llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
This commit is contained in:
parent
f2a789e334
commit
e789095502
|
|
@ -332,6 +332,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
|
|||
}
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
llama_memory_breakdown_print(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -314,6 +314,7 @@ extern "C" {
|
|||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
|
|
|
|||
|
|
@ -1793,6 +1793,14 @@ ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i)
|
|||
return sched->backends[i];
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
||||
return sched->bufts[backend_index];
|
||||
}
|
||||
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
|
|
|
|||
|
|
@ -1329,24 +1329,25 @@ extern "C" {
|
|||
//
|
||||
// Performance utils
|
||||
//
|
||||
// NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
|
||||
// NOTE: Used by llama.cpp examples/tools, avoid using in third-party apps. Instead, do your own performance measurements.
|
||||
//
|
||||
|
||||
struct llama_perf_context_data {
|
||||
double t_start_ms;
|
||||
double t_load_ms;
|
||||
double t_p_eval_ms;
|
||||
double t_eval_ms;
|
||||
// ms == milliseconds
|
||||
double t_start_ms; // absolute start time
|
||||
double t_load_ms; // time needed for loading the model
|
||||
double t_p_eval_ms; // time needed for processing the prompt
|
||||
double t_eval_ms; // time needed for generating tokens
|
||||
|
||||
int32_t n_p_eval;
|
||||
int32_t n_eval;
|
||||
int32_t n_p_eval; // number of prompt tokens
|
||||
int32_t n_eval; // number of generated tokens
|
||||
int32_t n_reused; // number of times a ggml compute graph had been reused
|
||||
};
|
||||
|
||||
struct llama_perf_sampler_data {
|
||||
double t_sample_ms;
|
||||
double t_sample_ms; // time needed for sampling in ms
|
||||
|
||||
int32_t n_sample;
|
||||
int32_t n_sample; // number of sampled tokens
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
|
||||
|
|
@ -1358,6 +1359,9 @@ extern "C" {
|
|||
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
||||
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
||||
|
||||
// print a breakdown of per-device memory use via LLAMA_LOG:
|
||||
LLAMA_API void llama_memory_breakdown_print(const struct llama_context * ctx);
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
|
|
|||
|
|
@ -2027,6 +2027,21 @@ void llama_context::perf_reset() {
|
|||
n_reused = 0;
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> llama_context::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> ret;
|
||||
for (const auto & buft_size : model.memory_breakdown()) {
|
||||
ret[buft_size.first].model += buft_size.second;
|
||||
}
|
||||
for (const auto & buft_size : memory->memory_breakdown()) {
|
||||
ret[buft_size.first].context += buft_size.second;
|
||||
}
|
||||
for (const auto & backend_ptr : backends) {
|
||||
ggml_backend_t backend = backend_ptr.get();
|
||||
ret[ggml_backend_sched_get_buffer_type(sched.get(), backend)].compute += ggml_backend_sched_get_buffer_size(sched.get(), backend);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
|
@ -2765,6 +2780,142 @@ void llama_perf_context_reset(llama_context * ctx) {
|
|||
ctx->perf_reset();
|
||||
}
|
||||
|
||||
void llama_memory_breakdown_print(const struct llama_context * ctx) {
|
||||
const std::vector<ggml_backend_dev_t> & devices = ctx->get_model().devices;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> memory_breakdown = ctx->memory_breakdown();
|
||||
|
||||
std::vector<std::array<std::string, 9>> table_data;
|
||||
table_data.reserve(devices.size());
|
||||
const std::string template_header = "%s: | %s | %s %s %s %s %s %s %s |\n";
|
||||
const std::string template_gpu = "%s: | %s | %s = %s + (%s = %s + %s + %s) + %s |\n";
|
||||
const std::string template_other = "%s: | %s | %s %s %s = %s + %s + %s %s |\n";
|
||||
|
||||
table_data.push_back({template_header, "memory breakdown [MiB]", "total", "free", "self", "model", "context", "compute", "unaccounted"});
|
||||
|
||||
constexpr size_t MiB = 1024 * 1024;
|
||||
const std::vector<std::string> desc_prefixes_strip = {"NVIDIA ", "GeForce ", "Tesla ", "AMD ", "Radeon ", "Instinct "};
|
||||
|
||||
// track seen buffer types to avoid double counting:
|
||||
std::set<ggml_backend_buffer_type_t> seen_buffer_types;
|
||||
|
||||
// accumulative memory breakdown for each device and for host:
|
||||
std::vector<llama_memory_breakdown_data> mb_dev(devices.size());
|
||||
llama_memory_breakdown_data mb_host;
|
||||
|
||||
for (const auto & buft_mb : memory_breakdown) {
|
||||
ggml_backend_buffer_type_t buft = buft_mb.first;
|
||||
const llama_memory_breakdown_data & mb = buft_mb.second;
|
||||
if (ggml_backend_buft_is_host(buft)) {
|
||||
mb_host.model += mb.model;
|
||||
mb_host.context += mb.context;
|
||||
mb_host.compute += mb.compute;
|
||||
seen_buffer_types.insert(buft);
|
||||
continue;
|
||||
}
|
||||
ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
|
||||
if (dev) {
|
||||
int i_dev = -1;
|
||||
for (size_t i = 0; i < devices.size(); i++) {
|
||||
if (devices[i] == dev) {
|
||||
i_dev = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i_dev != -1) {
|
||||
mb_dev[i_dev].model += mb.model;
|
||||
mb_dev[i_dev].context += mb.context;
|
||||
mb_dev[i_dev].compute += mb.compute;
|
||||
seen_buffer_types.insert(buft);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// print memory breakdown for each device:
|
||||
for (size_t i = 0; i < devices.size(); i++) {
|
||||
ggml_backend_dev_t dev = devices[i];
|
||||
llama_memory_breakdown_data mb = mb_dev[i];
|
||||
|
||||
const std::string name = ggml_backend_dev_name(dev);
|
||||
std::string desc = ggml_backend_dev_description(dev);
|
||||
for (const std::string & prefix : desc_prefixes_strip) {
|
||||
if (desc.length() >= prefix.length() && desc.substr(0, prefix.length()) == prefix) {
|
||||
desc = desc.substr(prefix.length());
|
||||
}
|
||||
}
|
||||
|
||||
size_t free, total;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
|
||||
const size_t self = mb.model + mb.context + mb.compute;
|
||||
const size_t unaccounted = total - self - free;
|
||||
|
||||
table_data.push_back({
|
||||
template_gpu,
|
||||
" - " + name + " (" + desc + ")",
|
||||
std::to_string(total / MiB),
|
||||
std::to_string(free / MiB),
|
||||
std::to_string(self / MiB),
|
||||
std::to_string(mb.model / MiB),
|
||||
std::to_string(mb.context / MiB),
|
||||
std::to_string(mb.compute / MiB),
|
||||
std::to_string(unaccounted / MiB)});
|
||||
}
|
||||
|
||||
// print memory breakdown for host:
|
||||
{
|
||||
const size_t self = mb_host.model + mb_host.context + mb_host.compute;
|
||||
table_data.push_back({
|
||||
template_other,
|
||||
" - Host",
|
||||
"", // total
|
||||
"", // free
|
||||
std::to_string(self / MiB),
|
||||
std::to_string(mb_host.model / MiB),
|
||||
std::to_string(mb_host.context / MiB),
|
||||
std::to_string(mb_host.compute / MiB),
|
||||
""}); // unaccounted
|
||||
}
|
||||
|
||||
// print memory breakdown for all remaining buffer types:
|
||||
for (const auto & buft_mb : memory_breakdown) {
|
||||
ggml_backend_buffer_type_t buft = buft_mb.first;
|
||||
const llama_memory_breakdown_data & mb = buft_mb.second;
|
||||
if (seen_buffer_types.count(buft) == 1) {
|
||||
continue;
|
||||
}
|
||||
const std::string name = ggml_backend_buft_name(buft);
|
||||
const size_t self = mb.model + mb.context + mb.compute;
|
||||
table_data.push_back({
|
||||
template_other,
|
||||
" - " + name,
|
||||
"", // total
|
||||
"", // free
|
||||
std::to_string(self / MiB),
|
||||
std::to_string(mb.model / MiB),
|
||||
std::to_string(mb.context / MiB),
|
||||
std::to_string(mb.compute / MiB),
|
||||
""}); // unaccounted
|
||||
seen_buffer_types.insert(buft);
|
||||
}
|
||||
|
||||
for (size_t j = 1; j < table_data[0].size(); j++) {
|
||||
size_t max_len = 0;
|
||||
for (const auto & td : table_data) {
|
||||
max_len = std::max(max_len, td[j].length());
|
||||
}
|
||||
for (auto & td : table_data) {
|
||||
td[j].insert(j == 1 ? td[j].length() : 0, max_len - td[j].length(), ' ');
|
||||
}
|
||||
}
|
||||
for (const auto & td : table_data) {
|
||||
LLAMA_LOG_INFO(td[0].c_str(),
|
||||
__func__, td[1].c_str(), td[2].c_str(), td[3].c_str(), td[4].c_str(), td[5].c_str(),
|
||||
td[6].c_str(), td[7].c_str(), td[8].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
|
|
|||
|
|
@ -17,9 +17,17 @@ class llama_batch_allocr;
|
|||
class llama_io_read_i;
|
||||
class llama_io_write_i;
|
||||
|
||||
// "memory" as in abstract memory for the context
|
||||
struct llama_memory_i;
|
||||
struct llama_memory_context_i;
|
||||
|
||||
// "memory" as in physical memory for a buffer type, in bytes
|
||||
struct llama_memory_breakdown_data {
|
||||
size_t model = 0; // memory allocated for the model
|
||||
size_t context = 0; // memory allocated for the context
|
||||
size_t compute = 0; // memory allocated for temporary compute buffers
|
||||
};
|
||||
|
||||
struct llama_context {
|
||||
// init scheduler and compute buffers, reserve worst-case graphs
|
||||
llama_context(
|
||||
|
|
@ -144,6 +152,8 @@ struct llama_context {
|
|||
llama_perf_context_data perf_get_data() const;
|
||||
void perf_reset();
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> memory_breakdown() const;
|
||||
|
||||
//
|
||||
// training
|
||||
//
|
||||
|
|
|
|||
|
|
@ -113,6 +113,14 @@ llama_pos llama_kv_cache_iswa::seq_pos_max(llama_seq_id seq_id) const {
|
|||
return kv_swa->seq_pos_max(seq_id);
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache_iswa::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> mb = kv_base->memory_breakdown();
|
||||
for (const auto & buft_size : kv_swa->memory_breakdown()) {
|
||||
mb[buft_size.first] += buft_size.second;
|
||||
}
|
||||
return mb;
|
||||
}
|
||||
|
||||
llama_memory_context_ptr llama_kv_cache_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
||||
GGML_UNUSED(embd_all);
|
||||
|
||||
|
|
|
|||
|
|
@ -56,6 +56,8 @@ public:
|
|||
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
|
||||
|
|
|
|||
|
|
@ -473,6 +473,14 @@ llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
|
|||
return cells.seq_pos_max(seq_id);
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> ret;
|
||||
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
llama_memory_context_ptr llama_kv_cache::init_batch(
|
||||
llama_batch_allocr & balloc,
|
||||
uint32_t n_ubatch,
|
||||
|
|
|
|||
|
|
@ -121,6 +121,8 @@ public:
|
|||
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
|
||||
|
|
|
|||
|
|
@ -166,6 +166,14 @@ llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
|
|||
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
|
||||
for (const auto & buft_size : mem_recr->memory_breakdown()) {
|
||||
mb[buft_size.first] += buft_size.second;
|
||||
}
|
||||
return mb;
|
||||
}
|
||||
|
||||
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
|
||||
GGML_UNUSED(flags);
|
||||
|
||||
|
|
|
|||
|
|
@ -68,6 +68,8 @@ public:
|
|||
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
|
||||
|
||||
// state write/load
|
||||
|
||||
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override;
|
||||
|
|
|
|||
|
|
@ -359,6 +359,14 @@ llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
|||
return result;
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> ret;
|
||||
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
llama_memory_context_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
||||
do {
|
||||
balloc.split_reset();
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
#include "llama-graph.h"
|
||||
#include "llama-memory.h"
|
||||
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <vector>
|
||||
|
||||
|
|
@ -50,6 +51,8 @@ public:
|
|||
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
||||
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const override;
|
||||
|
||||
bool prepare(const std::vector<llama_ubatch> & ubatches);
|
||||
|
||||
// find a contiguous slot of memory cells and emplace the ubatch there
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
|
||||
#include "llama.h"
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <functional>
|
||||
|
||||
|
|
@ -108,6 +109,8 @@ struct llama_memory_i {
|
|||
virtual llama_pos seq_pos_min(llama_seq_id seq_id) const = 0;
|
||||
virtual llama_pos seq_pos_max(llama_seq_id seq_id) const = 0;
|
||||
|
||||
virtual std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const = 0;
|
||||
|
||||
//
|
||||
// state write/read
|
||||
//
|
||||
|
|
|
|||
|
|
@ -6005,6 +6005,14 @@ size_t llama_model::n_devices() const {
|
|||
return devices.size();
|
||||
}
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> ret;
|
||||
for (const ggml_backend_buffer_ptr & buf_ptr : pimpl->bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint64_t llama_model::n_elements() const {
|
||||
return pimpl->n_elements;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
#include "llama-memory.h"
|
||||
#include "llama-vocab.h"
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
|
@ -453,10 +454,12 @@ struct llama_model {
|
|||
|
||||
std::string desc() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t size() const; // file size
|
||||
size_t n_tensors() const;
|
||||
size_t n_devices() const;
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> memory_breakdown() const;
|
||||
|
||||
// total number of parameters in the model
|
||||
uint64_t n_elements() const;
|
||||
|
||||
|
|
|
|||
|
|
@ -2060,6 +2060,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("\n");
|
||||
llama_perf_context_print(ctx);
|
||||
llama_memory_breakdown_print(ctx);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue