|
|||
#endif
|
||||
|
||||
// create residency sets only on macOS >= 15.0
|
||||
#if TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
|
||||
#if !TARGET_CPU_X86_64 && TARGET_OS_OSX && __MAC_OS_X_VERSION_MAX_ALLOWED >= 150000 || \
|
||||
TARGET_OS_IOS && __IPHONE_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
||||
TARGET_OS_TV && __TV_OS_VERSION_MAX_ALLOWED >= 180000 || \
|
||||
TARGET_OS_VISION && __VISION_OS_VERSION_MAX_ALLOWED >= 200000
|
||||
|
|
@ -1983,7 +1983,7 @@ static void ggml_metal_encode_node(
|
|||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||
|
||||
// TODO: add ggml_metal_kargs struct
|
||||
// TODO: optimize (see https://github.com/ggerganov/llama.cpp/pull/10238/commits/7941b6b9ec29a2866fec6fa6c51612515ca509f6)
|
||||
// TODO: optimize (see https://github.com/ggml-org/llama.cpp/pull/10238/commits/7941b6b9ec29a2866fec6fa6c51612515ca509f6)
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
if (id_src1) {
|
||||
|
|
|
|||
|
|
@ -373,24 +373,33 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||
template <typename type4x4>
|
||||
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
||||
const half d_all = xb->d;
|
||||
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
||||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||
device const uint16_t * ql = (device const uint16_t *)xb->ql;
|
||||
device const uint16_t * qh = (device const uint16_t *)xb->qh;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
|
||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
qh = qh + 32*(il/8) + 16*(il&1);
|
||||
ql = ql + 32*(il/8) + 16*((il/2)&1) + 8*(il&1);
|
||||
qh = qh + 16*(il/8) + 8*(il&1);
|
||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
|
||||
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
||||
const uint32_t kmask1 = il>1 ? (il>2 ? 0xC0C0C0C0 : 0x30303030) : (il>0 ? 0x0C0C0C0C : 0x03030303);
|
||||
const uint32_t kmask2 = il>1 ? 0xF0F0F0F0 : 0x0F0F0F0F;
|
||||
const float ml = d_all * sc * 32.f;
|
||||
const float dl = d_all * sc * coef;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
|
||||
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
const float dl0 = d_all * sc;
|
||||
const float dl1 = dl0 / 256.f;
|
||||
const float dl2 = dl0 / (256.f * 256.f);
|
||||
const float dl3 = dl0 / (256.f * 256.f * 256.f);
|
||||
const uint8_t shr_h = il>2 ? 2 : 0;
|
||||
const uint8_t shl_h = il>1 ? 0 : (il>0 ? 2 : 4);
|
||||
const uint8_t shr_l = il>1 ? 4 : 0;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
const uint32_t low = (ql[2*i] | (uint32_t)(ql[2*i+1] << 16)) & kmask2;
|
||||
const uint32_t high = (qh[2*i] | (uint32_t)(qh[2*i+1] << 16)) & kmask1;
|
||||
const uint32_t q = ((high << shl_h) >> shr_h) | (low >> shr_l);
|
||||
reg[i][0] = dl0 * ((half)(q & 0xFF)) - ml;
|
||||
reg[i][1] = dl1 * ((float)(q & 0xFF00)) - ml;
|
||||
reg[i][2] = dl2 * ((float)(q & 0xFF0000)) - ml;
|
||||
reg[i][3] = dl3 * ((float)(q & 0xFF000000)) - ml;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -1058,7 +1067,7 @@ kernel void kernel_soft_max(
|
|||
}
|
||||
|
||||
// This barrier fixes a failing test
|
||||
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
|
||||
// ref: https://github.com/ggml-org/ggml/pull/621#discussion_r1425156335
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
float sum = simd_sum(lsum);
|
||||
|
|
@ -1163,7 +1172,7 @@ kernel void kernel_soft_max_4(
|
|||
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
|
||||
|
||||
// This barrier fixes a failing test
|
||||
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
|
||||
// ref: https://github.com/ggml-org/ggml/pull/621#discussion_r1425156335
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
float sum = simd_sum(lsum);
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue