Merge 5ce810ee51 into 05a6f0e894
This commit is contained in:
commit
ef7047b168
|
|
@ -0,0 +1,220 @@
|
|||
# Embedding CLI build and tests
|
||||
name: Embedding CLI
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
branches: [master, feature/**]
|
||||
paths:
|
||||
- '.github/workflows/embedding.yml'
|
||||
- 'examples/**'
|
||||
- 'src/**'
|
||||
- 'ggml/**'
|
||||
- 'include/**'
|
||||
- '**/CMakeLists.txt'
|
||||
- 'tests/e2e/embedding/**'
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths:
|
||||
- '.github/workflows/embedding.yml'
|
||||
- 'examples/**'
|
||||
- 'src/**'
|
||||
- 'ggml/**'
|
||||
- 'include/**'
|
||||
- '**/CMakeLists.txt'
|
||||
- 'tests/e2e/embedding/**'
|
||||
|
||||
jobs:
|
||||
embedding-cli-tests-linux:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
LLAMA_CACHE: tmp # stable path for cache
|
||||
EMBD_TEST_DEBUG: "1"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with: { fetch-depth: 0 }
|
||||
|
||||
- name: Restore model cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
~/.cache/llama.cpp
|
||||
tmp
|
||||
key: hf-${{ runner.os }}-embeddinggemma-300M-q4_0-v1
|
||||
restore-keys: |
|
||||
hf-${{ runner.os }}-
|
||||
hf-
|
||||
|
||||
- name: Install system deps
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install \
|
||||
build-essential cmake curl libcurl4-openssl-dev python3-pip
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with: { python-version: '3.11' }
|
||||
|
||||
- name: Install Python deps
|
||||
run: |
|
||||
python -m pip install -r requirements.txt || echo "No extra requirements found"
|
||||
python -m pip install pytest numpy pytest-timeout
|
||||
|
||||
- name: Build llama-embedding
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --target llama-embedding -j $(nproc)
|
||||
|
||||
- name: Pre-download tiny model (retry x3 on network)
|
||||
run: |
|
||||
set -e
|
||||
tries=0
|
||||
until ./build/bin/llama-embedding \
|
||||
-hfr ggml-org/embeddinggemma-300M-qat-q4_0-GGUF \
|
||||
-hff embeddinggemma-300M-qat-Q4_0.gguf \
|
||||
--ctx-size 16 --embd-output-format json --no-warmup --threads 1 --seed 42 <<< "ok"; do
|
||||
tries=$((tries+1))
|
||||
if [ $tries -ge 3 ]; then
|
||||
echo "Pre-download failed after $tries attempts"
|
||||
exit 1
|
||||
fi
|
||||
echo "Retrying download ($tries/3)..."
|
||||
sleep 3
|
||||
done
|
||||
|
||||
- name: Run embedding tests (30s per-test cap)
|
||||
shell: bash
|
||||
run: |
|
||||
set -o pipefail
|
||||
pytest -v tests/e2e/embedding \
|
||||
--timeout=30 \
|
||||
--durations=10 \
|
||||
--junitxml=pytest-report.xml | tee pytest-output.txt
|
||||
|
||||
- name: Upload test artifacts
|
||||
if: always()
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: linux-embedding-tests
|
||||
path: |
|
||||
pytest-output.txt
|
||||
pytest-report.xml
|
||||
|
||||
- name: Save model cache
|
||||
if: always()
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
~/.cache/llama.cpp
|
||||
tmp
|
||||
key: hf-${{ runner.os }}-embeddinggemma-300M-q4_0-v1
|
||||
|
||||
embedding-cli-tests-windows:
|
||||
runs-on: windows-latest
|
||||
continue-on-error: true
|
||||
env:
|
||||
LLAMA_CACHE: tmp
|
||||
EMBD_TEST_DEBUG: "1"
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with: { python-version: '3.11' }
|
||||
|
||||
# --- vcpkg plain bootstrap (no actions, no submodules) ---
|
||||
- name: Bootstrap vcpkg
|
||||
shell: pwsh
|
||||
run: |
|
||||
$env:VCPKG_ROOT = "$env:RUNNER_TEMP\vcpkg"
|
||||
git clone https://github.com/microsoft/vcpkg $env:VCPKG_ROOT
|
||||
& "$env:VCPKG_ROOT\bootstrap-vcpkg.bat" -disableMetrics
|
||||
echo "VCPKG_ROOT=$env:VCPKG_ROOT" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
|
||||
- name: Install curl with OpenSSL via vcpkg
|
||||
shell: pwsh
|
||||
run: |
|
||||
& "$env:VCPKG_ROOT\vcpkg.exe" install curl[openssl]:x64-windows
|
||||
|
||||
- name: Restore model cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: |
|
||||
$HOME/.cache/llama.cpp
|
||||
tmp
|
||||
key: hf-${{ runner.os }}-embeddinggemma-300M-q4_0-v1
|
||||
restore-keys: |
|
||||
hf-${{ runner.os }}-
|
||||
hf-
|
||||
|
||||
- name: Install Python deps
|
||||
run: pip install pytest numpy
|
||||
|
||||
- name: Configure & Build (Release)
|
||||
shell: pwsh
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release `
|
||||
-DCMAKE_TOOLCHAIN_FILE="$env:VCPKG_ROOT\scripts\buildsystems\vcpkg.cmake"
|
||||
cmake --build build --target llama-embedding --config Release -j 2
|
||||
|
||||
- name: Pre-download tiny model (retry x3)
|
||||
shell: bash
|
||||
run: |
|
||||
set -e
|
||||
tries=0
|
||||
until ./build/bin/Release/llama-embedding.exe \
|
||||
-hfr ggml-org/embeddinggemma-300M-qat-q4_0-GGUF \
|
||||
-hff embeddinggemma-300M-qat-Q4_0.gguf \
|
||||
--ctx-size 16 --embd-output-format json --no-warmup --threads 1 --seed 42 <<< "ok"; do
|
||||
tries=$((tries+1))
|
||||
if [ $tries -ge 3 ]; then
|
||||
echo "Pre-download failed after $tries attempts"; exit 1
|
||||
fi
|
||||
echo "Retrying download ($tries/3)..."; sleep 3
|
||||
done
|
||||
|
||||
- name: Run smoke tests
|
||||
shell: bash
|
||||
run: |
|
||||
pytest -q tests/e2e/embedding -k raw_vs_json_consistency
|
||||
|
||||
|
||||
|
||||
embedding-cli-tests-macos:
|
||||
runs-on: macos-latest
|
||||
continue-on-error: true
|
||||
env:
|
||||
LLAMA_CACHE: tmp
|
||||
EMBD_TEST_DEBUG: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with: { python-version: '3.11' }
|
||||
|
||||
- name: Install Python deps
|
||||
run: pip install pytest numpy
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --target llama-embedding -j 3
|
||||
|
||||
- name: Pre-download tiny model (retry x3)
|
||||
run: |
|
||||
set -e
|
||||
tries=0
|
||||
until ./build/bin/llama-embedding \
|
||||
-hfr ggml-org/embeddinggemma-300M-qat-q4_0-GGUF \
|
||||
-hff embeddinggemma-300M-qat-Q4_0.gguf \
|
||||
--ctx-size 16 --embd-output-format json --no-warmup --threads 1 --seed 42 <<< "ok"; do
|
||||
tries=$((tries+1))
|
||||
if [ $tries -ge 3 ]; then
|
||||
echo "Pre-download failed after $tries attempts"; exit 1
|
||||
fi
|
||||
echo "Retrying download ($tries/3)..."; sleep 3
|
||||
done
|
||||
|
||||
- name: Warm cache & run a tiny smoke
|
||||
run: |
|
||||
./build/bin/llama-embedding --help >/dev/null 2>&1
|
||||
pytest -q tests/e2e/embedding -k raw_vs_json_consistency
|
||||
|
|
@ -0,0 +1,251 @@
|
|||
import json
|
||||
import hashlib
|
||||
import logging
|
||||
import os
|
||||
import pytest
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
import time
|
||||
from typing import Optional, List
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Configuration constants
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
EPS = 1e-3
|
||||
REPO_ROOT = Path(__file__).resolve().parents[3]
|
||||
EXE = REPO_ROOT / ("build/bin/llama-embedding.exe" if os.name == "nt" else "build/bin/llama-embedding")
|
||||
DEFAULT_ENV = {**os.environ, "LLAMA_CACHE": os.environ.get("LLAMA_CACHE", "tmp")}
|
||||
SEED = "42"
|
||||
ALLOWED_DIMS = {384, 768, 1024, 4096}
|
||||
|
||||
SMALL_CTX = 16 # preflight/cache
|
||||
TEST_CTX = 1024 # main tests
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Shared helpers (single source of truth for command building)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def resolve_exe() -> Path:
|
||||
exe = EXE
|
||||
if not exe.exists() and os.name == "nt":
|
||||
alt = REPO_ROOT / "build/bin/Release/llama-embedding.exe"
|
||||
if alt.exists():
|
||||
exe = alt
|
||||
if not exe.exists():
|
||||
raise FileNotFoundError(f"llama-embedding not found under {REPO_ROOT}/build/bin")
|
||||
return exe
|
||||
|
||||
|
||||
def hf_params_default():
|
||||
return {
|
||||
"hf_repo": "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF",
|
||||
"hf_file": "embeddinggemma-300M-qat-Q4_0.gguf",
|
||||
}
|
||||
|
||||
|
||||
def build_cmd(
|
||||
*,
|
||||
exe: Path,
|
||||
params: dict,
|
||||
fmt: str,
|
||||
threads: int,
|
||||
ctx: int,
|
||||
seed: str,
|
||||
extra: Optional[List[str]] = None, # was: list[str] | None
|
||||
) -> List[str]: # was: list[str]
|
||||
assert fmt in {"raw", "json"}, f"unsupported fmt={fmt}"
|
||||
cmd = [
|
||||
str(exe),
|
||||
"-hfr", params["hf_repo"],
|
||||
"-hff", params["hf_file"],
|
||||
"--ctx-size", str(ctx),
|
||||
"--embd-output-format", fmt,
|
||||
"--threads", str(threads),
|
||||
"--seed", seed,
|
||||
]
|
||||
if extra:
|
||||
cmd.extend(extra)
|
||||
return cmd
|
||||
|
||||
|
||||
def run_cmd(cmd: list[str], text: str, timeout: int = 60) -> str:
|
||||
t0 = time.perf_counter()
|
||||
res = subprocess.run(cmd, input=text, capture_output=True, text=True,
|
||||
env=DEFAULT_ENV, timeout=timeout)
|
||||
dur_ms = (time.perf_counter() - t0) * 1000.0
|
||||
if os.environ.get("EMBD_TEST_DEBUG") == "1":
|
||||
log.debug("embedding cmd finished in %.1f ms", dur_ms)
|
||||
|
||||
if res.returncode != 0:
|
||||
raise AssertionError(f"embedding failed ({res.returncode}):\n{res.stderr[:400]}")
|
||||
out = res.stdout.strip()
|
||||
assert out, "empty stdout from llama-embedding"
|
||||
return out
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Session model preflight/cache
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def embedding_model():
|
||||
"""Download/cache model once per session with a tiny ctx + no warmup."""
|
||||
exe = resolve_exe()
|
||||
params = hf_params_default()
|
||||
cmd = build_cmd(
|
||||
exe=exe, params=params, fmt="json",
|
||||
threads=1, ctx=SMALL_CTX, seed=SEED,
|
||||
extra=["--no-warmup"],
|
||||
)
|
||||
_ = run_cmd(cmd, text="ok")
|
||||
return params
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Utility functions
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def run_embedding(
|
||||
text: str,
|
||||
*,
|
||||
fmt: str = "raw",
|
||||
threads: int = 1,
|
||||
ctx: int = TEST_CTX,
|
||||
params: Optional[dict] = None, # was: dict | None
|
||||
timeout: int = 60,
|
||||
) -> str:
|
||||
exe = resolve_exe()
|
||||
params = params or hf_params_default()
|
||||
cmd = build_cmd(exe=exe, params=params, fmt=fmt, threads=threads, ctx=ctx, seed=SEED)
|
||||
return run_cmd(cmd, text, timeout=timeout)
|
||||
|
||||
|
||||
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
||||
return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))
|
||||
|
||||
|
||||
def embedding_hash(vec: np.ndarray) -> str:
|
||||
"""Return short deterministic signature for regression tracking."""
|
||||
return hashlib.sha256(vec[:8].tobytes()).hexdigest()[:16]
|
||||
|
||||
|
||||
def parse_vec(out: str, fmt: str) -> np.ndarray:
|
||||
if fmt == "raw":
|
||||
arr = np.array(out.split(), dtype=np.float32)
|
||||
else:
|
||||
arr = np.array(json.loads(out)["data"][0]["embedding"], dtype=np.float32)
|
||||
return arr
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Tests
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
# Register custom mark so pytest doesn't warn about it
|
||||
pytestmark = pytest.mark.filterwarnings("ignore::pytest.PytestUnknownMarkWarning")
|
||||
|
||||
|
||||
@pytest.mark.parametrize("fmt", ["raw", "json"])
|
||||
@pytest.mark.parametrize("text", ["hello world", "hi 🌎", "line1\nline2\nline3"])
|
||||
def test_embedding_runs_and_finite(fmt, text, embedding_model):
|
||||
out = run_embedding(text, fmt=fmt, threads=1, ctx=TEST_CTX, params=embedding_model)
|
||||
vec = parse_vec(out, fmt)
|
||||
assert vec.dtype == np.float32
|
||||
# dim & finiteness
|
||||
assert len(vec) in ALLOWED_DIMS, f"unexpected dim={len(vec)}"
|
||||
assert np.all(np.isfinite(vec))
|
||||
assert 0.1 < np.linalg.norm(vec) < 10
|
||||
|
||||
|
||||
def test_raw_vs_json_consistency(embedding_model):
|
||||
text = "hello world"
|
||||
raw = parse_vec(run_embedding(text, fmt="raw", params=embedding_model), "raw")
|
||||
jsn = parse_vec(run_embedding(text, fmt="json", params=embedding_model), "json")
|
||||
assert raw.shape == jsn.shape
|
||||
cos = cosine_similarity(raw, jsn)
|
||||
assert cos > 0.999, f"raw/json divergence: cos={cos:.6f}"
|
||||
assert embedding_hash(raw) == embedding_hash(jsn)
|
||||
|
||||
|
||||
def test_empty_input_deterministic(embedding_model):
|
||||
v1 = parse_vec(run_embedding("", fmt="raw", params=embedding_model), "raw")
|
||||
v2 = parse_vec(run_embedding("", fmt="raw", params=embedding_model), "raw")
|
||||
assert np.all(np.isfinite(v1))
|
||||
assert embedding_hash(v1) == embedding_hash(v2)
|
||||
assert cosine_similarity(v1, v2) > 0.99999
|
||||
|
||||
|
||||
def test_very_long_input_stress(embedding_model):
|
||||
"""Stress test: large input near context window."""
|
||||
text = "lorem " * 2000
|
||||
vec = parse_vec(run_embedding(text, fmt="raw", params=embedding_model), "raw")
|
||||
assert len(vec) in ALLOWED_DIMS
|
||||
assert np.isfinite(np.linalg.norm(vec))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("text", [" ", "\n\n\n", "123 456 789"])
|
||||
def test_low_information_inputs_stable(text, embedding_model):
|
||||
"""Whitespace/numeric inputs should yield stable embeddings."""
|
||||
v1 = parse_vec(run_embedding(text, fmt="raw", params=embedding_model), "raw")
|
||||
v2 = parse_vec(run_embedding(text, fmt="raw", params=embedding_model), "raw")
|
||||
cos = cosine_similarity(v1, v2)
|
||||
assert cos > 0.999, f"unstable embedding for {text!r}"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("flag", ["--no-such-flag", "--help"])
|
||||
def test_invalid_or_help_flag(flag):
|
||||
"""Invalid flags should fail; help should succeed."""
|
||||
exe = resolve_exe()
|
||||
res = subprocess.run([str(exe), flag], capture_output=True, text=True, env=DEFAULT_ENV)
|
||||
if flag == "--no-such-flag":
|
||||
assert res.returncode != 0
|
||||
assert any(k in res.stderr.lower() for k in ("error", "invalid", "unknown"))
|
||||
else:
|
||||
assert res.returncode == 0
|
||||
assert "usage" in (res.stdout.lower() + res.stderr.lower())
|
||||
|
||||
|
||||
@pytest.mark.parametrize("fmt", ["raw", "json"])
|
||||
def test_threads_two_similarity_vs_single(fmt, embedding_model):
|
||||
text = "determinism vs threads"
|
||||
single = parse_vec(run_embedding(text, fmt=fmt, threads=1, params=embedding_model), fmt)
|
||||
multi = parse_vec(run_embedding(text, fmt=fmt, threads=2, params=embedding_model), fmt)
|
||||
assert single.shape == multi.shape
|
||||
cos = cosine_similarity(single, multi)
|
||||
assert cos >= 0.999, f"threads>1 similarity too low: {cos:.6f}"
|
||||
|
||||
|
||||
def test_json_shape_schema_minimal(embedding_model):
|
||||
js = json.loads(run_embedding("schema check", fmt="json", params=embedding_model))
|
||||
assert isinstance(js, dict)
|
||||
|
||||
# Top-level “object” (present in CLI) is optional for us
|
||||
if "object" in js:
|
||||
assert js["object"] in ("list", "embeddings", "embedding_list")
|
||||
|
||||
# Required: data[0].embedding + index
|
||||
assert "data" in js and isinstance(js["data"], list) and len(js["data"]) >= 1
|
||||
item0 = js["data"][0]
|
||||
assert isinstance(item0, dict)
|
||||
if "object" in item0:
|
||||
assert item0["object"] in ("embedding",)
|
||||
assert "index" in item0 and item0["index"] == 0
|
||||
assert "embedding" in item0 and isinstance(item0["embedding"], list)
|
||||
assert len(item0["embedding"]) in ALLOWED_DIMS
|
||||
|
||||
# Optional fields: tolerate absence in current CLI output
|
||||
if "model" in js:
|
||||
assert isinstance(js["model"], str)
|
||||
if "dim" in js:
|
||||
assert js["dim"] == len(item0["embedding"])
|
||||
usage = js.get("usage", {})
|
||||
if usage:
|
||||
assert isinstance(usage, dict)
|
||||
# if present, prompt_tokens should be int
|
||||
if "prompt_tokens" in usage:
|
||||
assert isinstance(usage["prompt_tokens"], int)
|
||||
Loading…
Reference in New Issue